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Towards Real-time Physical Human-Robot Interaction
using Skeleton Information and Hand Gestures

Osama Mazhar Sofiane Ramdani Benjamin Navarro Robin Passama Andrea Cherubini

Abstract— For successful physical human-robot interaction,
the capability of a robot to understand its environment is
imperative. More importantly, the robot should extract from
the human operator as much information as possible. A reliable
3D skeleton extraction is essential for a robot to predict the
intentions of the operator while he/she moves toward the robot
or performs a gesture with a specific meaning. For this purpose,
we have integrated a time-of-flight depth camera with a state-
of-the-art 2D skeleton extraction library namely Openpose, to
obtain 3D skeletal joint coordinates reliably. We have also
developed a robust and rotation invariant (in the coronal plane)
hand gesture detector using a convolutional neural network.
At run time (after having been trained) the detector does not
require any pre-processing of the hand images. A complete
pipeline for skeleton extraction and hand gesture recognition
is developed and employed for real-time physical human-
robot interaction, demonstrating the promising capability of the
designed framework. This work establishes a firm basis and will
be extended for the development of intelligent human intention
detection in physical human-robot interaction scenarios, to
efficiently recognize a variety of static as well as dynamic
gestures.

I. INTRODUCTION

The recent development of light-weight robot manipulators
and integration of mobile robots in both industrial and service
applications has triggered attention on the research of safe
physical human-robot interaction (pHRI). The appropriate
understanding of the user, his/her safety, reliable performance
in varying environments and real-time operation are all key-
factors in pHRI studies. Advances in computer hardware,
vision sensors and software have enabled robots to become
more useful in their work environment. In particular, depth
cameras like Microsoft Kinect, Orbbec Astra and Intel
SR300 are becoming increasingly popular among computer-
vision and robotic researchers for the development of robust
pHRI applications.

A well known study [1] shows that 93% of the human
communication is non-verbal and 55% of this is accounted
for elements like facial expressions, posture, etc. In this
perspective, capabilities like gesture recognition and human
behavior understanding may be extremely useful for a robotic
system in pHRI scenarios [2]. Gesture recognition is an
active field of research in computer vision and is an effective
way of communicating with a robot [3]. In this paper,
we propose a pHRI framework which enables a robot to
understand and to obey the commands given by the human-
operator in the form of hand gestures.
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Background and related work are described in Sect. II. In
Sect. III, our contributions are stated briefly. Methodology is
detailed in Sect. IV while a pHRI experiment and results are
explained in Sect. V. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In [4], the authors have classified gestures in three types:
1) hand and arm gestures,
2) body gestures: full body motions and gait,
3) head and face gestures: nodding or shaking head,

direction of eye-gaze, expressions of emotions.
According to [3], the essential parts of gesture recognition

are sensor data collection, hand/body localization, feature
tracking for dynamic gestures and gesture classification.

Fig. 1. Overall proposed pHRI scenario with BAZAR - The dual-arm
mobile manipulator developed at LIRMM.

In [2], an image based human-robot collaboration system
is proposed using a Kinect mounted on a wifibot which
carries a NAO robot. The robot is able to navigate towards an
object pointed on the floor. The proposed facial tracker fails
to detect gestures quite often, as untrained users make those
gestures subtly. Besides, no physical interaction between the
human and user is present in this work. A similar – but
hardware demanding – scenario is proposed in [5] where
three Kinects are mounted around the workspace of a mobile
robot. The authors detect dynamic gestures using a Fast-
Fourier Transform which is used to segment a gesture,
through the estimation of its period. This requires continuous
repetition of each gesture in a loop several times in pre-
operational/training phases. Training neural networks only on
pre-processed images can prevent them from extracting and
learning diverse features and may compromise the detector
performance during recognition phase. The authors train 10



different neural networks for each gesture and this requires
substantial resources. Moreover, this scenario involves no
physical interaction between robot and human. In [6], Kinect-
based object recognition through 3D gestures is proposed.
The OpenNI and NITE middleware are used to extract the
skeleton information of the human standing in front of the
camera. The object location is fixed and a rigid object
segmentation procedure is used with predefined constraints
(e.g., the table color is white). Such conditions may not
always be present in a real human-robot interaction task.
Also, the removal of background using depth information
may fail in some conditions (e.g., when the human operator
stands near a wall). The objects chosen in the demonstration
appear to be only of rectangular/box shape thus are detected
using corner detectors. The histogram matching algorithm is
used to recognize the objects.

This has been outperformed by modern deep learning
techniques like Convolutional Neural Networks (CNN) [7].
Recently, [8] makes use of CNN for hand gesture recognition
for a Human-Computer Interface. The author proposes a
color independent classifier by feeding a pre-processed bi-
nary images into a LeNet network [9]. This makes classifica-
tion accuracy dependent on the pre-processing step although,
if provided with sufficient data, CNN are inherently robust
enough to learn color features. In [10], the authors propose a
HRI system for navigation of a mobile robot using a Kinect.
For body and hand skeleton detection, a skeleton topology
with multiple nodes is fit on the point cloud acquired from
the sensor. This technique is not reliable, as both skeleton and
hands have several non-linear anatomical constraints, that
make the task of accurate pose detection difficult. A system
targeting pHRI is proposed in [11], where a human-user gives
commands to a robotic arm to follow, grasp, move and place
an object. The arm gestures are used to control the robot,
so that the gestures are distinguished with respect to pre-
defined elbow angle ranges. The method does not incorporate
hand gestures detection. This also makes the interaction
system less intuitive for comfortable human-robot interaction
tasks, as the human operator will have to learn the required
elbow angles. Besides, a color-coordinate based algorithm is
proposed for object detection, limiting the detection of multi-
color objects. In [12], the author uses the skin color for hand
segmentation assuming a planar background. Although the
skeleton of the hand is extracted using distance transform,
the approach only works with open hand gestures and mostly
when the palm is facing the camera. The authors of [13]
propose a technique to navigate a mobile robot with a Kinect.
The OpenNI middleware is used to extract hand position and
no physical interaction is present.

The localization of human body and of its sub-parts (e.g.,
hands or face) depends on the choice of sensor used and on
its output. In [8] and [12], the authors use hand color filtering
to localize hands in the scene. In [13], the human is detected
by a laser sensor and hands are localized using OpenNI as in
[5]. The authors of [10] localize the body using a technique
inspired by [14] to merge clusters of a point cloud from
Kinect after voxel filtering and ground plane removal. Yang

et al. [11] use Microsoft SDK; object searching is done on the
basis of color and shape of the object point cloud. Tracking
of hands and fingers can also be done by optical and infra-
red based sensors like Leap Motion. This has a hand model
built-in, which is combined with the raw sensor data to track
the positions and motion of the hand precisely. However, the
effective range of this sensor is only 25 to 600 millimeters
approximately which is not always suitable for the distant
interactive applications between humans and robots.

III. OUR CONTRIBUTIONS

In this paper, we present a framework of pHRI using
Kinect v2 with the deep learning APIs caffe, tensorflow and
Keras. Moreover, we demonstrate the performance of our
framework in a pHRI setting for a Tool Handover Task where
inference from vision is combined with that from the torque
sensors of a robotic arm. Our contributions in this perspective
are summarized as follows:

1) Integration of the recent and accurate skeleton tracker
Openpose [15], [16] with the Microsoft Kinect v2
(time-of-flight) sensor in Ubuntu 16.04 to get a robust
3D skeleton in real-time.

2) Development of a CNN for on-line hand gestures
recognition at distances up to 4 meters from the robot.
The CNN is trained on four gestures namely Handover,
Stop, Resume and None gesture with post-processed
hand images with extensive data augmentation to avoid
any background removal or image processing in the
recognition step.

3) Design of a pHRI framework combining vision and
force measurements to achieve two-way object han-
dover between operator and robot.

Fig. 2. Our proposed computer vision pipeline for hand gesture recognition.

IV. METHODOLOGY

The proposed pHRI pipeline is divided in three main
modules namely: Skeleton extraction and hand image acqui-
sition, CNN for pHRI hand gestures recognition and Robot
control for pHRI. The proposed computer vision pipeline is
illustrated in Fig. 2. The pHRI details on the modules are
described in the following sections.



Fig. 3. Integration pipeline of Microsoft Kinect v2 with Openpose to extract human skeletal joint coordinates and hand images.

A. Skeleton Extraction and Hand Images Acquisition

To develop an efficient and human-friendly human-robot
interaction setting, Microsoft Kinect v2 is opted for data ac-
quisition. Opensource SDKs like OpenNi2 inherently provide
skeleton extraction functions for Kinect v2, but they are not
robust enough to be used in real-world pHRI settings. The
latest developments in machine learning and availability of
computational resources have allowed researchers to develop
more robust techniques for this. Openpose is a recent de-
velopment in this reference, which works on the basis of
Convolutional Pose Machines (CPMs) [17]. It only requires
RGB images to extract 2D skeletal joint coordinates of
humans in the scene. Although Openpose can reliably extract
the skeletal joints, the absence of the third coordinate i.e.,
the depth information, makes it inconvenient to be employed
in pHRI scenarios. We integrate Kinect v2 with Openpose

Fig. 4. 3D skeletal joints, hand center location and rotated bounding box
(green). Hand gesture detection is invoked only when the forearm lies above
the predefined yellow line.

to get the skeleton hands depth without compromising the
computational cost. This information can be utilized to
develop an efficient recognition system for both static and
dynamic gestures. This also enables the robot to interact with
the environment, particularly with the operator, using depth
information.

Figure 3 illustrates our pipeline of integration of Kinect
v2 with Openpose. To get an approximate location of the
hand, we first fit a line (red in the figure) between the elbow
and wrist joints and compute the angle that it makes with the
vertical. This line is then extended to one third of the length
of forearm to estimate the hand center location. Then we

derive a bounding box (green in the figure), centered at the
hand center and aligned with the forearm at all times. The
size of the bounding box is determined by the mean depth
value of 36 pixels (6×6 matrix) at the predicted hand center.
This keeps the bounding box size close to that of the hand,
irrespective of its distance from the Kinect v2 (obviously,
within the sensor depth range). The extracted skeletal joints
with their depth values, the line between the elbow and
wrist joint, approximated hand center location and the rotated
bounding box can be seen in Figure 4. The hand images are
obtained by rotating and cropping the pixels that lie within
the bounding box. This makes our system independent of
hand orientation in the coronal plane of the human body. The
cropped hand images are resized to 244x244 pixels images
that are then fed to the CNN for gesture recognition.

Fig. 5. Trained hand gestures after data augmentation.

B. CNN for Hand Gestures Recognition

We develop a CNN to recognize the four hand gestures
shown in Fig. 5. The architecture of our CNN, which is
illustrated in Fig. 6 (top), is inspired mainly from LeNet
with the addition of dropout layers, fully-connected layers
and hyper-parameters tuning. The addition of dropout layers
drastically improves the capability of the network to learn
distinct features in the dataset. The dataset is generated for
the four gestures performed by a single person, by recording
the RGB and depth image stream from Kinect v2. The saved



Fig. 6. Architecture of our Convolutional Neural Network (top), and block diagram of training and building CNN model (bottom)

images are then passed through the skeleton extraction and
hand images acquisition module as explained in the previous
section and hand images are stored and later manually copied
into different folders. These images are then labeled and
stored in a h5 file for later use in model training.

To make gesture recognition invariant to background, we
also train the CNN with augmented backgrounds. Let us
now detail our background augmentation approach. A binary
mask for background subtraction is created using the depth
information from Kinect v2. It is created such that the pixels
that lie at a depth within ±18 % (empirical value) of the
mean depth value computed at the wrist joint (obtained
through openpose) are forced to the value 1, while the rest are
zeroed. This binary mask is broadcasted into three channels

Init pose reached

Has object = false

Has object

in hand?

Fetch object

Stop

Initialization

Give object

Drop object

Force detected

Has object = true

Hand open

Has object = false
Stop signal �

Resume signal ↓
Stop signal ↑

Resume signal ↓Handover signal

Fig. 7. Finite state machine of the robotic handover experiment.

and then multiplied by the cropped RGB hand image. This
mean depth value is computed as in the case of estimating
the bounding box size over the hand (Sect. IV-A). Then, each
image in this pre-processing loop is assigned a different gray
value as background. This is achieved by first creating an

inverted binary mask by simply applying a ”NOT” operation
on the mask originally computed. This inverted mask is
multiplied with gray values incremented for each image by
10, broadcasted into three channels and then added with the
background-removed hand image. To improve the network
invariance to background even further, different patterns can
also be introduced in the background. This step is left for
the future work and is not performed in the current system.
Other data augmentation techniques that we applied to the
database are: contrast stretching, channel shift and horizontal
flip. The results of data augmentation are shown in Fig. 5.
A block diagram of training our CNN is shown in Fig. 6
(bottom). The Keras python API is used to build the network
and for data augmentation and network training. The network
is trained overnight on a set of 1800 RGB images of size
244x244 pixels on an Intel Core i7-6800K CPU at 3.40GHz,
12 cores with no GPU. Validation accuracy, with 600 test
images, is 98.8 %.

The trained model is converted into a protobuf file, to
be later used with the tensorflow C++ library in the online
recognition phase. We evaluated our model with 300 more
test images extracted from a video recorded in different light
conditions, and achieved 95.7 % accuracy on these data. We
plan to extend this system by collecting more data from
multiple users and to test the accuracy of our network on
persons not included in the data. We have performed the
initial tests in this reference, however we will quantify and
publish these results in future.

C. Robot Control for pHRI

The BAZAR robot used for the experiments is composed
of two Kuka LWR 4+ arms with two Shadow Dexterous
Hands attached at the end-effectors. The arms are attached to
a Neobotix MP700 omnidirectional mobile platform. In our
scenario, the mobile base is kept fixed and only the right
hand-arm system is used. The control of the arm is done
using the FRI library and the control of the hand is based on
a ROS interface. The external force applied to the arm’s end-
effector is estimated by FRI based on joint torque sensing



Fig. 8. Screen-shots of the video of experiment that we performed to analyze the robustness of the proposed pHRI framework. Starting from left, the
human operator is giving a Handover command to the robot, then the operator hands over the tool to the robot, the robot then moves toward the table and
drop the object, the operator is giving a Stop command to the robot in the last frame. The video can be accessed through the link in the footnote.

Fig. 9. Illustration of detected user inputs (top), l2-norm of end-effector velocity (center) and l2-norm of force applied on the end-effector (bottom).

Fig. 10. Time instances of the detected user inputs (as shown in Fig. 9(top) as rising edges of colored plots and gray lines. The red circled time instances
are false positives, which are detections that happen less than three times in succession hence not taken into account by the robot controller. Gesture
detection response time (GDRT) comes from subtracting third time instance from the first in a successful detection (in green boxes).

and on knowledge of the robot’s dynamic model. The control
rate is set to 5ms.

V. PHRI EXPERIMENT AND RESULTS

For safe pHRI, the robot must perceive the intention of the
operator. Here, 3D human body joint coordinates and hand
gesture recognition are the cues used for robot operation.
We realize a tool (here, a portable screw-driver) handover
experiment, guided by the finite state machine presented in
Fig. 7. The robot waits for the user commands in the form of
hand gestures, to take and then place the tool to a predefined

location in its workspace. In Fig. 8 we show some screen-
shots of the experiment, and a complete video is attached
to this paper, and can be accessed through this link 1. The
commands are fulfilled by the robot when three successive
identical instances of the corresponding gesture are detected,
and only if the forearm is above the horizontal line passing
through the elbow joint (see Fig. 4). This aids in ignoring
all gesture detections when the operator does not intend to
interact with the robot and has relaxed his/her arm. This can
also be seen in Fig. 9(top), where gray vertical lines after

1http://bit.do/d8ukg

http://bit.do/d8ukg


each user-input detection represents successive detections of
the same gesture.

Interaction is started by detection of the Handover com-
mand, which triggers the motion of the arm-hand toward
the operator and the opening of the fingers, in a predefined
configuration, suitable to carry the object. As the robotic
arm moves toward the operator, a Stop command can stop
this movement and the robot keeps the halt position until
a Resume command is received. Moreover, if the robot has
received the object and is moving toward the table to place
the object on top of it, a Stop, followed by a Handover
command will make the robot return the object to the
operator. The velocity curve in Fig. 9 is aligned with the
user-signal detection plot, so the motion of the end-effector
corresponds to the detected input. A threshold of 6 N in the
X (downwards) component of the force applied on the end-
effector is used to trigger tool grasping. This can be seen
after the detections of Handover commands in Fig. 9. The
robot continues to execute the previous command, even when
a None gesture is detected.

This experiment is performed indoor and all gesture per-
mutations are tested. The operator moves closer and farther
from the robot and is allowed to move his hand in the coronal
plane depending on his comfort. The robot is able to detect
and obey the intended commands within approximately 570
milliseconds from a single operator in the scene. We call it
gesture detection response time (GDRT) which is an average
time combining three successive detections of hand gestures.
The detection time instances of the gestures recognized in
this interaction experiment are presented in Fig. 10. Our
overall pHRI framework is able to extract 3D skeleton joint
coordinates along with the detection of hand gestures with
an approximate frame-rate of 5.2 fps (approximately 192
millisecond for a single execution of our framework loop).
The Openpose skeleton extractor is the main bottle-neck in
the pipeline, since it already requires a GPU (GeForce GTX
1080 in our case) to execute pose extraction using caffe. The
forward-pass of input hand images through our tensorflow
model requires no GPU at this moment. Nevertheless, our
CNN model can be trained and run using a GPU in a multiple
GPU hardware for faster recognition rates. Since multiple
GPUs can also be used in the provided Openpose wrapper
with supported cameras, we are confident that in the near
future we will increase hand gesture detection rates and
ensure human-like speed.

VI. CONCLUSION

For safe and intuitive pHRI, availability of sufficient
human-body descriptors is imperative for a robot to success-
fully understand and obey the intended gestures. A robust
pHRI framework has been developed and presented in this
paper. It includes extraction of a 3D human skeleton through
integration of a Kinect v2 with a state-of-the-art 2D skeleton
extraction library and a fast hand gesture recognition system.
A database collection, including user study, has already been
developed and is in execution while we write this paper.
This will allow us to incorporate more gestures from many

different people in our framework. The descriptors from
3D human-skeleton will be extracted and used to recognize
dynamic gestures in a human-robot interaction scenario for
a more natural and productive cooperative activity. Multiple
objects detection, their localization in the scene and handling
of objects with different shapes will be added in future work.
The use of recurrent neural networks for the detection of
dynamic gestures/human-intention will be explored and will
also be added to our pipeline.
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