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Abstract

A stochastic multi-product lot-sizing and sequencing problem is studied. Two kinds of
uncertainties are integrated into the model: defective items due to the process imperfections
and random lead times because of randomly arising machine breakdowns and uncertain
repair times. There are also sequence-dependent set-up times between two items of different
types. The objective is to find a sequence of lots and lot sizes maximizing the probability
of demand satisfaction for all products. A decomposition approach has been proposed in
the literature to reduce this problem to a sequence of known optimization problems with
different algorithms available for each of them. However, a proper evaluation of the practical
performance of the whole method has never been presented. The goal of this paper is
to analyze and compare the behavior of different solution frameworks (with and without
decomposition) and techniques for the considered problem.

Keywords: Stochastic production lines, Lot-Sizing, Sequencing, Decomposition, Dynamic
programming, Genetic Algorithms

1. Introduction

We study a lot-sizing and sequencing problem under uncertainty. The goal is to find
optimal sequence of lots and lot sizes maximizing the probability to satisfy the whole demand,
i.e. the demand for all product lots. In the literature the problem of demand satisfaction
is often considered from cost point of view with the objective to minimize total backlog
and holding cost. But in practice it is very difficult to accurately calculate the backlog cost
because of indirect consequences of stock-outs such as potential losses of clients. When the
average cost evaluation is not possible, or average cost criterion cannot be used for decisions,
the service level criterion is often applied.

The impetus for this research initially came from the design of a fully automated pro-
duction facility in the electronics industry that processes different conductor patterns and
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assembles them into printed circuits. However, the conclusions drawn by our study could
be of interest for other similar situations where the same random phenomena arise and the
same objective function of service level maximization is used.

The facility considered is composed of (see figure 1): 1) a manufacturing line that pro-
cesses items of several types; 2) an automatic storage device that stocks processed items;
3) an assembly line assembling final products with previously stored items. As shown in
figure 1, the manufacturing line consists of m sequentially placed machines and is a paced
flow line. Every item passes through all machines in the same fixed order. Lines producing
electronic components are particularly subject to rejects, which cannot be fixed. Defective
items are detected only after the last machine and are not placed into the storage system
(they are excluded from the future process). When changing the product type, some amount
of time (set-up time) is needed for setting up the machines. To perform this changeover,
the processing of all items of the previous product type should be finished and the produc-
tion line should be empty. The set-up time is sequence-dependent, i.e. it depends on both
outgoing and incoming products. The machines are subject to breakdowns that involve line
stoppages and engagement of repairs.

Figure 1: Production system

Capacity of the automatic storage system between production and assembly lines is
limited by one day of stock approximately (one day is equal to 24 hours of autonomous
work). Moreover, it is forbidden to keep the parts in this area more than a day otherwise
they will degrade. So the whole facility should work in a just-in-time mode. It is necessary
to ensure that all items needed for assembly day D are manufactured and loaded into the
storage system at the end of day D − 1. Otherwise, final products will not be delivered
on time, and huge backlog costs will be incurred. Thus, the objective of lot-sizing and
scheduling is to increase the probability to have all necessary items for the assembly process
by the due date and thus to avoid stockout and assembly line stoppage.
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We only consider the first part of a facility - production line which manufactures several
types of items by lots with sequence dependent set-up times between lots. The decision
to take daily is to determine how many items of each type (lot size) should be launched
in the morning of the day D − 1 on the production line to obtain all items needed for
the assembly line by the end of the day. Some additional items of each product should be
foreseen to compensate rejects, and some safety time should be added to perform machine
repairs. Indeed, increasing the size of a given lot, increases the probability to obtain all
required items of this type, but it reduces the time remaining for the subsequent lots and
the time remaining for machine repairs (planned safety time) after failures. On the other
hand, increasing the safety time reduces the time available for manufacturing. Furthermore,
the chosen sequence of products to process also has an impact on the total processing time,
and can increase or decrease the theoretical safety time intended for machines repairs.

We assume that :

• the demand level and unitary processing time are known for each type of product;

• defective items cannot be reworked, so they are rejected;

• the probability to obtain a quality item is given and can be different for different types
of product;

• each machine is subject to failures and the Mean Time to Failure (MTTF) and Mean
Time to Repair (MTTR) are also known.

This problem was originally considered in Dolgui et al. (2005). The authors presented
probabilistic models of these uncertainties (rejects and breakdowns) and proposed a decom-
position approach to solve the problem optimally but they didn’t perform any experiment.
The proposed decomposition approach is composed of three levels: 1) fix the type i of the
last product i = 1, . . . , n; 2) having last product i, find the sequence of other lots minimiz-
ing the total set-up time; 3) for the given sequence, find the sizes of lots maximizing the
total probability to satisfy the overall demand. These three levels of decomposition lead
to an exact optimal solution if at levels 2 and 3 the corresponding problems are solved to
optimality. The first level is a complete enumeration of n possible solutions for the last lot.
The sequencing decision (the second level of the approach) is equivalent to the Asymmetric
Traveling Salesman Problem (ATSP). The lot-sizing one (the last level) is an extension of
the Knapsack problem. Both the second and third level problems are NP-hard.

Dolgui et al. (2005) proposed to use a Dynamic Programming (DP) procedure to solve
the lot-sizing part of the problem. A DP based method proposed in Dolgui et al. (2005) for
lot-sizing part of the problem gives an optimal solution, but it is only able to solve problems
with a very low number of lots. Thus for the instances of industrial scale the lot-sizing sub-
problem should be solved using approximate methods. Schemeleva et al. (2012) focused on
the lot sizing problem and proposed a genetic algorithm. Hereby, till now only the overall
decomposition scheme and corresponding lot-sizing problem was studied, the sequencing
problem was left out since it was considered as well known.
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The objective of this paper is to complete a cycle of work on this new problem and respond
to the open questions concerning the global problem solution. The exact decomposition
approach for the global problem has not been tested yet and no heuristics has been proposed.
In our previous publications, we suggested interesting metaheuristics for lot-sizing part, and
so to finish the study the question is: what are the most efficient techniques to solve the
global problem?

This paper seeks to analyze the behavior and effectiveness of possible solution approaches.
Our objective is to determine the limits of the optimal approach by decomposition proposed
by Dolgui et al. (2005) and to propose three different resolution frameworks to obtain an
approximate solution and evaluate their efficiency:

1. Skipping the enumeration step for the last lot in the decomposition approach, i.e.
applying only the second and third level models.

2. Using the decomposition framework with heuristics for the lot-sizing problem, as sug-
gested by Schemeleva et al. (2012), and for the scheduling problem.

3. Using a heuristic for the whole problem without decomposition.

While the decomposition implies tackling n resolution processes of similar problems, and
could induce many redundant computations, a global heuristic means considering a larger
decision space. Obviously, an intelligent search within the decision space should allow to
avoid an increase of the computational time of the same magnitude than the size of the
search space. As a consequence, it is not possible to know a priori which framework would
be more efficient for this problem.

In order to achieve this goal, all these frameworks have been tested using algorithms from
the literature, save for the latter for which a new memetic algorithm has been developed.
Indeed, the purpose of this paper is not to evaluate each of these algorithms individually
but rather to gather information on the possible resolution frameworks.

The rest of the paper is organized as follows. The problem statement and its mathe-
matical model are presented in Section 2. Section 3 is designed to give a review of related
literature. In section 4 we expose the resolution approach based on the decomposition. A
short description of methods used to solve each sub-problem is given. A new MA is pre-
sented in Section 5. Further, Section 6 contains the numerical results and their analysis.
Finally, Section 7 includes conclusion remarks.

2. Problem statement

We consider that the production line manufactures n types of products and consists of
m machines. Each machine can treat one item at the same time and an item’s transfer time
between two adjacent machines is included in the processing time. At the beginning of a day
the line is empty and is in the state 0 - initial set-up time is needed to adjust the machines
to start the processing. Let for each type of product i, i = 1, . . . , n the following parameters
are given:

• di - demand for items of type i;
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• ti,q - processing time for an item of type i on machine q. We deal with the paced flow
line, so without loss of generality we can consider that the processing time of an item
of type i is the same for all machines and is equal to ti = max

1≤q≤m
{ti,q}, q = 1, . . . ,m

(see figure 2);

• si,j - set-up time necessary to switch production from the product of type i for the
product of type j, si,j ≥ 0, si,i = 0, where i, j = 1, . . . , n. As for the processing time,
we consider that each set-up time is the longest duration needed for tools changing
si,j = max

1≤q≤m
{si,j,q}, q = 1, . . . ,m (see also figure 2);

• s0,i - initial set-up time to start the manufacturing process, if i is the first product to
process, s0,i ≥ 0;

Figure 2: Set-up and processing time for product i, with m = 3 and 5 items of product i

We assume that triangle inequality is satisfied for the set-up times: si,k ≤ si,j + sj,k,
i = 0, . . . , n and j, k = 1, . . . , n. It is not difficult to show that each optimal solution of the
sequencing sub-problem can be reorganized to include only one lot of each product, if it is
not already the case.

The overall production process for each lot of product i contains the following steps:

• Set-up time sj,i (or initial set-up time s0,i) to prepare the machines. During the set-up
time, items processing is impossible;

• Loading time (m − 1) ∗ ti needed for the first item of each lot to achieve the last
machine;

• Processing time ti multiplied by the quantity xi of items in the lot of product i .

Sometimes the normal production process is interrupted by breakdowns, in which case some
repairing time is needed. We assume that breakdowns cannot appear during the set-up time.
A schema of manufacturing line output is presented in figure 3.
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Figure 3: Example of output for lots j and i

The objective of the problem is to find the optimal sequence of lots and their sizes to
maximize the probability of satisfying overall demand. This decision should be made at
the beginning of each period, so we deal with a single-period model with T as a period
duration.The decision variables are the sizes of lots x = (x1, x2, . . . , xn), where xi is the
quantity of items of type i to produce, and their sequence π = (π1, π2, . . . , πn), where πi is
the type of product on the ith position, πi ∈ {1, . . . , n} and πi 6= πj for i 6= j, i, j = 1, . . . , n.

Remember, the objective is to maximize the probability to obtain at least di good items
of each of products i = 1, . . . , n:

Maximize P
(
xacti ≥ di, i = 1, . . . , n| (x, π)

)
(1)

where xacti is the quantity of items of a good quality obtained with xi items launched. Note,
if the lot size (xi) was overestimated, the remaining items will be added into the planning
of the work for the next period. We assume that the probabilities to obtain quality items
of each type are known. We use the Bernoulli distribution to calculate the probabilities to
have a given number of quality items of each type at the end of period taking into account
the lot sizes.

The line is considered as one equivalent machine. Breakdowns and repairs of the line
are expressed using two Poisson processes and renewal theory. Thus, the number of failures
depends on the length of total processing time necessary to produce all lots and the break-
down and repair rates. The length of periods between two successive breakdown or repair
events follows exponential probability densities. As it was mentioned above, the MTTR and
MTTF of each machine are considered as known, so the MTTR and MTTF for the whole
line can be calculated. The renewal process model proposed in Dolgui (2002) is used to
calculate the probability that available cumulative working time (the sum of all periods of
effective processing) is sufficient to process all lots.

If we know which lot will be the last one in the sequence, we can reformulate the objective
function (1) as follows:

Maximize
n−1∏
i=1

P
(
xacti ≥ di | (x, π)

)
∗ P

(
xactn ≥ dn | (x, π), R

)
(2)
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where R is a cumulative repair time. In this formulation, we consider, without loss of
generality, that all repair times are cumulated at the end of a planning period. Indeed, the
lots are processed sequentially. An excessive cumulated repair time can consume the time
of the last lot, which means there is no time left to launch the last lot. In this case the
probability for the last lot will be equal to zero and the objective function will also be equal
to zero. Thus, only the cases where the last lot can be processed, perhaps only partially, are
considered in (2)). This reformulation shows that the probabilities to satisfy the demand
for the first n − 1 products (the first member of the product in equation (2)) depend only
on rejects. Only the probability for the last lot with product n depends on rejects and
cumulative repair time, depending in its turn on the total item’s processing time.

Thus, if we fix the last lot the decision variables on sequence of lots and lot sizes become
independent. If the last lot is not fixed these variables are dependent: the probability to
satisfy the overall demand can be different for two solutions with equivalent set-up time if
the last lot is not the same, and the optimal sequence of lots can change if we increase or
decrease the quantity of items to process.

3. Literature review

The problem studied in this paper is recent and was stated in Dolgui (2002) and Dolgui
et al. (2005). It concerns lot-sizing and sequencing decisions for a manufacturing line with
imperfect production and sequence-dependent set-up times. Thus, it can be positioned on
the intersection of two research domains: lot-sizing for imperfect production systems, and
deterministic scheduling with batching.

3.1. Lot-sizing under uncertainty
Issues of lot-sizing under uncertainty are very common in industry and in literature.

In most cases, uncertainty is related to the uncertain demand, random yield or random
lead time. A state of the art of non-deterministic lot-sizing models was recently published
by Aloulou et al. (2014). This review covers only recent papers, published since 2000. The
authors proposed to use a five-field notation to classify lot-sizing models : number of periods,
number of products, number of machines, uncertain parameters and modeling approaches.
According to this classification, our problem can be represented as (1,n, m, {yie, lead},
prob).

Random yield occurs when the difference between the quantities of items launched and
the quantity of items obtained is not known. A survey of the literature on the lot-sizing with
random procurement and production yield can be found in Yano and Lee (1995). Another
review concerning the MRP environments was given by Dolgui and Prodhon (2007). There
exists a multitude of choices to model this type of uncertainty. One of the most common
is probability distributions. The latest was used by Gerchak and Grosfeld-Nir (1998) in
their problem of multiple lot-sizing. The Bernoulli process to model the random yield was
used by Teunter and Flapper (2003). Another approach consists in using the proportional
yield, where a certain percentage of items are defectives (quantity of defective items always
depends on the lot size). If this percentage is fixed, the problem is deterministic and the
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number of defective items in each lot can be calculated directly. Some examples of problems
with proportional yield can be found in Papachristos and Konstantaras (2006), Wang and
Gerchak (2000) and Dolgui et al. (2010). Sometimes, the interrupted geometric yield is
used. The principal idea of this method is that the manufacturing process can become out
of control with a given probability. In this case, all subsequent items are defective (see, for
example, Salameh and Jaber (2000) and Maddah and Jaber (2008), etc.).

Random lead time is often a consequence of random processing times (see, for exam-
ple, Çakanyildirim et al. (2000)), order and delivery delays (Arda and Hennet (2006)) or
breakdowns. We focus here on breakdowns. The most used notions to model breakdowns
are the Mean time to (between) failure(s) (MTTF or MTBF) and Mean time to repair
(MTTR): Lin and Gong (2006) considered the Economic production quantity model with
random breakdowns (MTBF = 1/λ, where λ is the breakdown rate which is a parameter of
the exponential distribution) and constant repair times. Giri and Yun (2005) and Giri and
Dohi (2004) examined the optimal lot-sizing problem with at most two failures during the
planning period (both failures and repair times follow a general (arbitrary) distribution.

Both random yield and random lead times are considered in Wang and Gerchak (2000).
Another example can be found in Dolgui et al. (2010), where the proportional yield was
used to model both defective items, as a function of the size of the lot, and repair times, as
a function of the total processing time.

3.2. Combined lot-sizing and scheduling problems
Deterministic problems combining both lot-sizing and scheduling decisions are widely

represented in the literature. Sikora (1996) studied a problem of lot-sizing and sequencing
with sequence dependent set-up times on a flow line issue from printed circuit board manu-
facturing. Allahverdi et al. (2008) proposed a review of scheduling with batching and set-up
times and (or) costs for different line configurations. Palaniappan and Jawahar (2011) ex-
amined the minimization of total costs of procurement lot sizing and assembly scheduling
for a flow line with sequence dependent setup times.

In the literature some authors treat this kind of problem without decomposition, namely
by using meta-heuristics. As an example, we can cite Sikora (1996), where a genetic algo-
rithm (GA) was developed for the lot-sizing and sequencing problem with set-ups. Allahverdi
et al. (2008) pointed out in their survey that meta-heuristics are very effective for these joint
lot-sizing and sequencing problems. Recently, Palaniappan and Jawahar (2011) proposed a
GA for simultaneous lot-sizing and scheduling.

4. Resolution via Decomposition

To make the present paper self-sufficient, we give a brief description of the decomposition
framework initially presented in Dolgui et al. (2005) and the algorithms chosen to solve each
of the obtained sub-problems. This section is organized as follows. In subsection 4.1 three
steps - enumerating, sequencing and lot-sizing - of decomposition is exposed. subsection 4.2
is intended to present several solution methods for the sequencing decision. We decided to
use a linear model from Sherali and Driscoll (2002) to obtain an optimal solution (in 4.2.1)
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and a genetic algorithm of Nagata and Soler (2012) to solve the problem approximately
(subsection 4.2.2). Further, subsection 4.3 contains the methods proposed earlier to solve
the lot-sizing part of the problem: exact algorithm for the lot-sizing part (DP procedure by
Dolgui et al. (2005)) described in 4.3.1 and a meta-heuristic approach (MA) from Schemeleva
et al. (2012) recapitulated in 4.3.2.

4.1. Decomposition approach
Let initial problem A be to maximize the probability of overall demand satisfying (2)

and (x∗, π∗) its optimal solution, where πi ∈ {1, . . . , n} and xi ∈ [xmini ;xmaxi ]. We can define
the inferior xmini and superior xmaxi limits for xi, i = 1, . . . , n in the following manner:

xmaxi = min
z≥di

(
z|P

(
xacti ≥ di

)
≥ 1− ε

)
, xmini = min

z≥di

(
z|P

(
xacti ≥ di

)
≥ β

)
(3)

where β is the service level, i.e. the minimum acceptable probability that the demand for
a given product will be satisfied, and ε is a relatively small positive value. So xmaxi is
the minimum lot size of product i such that the probability to satisfy the demand for the
product i is close to 1; xmini is the minimum quantity of items of product i necessary to
produce in order to obtain the probability to satisfy the corresponding demand not less
than the required service level. Obviously, xmaxi is the maximum possible value of xi taking
into account a reasonable threshold.

Problem A can be decomposed into n equivalent sub-problems A(i). Each A(i), i =
1, . . . , n is to solve the problem (2) under condition of fixed last lot i, i.e. πn = i. Once all
of n problems A(i) are solved, the optimal solution (x∗, π∗) of A is the best solution among
A(i), and can be obtained by a complete enumeration.

Each of A(i) on its turn can be decomposed in two sub-problems:

• Sequencing A(i)seq: by selection of a sequence for first n− 1 products, planned safety
time is modified because the total set-up time depends on the selected sequence. The
planned safety time is equal to the duration of the planning period minus the set-
up time and working time. Decreasing the total set-up time permits to increase the
planned safety time and, subsequently, to increase the probability to repair all break-
downs within the safety time, so as to process all the lots by the end of the period.
Thus, to optimize the sequencing decision, we should minimize the total set-up time:

A(i)seq : Minimize s0,π1 +
n∑
j=2

sπj−1,πj , πn ≡ i (4)

which is equivalent to the Asymmetric Traveling Salesman problem.

• Lot-Sizing A(i)lot: consists of determining the optimal sizes of lots for a fixed sequence:

A(i)lot : Maximize P
(
xacti ≥ di, i = 1, . . . , n | (x, π)

)
(5)

This problem is an extension of the Knapsack problem with a specific objective func-
tion.

Both sub-problems A(i)seq and A(i)lot are NP-hard.
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4.2. Resolution of the sequencing part A(i)seq of problem
In the previous section it was pointed out that the sequencing sub-problem A(i)seq is

equivalent to the Asymmetric Traveling Salesman problem, studied by numerous authors
(see Choi et al. (2003), Xing et al. (2008), etc.). Thus, we decided to adapt some existing
methods to solve it. First of all, we were looking for an effective in terms of CPU time linear
model formulation to obtain an optimal solution. The chosen model is presented in section
4.2.1. Then we decided to implement a meta-heuristic algorithm (see subsection 4.2.2) which
can provide a quality approximate solution but more rapidly.

4.2.1. A linear model formulation
A review of the literature has shown that the ATSP formulation proposed by Desrochers

and Laporte in 1991 is still very effective. Recently, Sherali et al. (2006) introduced several
new ATSP formulations and published the results of their comparison. Öncan et al. (2009)
have also compared 24 different formulations of the ATSP (using some already proved dom-
ination relationships and proposing a several number of new ones) in terms of strengths of
their LP relaxations. We were interested in a non-dominated models with low CPU time,
so Sherali and Driscoll’s model (proposed in Sherali and Driscoll (2002)) called ATSP-SD,
was selected. Moreover, it was the fastest to find the lower bound with the barrier solver of
CPLEX. To be sure about the effectiveness of this formulation for our problem instances,
we have implemented another model - ATSP-O7 - taken from Sherali et al. (2006) based
on different sub-tour eliminating constraints. Numerical results of preliminary tests proved
that the ATSP-SD model is the fastest for our instances.

As was mentioned before, A(i)seq is an extension of the ATSP, so the chosen ATSP-SD
model should be adapted to this extension. More precisely, compared to the standard ATSP
problem, we have to find the Hamiltonian path always beginning from the vertex 0, because
of the initial set-up time. The last lot (vertex) is fixed, so we should add several precedence
constraints. For i, j = 0, . . . , n let:

xij =

{
1 if arc (i, j) belongs to the optimal solution
0, otherwise

(6)

ui = position of lot i in the optimal path, u0 ≡ 0 - the first lot is fixed (7)

yij = ui ∗ xij =


position (starting from 0)
of the arc (i, j) on the optimal tour, if belong

0, otherwise
(8)

Note, yij are defined for i, j = 1, . . . , n.
Our adapted ATSP-SD model can be formulated as follows:

Minimize
n∑
i=0

n∑
j=0

si,jxij (9)
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Subject to:
n∑

j=0,j 6=i

xij = 1 ∀i = 0, . . . , n (10a)

n∑
i=0,i 6=j

xij = 1 ∀j = 0, . . . , n (10b)

n∑
j=1,j 6=i

yij + nxi0 = ui i = 1, . . . , n (10c)

n∑
i=1,i 6=j

yij = uj − 1 j = 1, . . . , n (10d)

yij ≥ xij i = 1, . . . , n, j = 1, . . . , n, i 6= j (10e)
yij ≤ (n− 1)xij i = 1, . . . , n, j = 1, . . . , n, i 6= j (10f)
uj + (n− 1)xij + nxji − yij − yji ≤ n i = 1, . . . , n, j = 1, . . . , n, i 6= j (10g)
xji + uj − yij − yji ≥ 1 i = 1, . . . , n, j = 1, . . . , n, i 6= j (10h)
uj + x0j − (n− 2)xj0 ≥ 2 j = 1, . . . , n (10i)
uj + (n− 2)x0j − xj0 ≤ n− 1 j = 1, . . . , n (10j)

Let last be the number of the last lot (fixed). We have:

xij ∈ {0, 1} i, j = 0, . . . , n

xlast,0 = 1

ui, yij ∈ [0, n] , ui, yij ∈ N, i, j = 0, . . . , n

ulast = n

In this model, (10a) and (10b) represent the standard assignment constraints assuring
that each city appears only once in the optimal tour. The (10c) verifies that the position
of the arc (i1, i2) in the tour is equal to the position of the lot of product i1. If i1 is the
last lot, all yi1,i2 are equal to 0. Constraint (10d) complements the previous one by assuring
that the position of any arc (i1, i2) is equal to the position of lot of product i2 − 1 in the
tour. Constraints (10e) and (10f) give the lower and upper bounding restrictions for yij:
xij ≤ yij ≤ (n − 1)xij. Indeed, if the arc (i, j) does not belong to the optimal tour, xij
and yij equal to 0; otherwise, xij = 1 and inequalities 1 ≤ yij ≤ (n − 1) are true because
yij ∈ [1;n − 1] for each arc (i, j) of the optimal tour, i > 0. Constraints (10g) and (10h)
are the bounding restrictions for yij and yji, and (10i) and (10j) are the lower and upper
bounding restrictions for uj.

The problem ATSP (and its extension also) is NP-hard, so exact methods stay effective
up to a certain size. Beyond, explosion of calculation time and/or memory requires using
an approximative method.
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4.2.2. Genetic Algorithm for the ATSP problem
Applying meta-heuristics is very common in solving the ATSP problem. A survey of

meta-heuristic algorithms for the ATSP and a new hybrid approach were proposed by Xing
et al. (2008). Recently, Nagata and Soler (2012) published a MA for the ATSP. The ex-
perimentation (for 27 instances from TSPLB) shows that MA of Nagata and Soler (2012)
is the most efficient comparing it with the most-known meta-heuristics (Choi et al. (2003),
Buriol et al. (2004) and Xing et al. (2008)), so we have decided to use it. All steps were
implemented in accordance with the considered problem:

• Initial population: Npop solutions h1, . . . , hNpop constituting the initial population are
created by applying a variant of the 3-opt neighborhood local search Npop times. To
make the local search procedure more reactive, the “don’t look bits” strategy was
employed (Bentley (1990)).

• Crossover : The Edge Assembly Crossover (EAX) operator was chosen for the crossover
(see Nagata (2004)). Each chromosome hi, i = 1, . . . , Npop is randomly selected once
for both parent pa and pb. A couple of parents can generate multiple offspring. Their
number is limited by either the chromosomes structure or a parameter fixing the max-
imum number of offspring.

• Selection: If the best obtained offspring offbest is better than pa and closer in terms
of different arcs to pa than to pb, then pa is replaced by offbest. If the offbest is more
similar to pb and is better than pa and pb, it replaces pb in the population.

The algorithm stops when a termination condition is met: in our case - when the allocated
time is elapsed.

4.3. Resolution of the lot-sizing sub-problem A(i)lot
The lot-sizing sub-problem A(i)lot is to find solution x = (x1, . . . , xn) maximizing the

probability of demand satisfying when the sequence of lots π is fixed. Dolgui et al. (2005)
pointed out that this problem can be considered as a specific extension of the Knapsack
problem. Consequently, it is NP-hard. The authors proposed a DP approach to find the
optimal solution. Its short version is described in subsection 4.3.1. The results of numerical
experiments on the DP were exposed in Schemeleva et al. (2012). Because of the huge
computational expenditures, this algorithm can only be used for instances with up to 10
lots, which is often insufficient for industrial problems. So the authors proposed the MA
approach to solve the problem. The main steps of this algorithm are described in subsection
4.3.2.

4.3.1. Dynamic programming
The main idea is the assignment of a time interval (corresponding processing time) for

each lot i, i = 1, . . . , n− 1, such that xmini ti ≤ time interval ≤ xmaxi ti. Further, let V i be the
time interval available to manufacture i first lots, 1 ≤ i ≤ n− 1, then

i∑
j=1

xminj tj ≤ Vi ≤ min

{
i∑

j=1

xmaxj tj, T − S(π∗)−
n∑

j=i+1

xminj tj

}
, (11)
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where S(π∗) is the total set-up time corresponding to the sequence π∗. Let H0(·) ≡ 1, then
for i = 1, . . . , n− 1 the recurrent relation is as follows:

H i(V i) = max∑i
j=1 xiti=V

i

{
H i−1(V i−1) ∗ P (xacti ≥ di|xi)|V i − V i−1 ∈ [xmini ti;x

maxti]
}

(12)

The DP can be represented as fulfilling the matrix structure with a variable quantity of
elements in each line. The first line contains the probabilities P (xact1 ≥ d1|x1) where x1 ∈
[xmin1 , xmax1 ], the second - P (xact1 ≥ d1|x1) ∗ P (xact2 ≥ d2|x2) where xi ∈ [xmini , xmaxi ], i = 1, 2,
etc. The last line contains the probabilities of overall demand satisfying obtained in the
following manner:

max
{
Hn−1(V n−1) ∗ P

(
xactn ≥ dn | (x, π∗), Cumulative repair time

)}
(13)

The lot-sizes xi, i = 1, . . . , n can be found using the backtracking.

4.3.2. Memetic algorithm
The decision variables here are the sizes of lots. Each solution is a vector of integer

number each of which gives the size of the corresponding lot. As the probability for the last
lot is calculated separately (see equation (2)) , so for a problem with n types of products,
the length of each solution is equal to n− 1. The fitness value for each solution is calculated
using equation (2) under assumption that xn = xmaxn .

The MA from Schemeleva et al. (2012) consists of the following steps:

• Initial population: The initial population is composed of Pop_size solutions obtained
with three greedy algorithms G1, G2, G3, and (Pop_size−4) random solutions. Here,
we are going to present their short overview only. We will use the upper (xmaxj ) and
the lower (xminj ) limits for each lot size xj defined before.

First of all, algorithm G1 initializes a solution x1 with the minimal feasible values
xminj for each j = 1, . . . , n− 1. Then, in each iteration, we increase by 1 the size of lot
corresponding to the minimal value of probability P (x1_actj ≥ dj|x1j), that can increase
the total probability of demand satisfaction. The process continues while the current
solution stays feasible.

Algorithm G2 is opposite to algorithm G1 and consists of the following: initialize a
solution x2 with x2j = xmaxj , j = 1, . . . , n − 1. In most of the cases, this solution
is not feasible, otherwise the lot-sizing sub-problem is solved: the optimal solution is
x∗ = (xmax1 , xmax2 , . . . , xmaxn ). If x2 is not feasible, then decrease by 1 the size of the
lot j which has the maximal probability P (x2_actj ≥ dj|x2j) until the solution becomes
feasible. If further decreasing of the lot with maximum probability permits to increase
the total probability of the demand satisfying (because in this case, we increase the
time remaining for the last lot), we continue to decrease the corresponding value,
otherwise the algorithm stops.

The greedy algorithm G3 is developed to find an average solution. We initialize x3
as following: x3j = b(xminj + xmaxj )/2c, j = 1, . . . , n − 1. Numerical experiments have
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shown that this approach gives solutions of a good quality when they are feasible. To
make a solution feasible, we proceed in the same manner as in algorithm G2: decrease
at each iteration the lot size by 1 for the lot for which the probability is maximal until
the solution becomes feasible.

Approach G4 generates the sizes of lots randomly, respecting lower xminj and upper
xmaxj bounds, j = 1, . . . , n − 1. Note, a solution is considered as feasible if we have
enough time to process at least dn items of the last product. If an obtained solution
is not feasible, we proceed in the same manner as in G2 and G3.

To have a heterogeneous population the distance between any pair of solutions should
be not less than 3. The distance metric dL for two lot-sizing parts xa and xb of solutions
is defined as follows:

dL(x
a, xb) =

k=n∑
k=1,k 6=last lot

|xak − xbk|, (14)

• Crossover : The chromosomes chosen using the tournament selection participate in
the crossover. Their number is equal to Cross_ratio. The crossover probability
for each pair of parents xa and xb to generate 2 offspring is Cross_prob. With the
same probability Cross_prob, gene i (i = 1, . . . , n− 1) of both offspring is generated
randomly between xai and xbi , otherwise gene i takes the corresponding value of one of
its parents.

• Mutation: The mutation probability Prob_mut is employed twice: 1) to decide if an
offspring off will mutate; 2) to decide if a given gene i of off will mutate. If it is the
case, its value is randomly generated in the following interval:

{−d
(
xmaxi − xmini

)
/4e, . . . , d

(
xmaxi − xmini

)
/4e}∩{bxmini −offi,−2c∪b2, xmaxi −offic}

• Selection: The redundant and close solutions (distance ≤ 3) are eliminated. If the pop-
ulation size is still greater than Pop_size, the elitist selection is employed, otherwise
the population is completed with the necessary number of random solutions.

• Local search: The neighborhood for a given chromosome includes all solutions for
which the distance is equal to 1. If the best solution cannot be ameliorated, we apply
the local search to the chromosome with the second best fitness value if it can be
ameliorated, etc.

5. Solving the global problem without decomposition

The global problem is then composed of two NP-hard problems which must be solved
simultaneously. We propose to address it using a new meta-heuristic approach which consid-
ers jointly lot-sizing and sequencing issues simultaneously. This will be a memetic algorithm
following the standard scheme. We will present the way of solution coding in subsection 5.1
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and fitness calculating in subsection 5.2. The procedure of the initial population generating
is reported in subsection 5.3. The selection mechanism is suggested in subsection 5.4 and
the crossover and mutation operators in subsections 5.5 and 5.6 respectively. The algorithm
is finished with a local search described in subsection 5.7.

5.1. Coding of solutions
Each solution (x, π) is coded as shown in Table 1. In x = (x1, . . . , xn), each xj is a

quantity of items for a corresponding product j to manufacture. Considering the example
of the solution presented in Table 1: a lot of 5 items of product π1 will be launched, then a
lot of 12 items of product π2, then 54 items of product π3, etc. Vector π = (π1, . . . , πn) is
a sequence of lots, where each πj gives the product’s type at position j, i.e. π1 = 1 means
that the lot of product of type 1 will be the first to manufacture, π2 = 5 - that the second
lot will be the lot of product 5, etc.

Table 1: An example of solution with Total Set-up Time (TS)= 1.63 hours and Fitness= 0.862

Position 1 2 3 4 5 6 7 8 9 10
Product π 1 5 10 8 2 7 4 6 3 9
Lot Size x 5 12 54 9 31 41 23 4 45 32

Note that πj are ordered following their passing through the production line (product π1
is the first, π2 is the second, etc.). Whereas in the lot-sizing part x of solution, elements xj
are ranged in the product’s type order (x1 is the size of a lot for product 1, x2 for product
2, etc.).

For a given sequence, the total set-up time can be calculated.

5.2. Solution’s Fitness
Fitness f of each solution (x, π) is the probability that demands for all products will be

satisfied. Let xactj be the quantity of quality items among xj processed items of product j.
The formula is identical to equation (2) from section 2 :

f(x, π) =
n−1∏
i=1

P
(
xacti ≥ di | (x, π)

)
∗ P

(
xactn ≥ dn | (x, π), R

)
(15)

5.3. Creation of initial population
Let Pop_size be the quantity of chromosomes in the population. To have a heteroge-

neous population consisting of quality solutions, we have created several heuristic algorithms
to generate a sequence of lots (H1, H2 and H3) and sizes of lots (G1, G2, G3 and G4) taking
into account the problem morphology. Note, to generate a complete solution: 1) a sequence
should be found to know how much time remains for items processing (this time is equal
to the period duration minus the sum of the sequence dependent set-up times); 2) sizes of
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lots should be found taking into account the time available for items processing and the last
product to process.

The first algorithm H1 is a greedy heuristic building a sequence iteratively. Each time
the next product with the minimum set-up time is chosen.

The second heuristic H2 is similar to the first one, but we apply it in the reverse order,
starting from the last product and choosing iteratively the product with smallest set-up time
possible. This heuristic is repeated n times - once for each product at the last position.

The third heuristic algorithmH3 (see Algorithm 1) is an extension of Kruskal’s algorithm
that finds a minimum spanning tree for a connected weighted graph. Let each product
i, i = 1, . . . , n represents a vertex. We add an additional vertex labeled 0 to deal with
initial set-up time s0,i. Then si,j is a weight (length) of the edge joining vertexes i and j
starting from i. Matrix S is asymmetric, so the obtained graph is oriented and without
loops (si,i = 0, i = 1, . . . , n). Let F = {0, 1, 2, . . . , n} be the forest containing all vertexes,
and set ES includes all edges si,j, i = 0, 1, . . . , n, j = 1, 2, . . . , n, i 6= j. The first specificity
of the problem is that the graph is oriented, so the forest will contain only oriented trees.
Secondly, we are looking for the Hamiltonian Path of minimum weight, therefore, the degree
of each vertex i in the forest F should not exceed 2 (each tree is actually a simple directed
path). This constraint guarantees that each vertex is visited only once.
Algorithm 1: Extension of Kruskal’s algorithm (H3)
Data: Forest F includes separate vertexes 0, 1, . . . , n;
Set ES contains all the edges si,j, i = 0, . . . , n, j = 1, . . . , n, i 6= j
Result: Sequence of lots πn+2 (minimum spanning tree)
while ES 6= ∅ && F is not yet spanning do

Find in ES the edge of minimum weight;
if that edge connects two different trees then

Add it to the forest, combining two trees into a single tree;
end
Remove it from ES;

end

As was mentioned earlier, we have developed 4 functions to generate lot-sizing parts
of solutions - three greedy algorithms G1, G2 and G3, and function G4 that generates a
random solution. Detailed description and pseudo-codes of these heuristics were given in
Schemeleva et al. (2012) (see also section 4.3.2).

Thus, to obtain the initial population, we generate the n+2 sequences of lots : one using
the algorithm H1, n with H2 and one with H3, and then for each sequence, we apply in the
following order the algorithms G1, G2, G3 and G4 to obtain new solutions. Applying four
algorithms to the same sequence makes sense because if the sequence of lots changes, the
total set-up time changes. Moreover, the type of product for the last lot can change, which
means that the calculation of the probability to have all necessary products will change.

As a result, we will obtain 4 ∗ n + 8 solutions. We have decided to fix the population
size dependent on the number of lots as follows: Pop_size = 4 ∗ d

√
ne < 4 ∗n+8. So there

are many more solutions than needed. To keep the population size stable, we will select
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4 ∗ d
√
ne solutions by using the selection procedure presented below.

5.4. Selection
Selection procedure consists of eliminating redundant solutions and solutions close to

each other. We consider that two solutions are close if both lot sizes and sequence are close
to each other. The distance metric dL for lot sizes was presented in section 4.3.2. Now we
will define the distance between sequences.

Let Insertion be the movement of any lot of a sequence (except the last one) to any other
position in the sequence (except the last one). Then distance dS between two sequences πa
and πb can be defined as follows: dS(πa, πb) = the quantity of insertions necessary to apply to
sequence πa to obtain sequence πb (and vice versa). The distance dS between two sequences
πa and πb is equal to 1 if ∃ pos_1 and pos_2, pos_1 < pos_2 such that:

πai = πbi , i ∈ (0, pos_1)
⋃

(pos_2;n] (16)

ifπapos_1 = πbpos_2 then πai+1 = πbi , i ∈ [pos_1; pos_2) (17)

ifπapos_2 = πbpos_2 then πai = πbi+1, i ∈ [pos_1; pos_2) (18)

In this paper we consider that two solutions (xa, πa) and (xb, πb) are close in the following
cases:

• They have identical sequences, i.e. πa = πb and the distance dL between xa and xb is
less than 3;

• The distance dS between two sequences πa and πb is equal to 1 (see the definition
above), the last lot is the same for both sequences πan = πbn, and lot sizes are close
dL(x

a, xb) < 3.

If two close solutions are found, the one with the smallest fitness is eliminated.
After selection, the population is sorted in decreasing order of fitness value. If there are

too many chromosomes, we apply the elitist selection to save the best part of the population.
If the number of chromosomes is smaller than the necessary size, the population is completed
with solutions generated randomly.

5.5. Crossover
Usually, a crossover operation serves to generate some new solutions which preserve the

good characteristics of the best existing solutions. To select Cross_rat percent of parents
for the crossover, a tournament selection will be applied. There is a probability Cross_prob
that a given pair of parents will produce the offspring.

Let chromosomes pa = (xa, πa) and pb = (xb, πb) are chosen. Starting from these two
parents, we generate six offspring in the following way:

• Create two child sequences πaoff and πboff (see Algorithm 2) with πa and πb;

• Having two parent vectors xa and xb, generate two child lot size vectors xaoff and xboff ;
17



• Mix new sequences and lot size vectors with parents’ data to obtain six offspring:

(xaoff , π
a), (xa, πaoff ), (x

a
off , π

a
off ), (x

b
off , π

b), (xb, πboff ), (x
b
off , π

b
off )

To create new lot size vectors xaoff and xboff , a hybrid crossover operation is employed
(see the short description in section 4.3, and the detailed explanation in Schemeleva et al.
(2012)).
Algorithm 2: Crossover for lot sequences
Data: Two parent sequences of lots πa and πb
Result: Offspring sequence πaoff
Start from the last node: πaoff_n = πan;
Create a set of “legitimate” nodes for πaoff_n: LN = {1, 2, . . . , n} \ πan;
for (i← n to 3) do

Let α be the foregoing node for πaoff_i in πa, and β in πb;
if (α AND β are both legitimate) then

if (sα,πa
off_i

≤ sβ,πb
off_i

) then
Set πaoff_(i−1) := α;

else
Set πaoff_(i−1) := β;

end
else if (α OR β is legitimate) then

Let α is legitimate;
Find in LN a node γ such that value sγ,πa

off_i
is minimal;

if (sα,πa
off_i

≤ sγ,πb
off_i

) then
Set πaoff_(i−1) := α;

else
Set πaoff_(i−1) := γ;

end
else

Find in LN a node γ such that value sγ,πa
off_i

is minimal;
Set πaoff_(i−1) := γ;

end
Delete the assigned node from LN ;

end
Include the last remaining in LN node into πaoff ;

To create two new sequences πaoff and πboff , we developed a new approach (Algorithm 2)
based on the idea of Sequential Constructive Crossover (SCX). The SCX operator constructs
an offspring using better edges, present (or not) in the parents’ structure (see Ahmed (2010)).
The main idea is as follows: assign the first element of one of the two parents (or a randomly
selected element); on each step take the last assigned to the offspring element πi and search
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for the foregoing element in both parents. If such elements exist, choose and assign the one
with minimal set-up value to the offspring, otherwise look for an element which will generate
the minimum set-up time among remaining elements not assigned to the offspring. In
contrast to the classic SCX approach we fulfill the offspring starting from the end: πaoff_n =

πan and πboff_n = πbn.
After the crossover operation, the population size is 4∗d

√
ne to 4∗d

√
ne∗(1+Cross_rat∗

3) chromosomes.

5.6. Mutation
A mutation operation is applied to all offspring to increase the diversity of the current

population. We introduce the parameter Mut_prob - the probability that a given chromo-
some will mutate. The mutation is performed in two steps: lot sizes mutation and sequence
mutation. The general mutation approach is outlined in algorithm 3.
Algorithm 3: Mutation operation
Data: Offspring (xioff , π

i
off )

for (i← 1 to Offspring_quantity) do
Generate randomly a number m ∈ [0, 1);
if (m < Mut_prob) then

Apply Lot_Sizes_Mutation() to xioff ;
Generate once again a number m ∈ [0, 1);
if (m < Mut_prob) then

Apply Sequence_Mutation() to πioff ;
Replace (xioff , π

i
off ) with the obtained solution;

end

Lot_Sizes_Mutation() is the same as in section 4.3. To perform Sequence_Mutation()
we use displacement mutation without inversion approach. The displacement is a move-
ment of a randomly selected subsequence to another place, where positions begin, end, and
insertion points are also generated randomly. Insertion and end points cannot be at the
end of a chromosome.

5.7. Local Search
The local search procedure is applied to the best solution of each generation. If the

best solution cannot be ameliorated, we take the one with the highest fitness value from
those that can be ameliorated yet. In this paper, the local search (LS) consists of three
procedures: LS_lots() for sizes of lots; LS_sequence_1() and LS_sequence_2() applied
to the sequences of lots.

The procedure LS_lots() is the same as in Schemeleva et al. (2012) see section 4.3.
LS_sequence_1() changes only the last element in the sequence by moving elements

from position k, k = 1, . . . , n − 1 to the last position. In such a way, we create n − 1
new sequences. Note, as we change the last element, the comparison of set-up times is not
sufficient to find the best solution from n− 1 obtained - we have to calculate the fitness for
each of them. The sequence with the best fitness is retained.

19



LS_sequence_2() deals with all sequences πls that can be obtained from a given one
π by one insertion, i.e. dS(π, π

ls) = 1. The neighborhood for this LS contains (n − 2)2

solutions. In this case, we evaluate all these chromosomes by calculating total set-up time
for each of them.

The overall local search procedure is as follows: we apply successively LS_sequence_1(),
LS_sequence_2() and LS_lots() to the considered solution.

6. Experimental results

In this section we present the results of computer experimentation. All tests were per-
formed on a SUN UltraSPARC IIIi with 1593 Mhz CPU and 16 Gb of RAM. The algorithms
were coded in C++. The linear models ATSP-SD were solved with ILOG CPLEX 11.0.

Let n be the number of different lots for each problem instance. Algorithms were tested
using the problem instances from Schemeleva et al. (2012). For each problem size n, 10
instances were chosen with the following parameters: demand in the range [10; 50] items,
mean time to failure in the range [50; 500] hours, mean time to repair in the range [0.3; 1]
hours.

6.1. What is the maximal size of problems which can be solved with the exact decomposition
method proposed in Dolgui et al. (2005)

The objective of this section is to demonstrate the limits of the exact method based on
the decomposition with Enumeration + MIP + DP procedures. Remember 10 instances
were solved for each problem size n, n ∈ [6; 15]. The CPU times of each run of the DP and
MIP were limited by 1000 seconds.

Figure 4: Percentage of instances solved to optimality with Enumeration + MIP + DP
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First of all, we will show the number of instances solved by the procedure for each n.
Figure 4 demonstrate the following information:

• The percentage of instances solved (i.e. the optimal solution was obtained). Note, to
obtain the optimal solution, all of the n solutions (one for each lot i, i = 1, . . . , n on
the last position) should be found;

• The percentage of instances for which at least one solution could be obtained, i.e. the
number of solutions obtained is in range [1;n− 1], n ∈ [6; 15];

• The rest of instances for which no solution was obtained.

As we can see, only for n = 6 all of 10 instances were solved optimally; for n = 7 - 90%
(or 9 out of 10) instances. With n increasing this percentage decreases drastically: 30% for
n = 8 and 20% for n = 9. We have no solution for n >= 11.

The percentage of instances partially solved (from 1 to n − 1 solutions) is quite small
(one instance for n = 8 and one instance for n = 10). Generally, the impossibility to find
any solution for an instance is explained by the lack of computer memory for DP and not
by the time limitation. For the MIP, the limit of time was never reached. To give a rough
idea, the average CPU time of MIP for n = 10 is less than 0.1 second.

6.2. Assessment of the importance of enumeration on the last lot
Now we will compare the results obtained for different lots on the last position, i.e.

πn = i, i = 1, . . . , n. More precisely, we want to see what is the difference in terms of
solution quality between the optimal solution and the other solutions obtained for the same
instance for the different last lots. In other words, is the enumeration step very important?
Obviously, this comparison can be made only for problems for which the optimal solution
was obtained.

Table 2: Is the enumeration important?

Number Number Ratio with the optimal fitness
of lots of instances Minimum Average (of n) Best sequence
6 10 96.67% 98.28% 98.68%
7 9 91.26% 95.57% 98.33%
8 3 87.80% 93.85% 98.07%
9 2 88.54% 94.34% 99.31%

In Table 2 we report the ratios between the best fitness value and the others obtained
for the same instance. The first column of the Table contains the number of lots, the
second reports the number of instances solved optimally. In the third column the average
of ratios Minimum fitness/Optimal fitness for each problem size is presented. The
fourth column gives the Average fitness/Optimal fitness for each n = 6, 7, 8 and 9. This
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column shows the expected solution quality if the last lost is chosen randomly. Finally, the
last column shows the average of ratios Fitness of solution with the optimal sequence/
Optimal fitness. Remember, the optimal or best sequence of n lots is that which minimizes
the total set-up time.

We can see than the average ratio is between 93% and 98%, so if the last lot is chosen
randomly, the average gap between obtained solutions and the optimal ones is from 2% to
7%. The “best sequence” ratios reported in the last column are about 98% − 99%, so if an
error of 1% to 2% is acceptable, the enumeration step can be omitted in the decomposition
scheme. For tested instances, in the worst case, the gap between solutions obtained without
enumeration and the optimal solutions was 12.20%

From all the above, we should conclude that the decomposition approach with DP pro-
cedure proposed in Dolgui et al. (2005) gives an optimal solution, but has a number of
limitations related to the execution of Dynamic Programming procedure. Beginning at
n = 8 the DP encounters execution problems because of the lack of CPU. And from n = 11
lots, it is not an option at all.

To solve the instances with more than 10 − 12 lots, we should either replace the DP
procedure by a heuristic (or meta-heuristic), like a memetic algorithm proposed in Schemel-
eva et al. (2012), or develop an algorithm able to solve the entire problem (sequencing and
lot-sizing) simultaneously.

6.3. Is the approximate method proposed in Schemeleva et al. (2012) a suitable alternative?
The goal of this section is to see if we can replace the DP procedure with a heuristic and

solve efficiently the instances of larger sizes. We will start with a comparison of solutions
obtained with this approximate approach with known optimal solutions.

6.3.1. Evaluation for the optimally solved (or small) instances
In this subsection we are going to compare two approaches:

a) Decomposition approach with DP procedure Enum + MIP + DP ;

b) Enum + MIP + GALS approach obtained by replacing of the DP in decomposition
scheme by the memetic algorithm GALS from Schemeleva et al. (2012) to optimize the
sizes of lots;

In Table 3 the average and minimum ratios with the optimal fitness (obtained with Enum
+ MIP + DP ) for Enum + MIP + GALS for each lot size n = 6, 7, 8 and 9 are presented.

As we can see, solutions obtained with Enum + MIP +GALS are pretty much the same
as the optimal ones. This means that the GALS is very efficient for the instances tested and
generally gives the optimal lot sizes. So, for the small instances, the Dynamic Programming
procedure can be replaced by the Genetic algorithm to solve the lot-sizing sub-problem. We
cannot guarantee the optimality, but for the tested instances the gap was less than 0.2% on
average. The maximal gap was 0.37%.
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Table 3: Quality of solutions obtained with Enum + MIP +GALS

Number Number Ratio with the optimal fitness
of lots of Instances Average (of n) Minimum
6 10 100.00% 100.00%
7 9 100.00% 100.00%
8 3 99.95% 99.86%
9 2 99.81% 99.63%

6.3.2. Is the approach proposed in Schemeleva et al. (2012) efficient to deal with larger
problems

In this subsection, we discuss the CPU time of the decomposition approach with the
MIP (to solve the ATSP) and memetic algorithm GA_LS, and more precisely, the CPU
time of the sequencing part (MIP) of this approach.

Firstly, we executed the program for 5 different instances for each problem size n =
{20, 30, 40, 50} to see how the CPU time of MIP evolves with the increasing of n. In this
experimentation the CPU time of the MIP was unbounded. In figure 5 we present the
minimum, average and maximum CPU times of MIP and two exponential trend curves: one
for the average Expon. (Average) and another for the maximum Expon. (Maximum) CPU
time.

Figure 5: Minimum, Average and maximum CPU time of MIP

We can see that the CPU time grows promptly : if for n = 20 lots the average CPU
time is less than 2 seconds, for n = 30 it is about 12.4 seconds, and for n = 50 the average
running time achieves 277 seconds. There are wide variations between minimums (less than

23



1 second even for n = 50 lots) and maximums (about 70 seconds for n = 30, 300 seconds for
n = 40 and 1480 seconds for n = 50), thus the CPU time is highly dependent on instances
tested. Taking into account the tendency curves (r-squared values are also presented in the
figure) when increasing the number of lots, the CPU time grows exponentially.

Without any limit for MIP’s CPU time, a run duration will explode with increasing
of n. To overcome this limitation we have four possibilities: 1) put a reasonable upper
bound on the MIP’s CPU time and accept to have an approximate solution with CPLEX;
2) replace the MIP model with a meta-heuristic; 3) take the MIP + GALS approach without
enumerating with the same global calculation time; 4) develop a meta heuristic able to solve
the entire problem.

The following subsection intends to evaluate these four possibilities, but before starting
the other comparisons, we will discuss the cases 2) and 3). The time needed to CPLEX to
find the optimal solution grows very quickly with n. So CPLEX will be able to obtain less
and less optimal sequences. To see the proportion of optimal solutions as a function of the
problem size, we limited the CPU time of the MIP in Enum + MIP + GALS by 0.02 ∗ n2

seconds per run (accordingly to the time limit fixed in the next section). The results are
presented in Table 4.

First three columns present the number of lots, the total number of runs of CPLEX
across all instances for each n, n = {20, ...80} and the upper bound on the calculation time
in seconds per run, respectively. The fourth column of Table 4 shows the percentage of runs
where CPLEX was able to get an optimal solution. The next column shows the percentage
of runs where an optimal solution with a tolerance has been found. Sixth column “Time
limit & integer solution” reports the percentage of cases where the time limit was exceeded,
nevertheless an integer solution exists. Finally, the last column presents the percentage of
cases where the time limit was exceeded and no integer solution was found. In the latter
case a suboptimal sequence was obtained with a greedy heuristic.

Table 4: Percentages of optimal and suboptimal sequences for Enum + MIP + GALS

Number Number Time Optimal Opt. sol. with Time limit & No
of lots of runs limit (s) Solution tolerance integer sol. solution
20 200 8 97.00% 3.00%
30 300 18 74.00% 0.33% 12.67% 13.00%
40 400 32 27.25% 0.25% 4.00% 68.50%
50 500 50 15.80% 2.20% 82.00%
60 600 72 8.00% 0.17% 91.83%
70 700 98 1.57% 98.43%
80 800 128 100.00%

As we can see, starting from n = 40 lots, the percentage of cases where a greedy solution
was created for the sequencing part of the approach is predominant. Thus the CPLEX needs
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much more time to calculate an optimal solution.
ForMIP + GALS without enumerating, the limit of calculation time was fixed at 0.02∗n3,

that represents 160 seconds for n = 20, 540 seconds for n = 30, 1280 seconds for n = 40,
etc. For this method, all runs (10 for each n from 20 to 80) have resulted in the optimal (or
optimal with tolerance) solution.

6.4. What is the best way to design a heuristic algorithm to tackle large instances?
In this section, the total CPU time for all approaches is bounded by 0.04 ∗ n3 seconds

for each n = {20, 30, 40, 50, 60, 70, 80}. Remember we compare 4 following algorithms:

a) Enum + MIP + GALS approach where the CPU time of both parts - MIP and GALS
- are limited by 0.02 ∗ n2 seconds each (thus, each iteration takes 0.04 ∗ n2 seconds,
and after n iterations the time limit fixed above will be achieved);

b) Enum + GATSP + GALS under the same CPU time limits as above, where GATSP is
the genetic algorithm solving the sequencing sub-problem presented in section 4.2.2;

c) MIP + GALS without enumerating where the CPU time of both parts - MIP and
GALS - are bounded by 0.02 ∗ n3 each;

d) Memetic algorithm solving the whole problem (section 5) under the time limit is equal
to 0.04 ∗ n3.

10 different instances for each problem size n ∈ {20, 30, 40, 50, 60, 70, 80} were executed.
We employ the box-and-whisker diagram (figure 6) introduced by John W. Tukey in 1969
to have a general idea of the solutions’ quality. Each box shows the first Q1 and third Q3

quartiles (box bounds) and the median. Whiskers are the maximum and the minimum (if
not smaller than Q1 − 1.5 ∗ (Q3 −Q1), otherwise MIN = Q1 − 1.5 ∗ (Q3 −Q1)) values.

Figure 6: Solution quality
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The best results were obtained with Enum + GATSP + GALS. We cannot see the min-
imum and maximum values because they are very close to each other. Among 70 instances
tested, the Enum + GATSP +GALS gives the best solution in 50% of cases, and the average
ratio with the best obtained solution is 99.86%.

Despite the fact that MIP + GALS was able to obtain the optimal sequence for each
instance, it seems that the overall quality of its solutions (obtained fitness/best fitness) is
not as good as for those of Enum + MIP +GALS where the heuristic H2 (see section 5.3)
was often employed to obtain an admissible sequencing solution. The medians of Enum +
MIP + GALS and MIP + GALS are very close to each other, but the probability that the
first method gives a better solution than the second one is 0.997944.

Figure 7: Comparison of 4 solution methods
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To show the strengths and difficulties of each method, we present the box-and-whisker
diagrams (top part of figure 7) for the four approximate methods for each n = 20, 30, 40,
50, 60, 70 and 80. The outliers - points that were not included in the boxes - are also
represented. The bottom part of the same figure gives the probabilities that a method will
provide a better solution than another. These results were obtained with the Mann-Whitney
U tests (see Mann and Whitney (1947)) for each couple of methods.

We can state that among the four approaches compared here, it is almost guaranteed
that Enum + GATSP + GALS will give the best solution. Enum + GATSP + GALS and
Enum + MIP + GALS give comparable performance for problems size 20 and 30 for which
MIP has found the optimal sequence in most of the cases. But beginning from n = 60 the
quality of Enum + MIP + GALS degrades compared to MIP + GALS. Generally the quality
of Enum + MIP + GALS deteriorates with the increasing of n, whereas the quality of MIP
+ GALS solutions is stable.

6.5. What is the best way to share the CPU time?
All algorithms were tested with three different distributions of allocated time: a) fifty-

fifty between lot-sizing and sequencing parts (the case in the previous section); b) 25% for
sequencing(ATSP) resolution and 75% for lot-sizing sub-problem; c) 75% for ATSP and 25%
for lot-sizing. In this subsection we will study these time allocations for the most efficient
algorithm, i.e. Enum + GATSP +GALS.

Figure 8: Solution quality of Enum + GATSP + GALS for different time partitions

In figure 8 we present the box-and-whisker diagram where each box represents the quality
of solutions (relative to the best solution found) for each of the three above-mentioned
partitions of time.

As we can see the approach gives the best solutions when 75% of CPU time is allocated
to solve the TSP sub-problem and 25% of time for the lot-sizing one.

In Table 5 the results of the Mann-Whitney U test are reported. Each cell of the Table
shows the probability that the partition in the corresponding row will give better solutions
than the partition in the corresponding column. As we can see, partition 50%TSP / 50%LS
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Table 5: Mann-Whitney U test for different time partitions of Enum + GATSP + GALS

Partitions 25% TSP / 75% LS 50% TSP / 50% LS 75% TSP / 25% LS
25% TSP / 75% LS - -
50% TSP / 50% LS 0.999984 -
75% TSP / 25% LS 0.999999 0.892099

is better than 25%TSP / 75%LS and partition 75%TSP / 25%LS is better than both
aforementioned.

7. Conclusions

A problem of optimal sequencing and lot-sizing for a production line with random break-
downs and rejects was studied. The objective was to maximize the overall service level. The
benefit of this optimization is evident: without any additional resources, production cost
can be reduced by limiting the stoppages for the assembly line that follows.

An optimal decomposition approach, including an enumeration step, the parts sequencing
(MIP model) and lot-sizing decisions (DP procedure), is able to solve the small problems
(up to 10 lots). To deal with larger instances, the GALS algorithm was used for the lot-
sizing sub-problem. This combination of methods gives very good solutions; nevertheless the
results have shown that up to 40 lots, the CPU times for the MIP model remain acceptable
but increase very quickly. As a consequence, in order to solve larger problems, we needed
to consider also an approximate solution of the sequencing sub-problem. Three possibilities
were tested: a) bounding the computation time of CPLEX; b)using a heuristic (GATSP ); c)
removing the enumeration step for the same total CPU time. Finally, a last possibility d)
was envisaged which consists of a metaheuristic MA dealing with the whole problem.

The results have shown that, contrary to what most people might assume, the most
efficient method is the decomposition approach including two heuristic algorithms, which
means that an integrated approach isn’t well suited to this problem. Moreover, to design
an effective heuristic algorithm based on a decomposition framework, two main results have
been obtained:

1. skipping the phase of enumeration of the last lot isn’t a good idea, and
2. it seems preferable to allocate more computational time for the lot-sizing sub-problem

than the sequencing sub-problem.

Based on these results, further work can be guided to find more efficient heuristics to solve
each sub-problem separately. As for any empirical study, it is theoretically possible that
the global memetic approach may be more efficient for different data instances and algo-
rithm parameters. Nevertheless, we performed many computational tests on many different
instances and the gap between both approaches is always quite important.
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Beside the choice of a framework, the improvement of the different heuristics used in this
paper could increase the performance of the approaches. Studying the fitness landscape,
and considering other neighborhoods, could be the most promising way to do that.
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