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Pddl4j (Planning Domain Description Library for Java) is an open source toolkit for Java
cross-platform developers meant (1) to provide state-of-the-art planners based on the Pddl
language, and (2) to facilitate research works on new planners. In this article, we present
an overview of the Automated Planning concepts and languages. We present some planning
systems and their most significant applications. Then, we detail the Pddl4j toolkit with an
emphasis on the available informative structures, heuristics and search algorithms.

Keywords: Automated planning, Heuristic Search, Planning Software, Java Programming.

Introduction

Pddl4j (Planning Domain Description Library for Java1) is an open source toolkit for
Java cross-platform developers meant (1) to provide state-of-the-art planning tools based
on the Pddl language, and (2) to facilitate research works on new planners. Pddl4j
has been successfully used in several domains, e.g., automatic web services composition
(Bevilacqua, Furno, Scotto di Carlo, & Zimeo, 2011), verification of business processes
(Salnitri, Paja, & Giorgini, 2015), game (Cheng, Knoll, Luttenberger, & Buckl, 2011)
and robotics (Zaman, Steinbauer, Maurer, Lepej, & Uran, 2013).

The Pddl language was originally developed by Malik Ghallab and the 1998 Inter-
national Planning Competition (Ipc) committee (Ghallab et al., 1998). It was inspired
by the need to encourage the empirical comparison between planning systems and the
diffusion of benchmarks within the planning community. Consequently, Pddl has im-
proved planning system evaluation and led to important advances in performances and
expressivity.

Since these pioneering works, Pddl has become a de facto standard language for the
description of planning domains for Ipc (its growing collection of domains is generally
adopted as standard benchmarks) and for the applications embedding planners. The
emergence of Pddl as a standard language has had a significant impact on the entire
Artificial Intelligence field. It has facilitated the dissemination of planning techniques in
different research and application fields where modelling and solving decision problems
are challenging issues.

This paper is organized as follows: in Section 1, we present some of the most repre-
sentative fields of application for planners. Section 2 describes how to get started with
the Pddl4j toolkit. Section 3.1 introduces the background concepts of the automated
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planning as well as the world representations used by the planners. In Section 4, we
present the Pddl language, and in Section 5, we detail the Pddl4j architecture and its
different modules. Lastly, in Section 6, we compare Pddl4j with other exisiting planning
toolkits.

1. Applications for Automated Planning

AI planners have been successfully used in a wide range of applications. It would be
too long to review all of theses applications. In this section, we want to highlight the
importance of the research works on automated planning, and consequently, of developing
planning toolkits. We overview some of the most representative application fields showing
where planning systems have a significant impact. Among these fields, we discuss the
contributions of automated planning in developing the autonomy of robotic systems
(see Section 1.1) and in facilitating IT knowledge engineering and model design (see
Section 1.2).

1.1. Autonomous systems

1.1.1. Robotics

Automated planning systems have come a long way in robotics since the Shakey robot
and the Strips planner (Fikes & Nilsson, 1971). Robotics is one of the most appealing
application areas for automated planning, and, for several years, the PlanRob workshop
at Icaps (International Conference on Automated Planning and Scheduling) has be-
come an important forum specifically dedicated to the challenges related to planning
for autonomous robots. Among the challenges is the integration of planners in robot
architectures, which is difficult and has been intensively investigated. Indeed, planning
is an open loop activity that produces plans based on action models, the current state
of the world and the targeted goal. On the other hand, executing actions is a closed
loop activity that perceives the current state of the world, events modifying this state
and feedbacks from the performed actions. Thus, planning in robotics needs an inte-
grated approach to handle time, concurrency, synchronizations, deadlines and resources
(Di Rocco, Pecora, & Saffiotti, 2013). For instance, Fape (Dvor̆ák, Bit-Monnot, Ingrand,
& Ghallab, 2014) (Flexible Acting and Planning Environment) is a system integrating
a planning language with expressive timeline representation, the planning process inter-
acting with a dispatching mechanism that synchronizes observed time points of action
effects and events with planned time. Another important issue is combining tasks and
motion planning. In robot architectures, generally a ”discrete” symbolic module reasons
about causal and/or temporal relationships between actions, while ”continuous” geomet-
ric/kinematic reasoning is entirely delegated to a specific module. For instance, picking
up an object may require removing many others that obstruct this object. Identifying the
exact obstructions requires geometric reasoning with results that are difficult to represent
efficiently at the level of a symbolic planner. Different propositions based on new rep-
resentation techniques have been made to synchronize continuous and discrete planning
levels (Lagriffoul, 2014; Srivastava, Riano, Russell, & Abbeel, 2013; Garrett, Lozano-
Pérez, & Kaelbling, n.d.; Ferrer-Mestres, Francès, & Geffner, 2015; Fernandez-Gonzalez,
Karpas, & Williams, 2015). It is also possible to couple a symbolic planner with an on-
tology in order to reason about the action possibilities that are available to the planner
as the set of known objects is updated (Cashmore et al., 2015). Furthermore, robots have
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to interact with persons in an appropriate way and to act socially. Hatp (Lallement, de
Silva, & Alami, n.d.) is a planning framework that extends the planning representation
by making Human-Robot interactions ”first class” entities in the language. ”Social rules”
can be defined specifying which behaviours are acceptable. Hatp interleaves symbolic
planning with geometric reasoning to validate the human/robot interactions.

1.1.2. Space exploration

A typical challenge for space mission management is selecting observation targets for
instruments and regularly building mission activities over a limited temporal horizon
and resource constraints. Space mission management tries to optimally satisfy ground
user requests. Data volume, observation timing, visibility windows, power needs, lighting,
seasons, scientific objectives etc. have acute effects on real-time operations. Satellite,
rover and spacecraft missions have management systems addressing these challenges,
and automated planning and scheduling are technologies used in this field.

The operations team controlling Mars Exploration Rovers (Mer) had to generate each
day new plans describing the rover activities (Backes, Norris, Powell, & Vona, 2004;
Bresina, Jónsson, Morris, & Rajan, 2005). Their objective was to fulfill as much observa-
tion requests as possible given the rover’s resource limitations, while minimizing risk of
vehicle failure. In order to accomplish this objective, given the short amount of planning
time available, the operations team employed a Mixed-initiative Activity Plan Generator
(Magen) system based on automated planning, scheduling and temporal reasoning, to
assist operation staff in generating the daily activity plans (command sequences gen-
erated on the ground, and then sent to the spacecraft, which had to execute them).
Mapgen has been used for two Mer rovers (Spirit and Opportunity), for the Phoenix
Mars lander and for Mars Science Lander. Like any modern planner, it can evaluate
thousands of alternative scenarios. However its goal is not to replace human experts,
who in the context of critical operations may not trust computer decisions, but to assist
them. The role of mixed-initiative planning is to ”explain reasons for the decisions it
makes, allowing the user to interactively explore alternatives, guide the search toward
more desirable solutions, and to run various queries (e.g., what courses of action have
not yet been explored with respect to some goal?)”.

1.2. Model design

1.2.1. Video games and virtual agents

Fear (First Encounter Assault Recon) is a survival horror first-person shooter video
game developed and released in 2005. It uses AI techniques and Finite State Machines
to control the characters’ behaviors, and an A∗ planner to generate sequences of actions.
The objective is both to alleviate game developer burden, and to provide a realistic action
movie experience to players, with intense combats and believable character behaviors (for
instance, characters are able to use the environment to their advantage, taking cover,
and even flipping over furniture to create their own cover rather than popping randomly
in and out of cover, like a shooting gallery). Fear characters use cover tactically, coordi-
nating with others characters in a squad, leave a hiding place when threatened, and fire
if they have no better option. The rapidly growing complexity of the combination and
interaction of all of the behaviors becomes unmanageable for AI game developers, and
planning tackles this issue by focusing developer effort on goal and action design, and
letting the planner decide how to sequence actions to satisfy goals. Behavior designers do
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not need to manually specify which actions are associated with which goals, which actions
can transition to which other actions, or which goals can transition to other goals. The
benefits of planning are numerous. Decoupling goals and actions allow different types of
characters to satisfy goals in different ways. The second benefit of the planning approach
is facilitating layering of behaviors and the incremental design of new characters from
existing ones by adding/removing actions and goals (for instance, adding the ”cover”
goal, which makes a character who is not currently under cover get to cover etc.) Finally,
an important benefit of a planning system is the capacity to dynamically solve problems:
characters can re-plan, chznge their decisions etc. Characters are sensitive to the changes
induced by the player in their environment: if the goal of a character is to open a door
and this door is locked, then the character activates a new goal – enforce room access,
and generates a new plan to satisfy its goal – kick in the door or get in through the win-
dow etc. Automated planning is used as an abstraction layer for model design. It allows
non-technical developers to program AI systems, to design ”interactive narratives” such
as in AI based virtual agent games, intelligent tutoring systems, embodied conversational
agents, etc. (Fernández, Adarve, Pérez, Rybarczyk, & Borrajo, 2006; Thomas & Young,
2006).

1.2.2. Business Process Management

In many companies, information systems have to undertake activities such as accessing
remote data, integrating heterogeneous data, analyzing and deriving new data, etc. These
activities are implemented as business processes controlling and interacting through dif-
ferent information flows. Usually, business processes are manually specified in languages
such as Bpel in order to produce the adequate workflow in terms of data manipulations.
Automated planning techniques have been used to automatically compose process skele-
tons (Hoffmann, Weber, & Kraft, 2009). Considered as a promising technique for Web
Service Composition, several research works in non-deterministic planning have investi-
gated how to extract planning models from existing industrial solutions (Hoffmann et
al., 2009; Dongning, Zhihua, Yunfei, & Kangheng, 2010) and automatically connect the
outputs of a process with the inputs of another (Ambite & Kapoor, 2007).

2. Getting Started with Pddl4j

Getting started with Pddl4j is simple. The command lines above (see Listing 1) show
how to proceed.

1 $ g i t i n i t
2 $ g i t c l one https : // github . com/ p e l l i e r d / pddl4 j . g i t

3 $ cd pddl4 j

4 $ . / gradlew c l ean bu i ld
5 $ . / gradlew javadoc

6 $ . / gradlew run −PArgs=−o,<DOMAIN FILE PATH>,− f ,<PROBLEM FILE PATH>
Listing 1 Pddl4j Installation, Compilation and Test

The GIT version control system allows to easily install Pddl4j (line 1 and 2). Pddl4j
comes with all the configuration files for the Gradle build automation system (line
4 and 5): these command lines build Pddl4j on the host platform, and generate the
documentation. Pddl files are available in /pddl directory to test HSP (Heuristic Seach
Planner), our default planner (line 6). The plans generated by Pddl4j are compliant
with Pddl3.1 and can be validated with Val, a plan validator (Howey, Long, & Fox,
2004).
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Listing 2 shows how to directly run the HSP planner with the Java Virtual Machine.
Note that the build generates a jar file in /build/libs.

1 $ java −javaagent : bu i ld / l i b s / pddl4j−VERSION. j a r −s e r v e r −Xms2048m −Xmx2048m f r . uga
. pddl4 j . p lanner s . hsp .HSP −o <DOMAIN FILE PATH> −f <PROBLEM FILE PATH>

Listing 2 Java Run Command

Listing 3 shows how to use the HSP planner in a third-party code.

1 pub l i c s t a t i c void main ( S t r ing [ ] a rgs ) {
2

3 // Get the domain and the problem from the command l i n e

4 St r ing domain = args [ 0 ] ;
5 St r ing problem = args [ 1 ] ;

6

7 // Create the problem f a c t o r y
8 f i n a l ProblemFactory f a c t o r y = new ProblemFactory ( ) ;

9

10 // Parse the domain and the problem
11 ErrorManager errorManager = f a c t o r y . parse ( domain , problem ) ;

12 i f ( ! errorManager . isEmpty ( ) ) {
13 errorManager . p r i n t A l l ( ) ;
14 System . e x i t (0 ) ;

15 }
16

17 // Encode and s i m p l i f y the planning problem in a compact r e p r e s e n t a t i o n
18 f i n a l CodedProblem pb = f a c t o r y . encode ( ) ;
19 i f ( ! pb . i s S o l v a b l e ( ) ) {
20 System . out . p r i n t l n ( ” goa l can be s i m p l i f i e d to FALSE. ”
21 + ”no search w i l l s o l v e i t ” ) ) ;
22 System . e x i t (0 ) ;
23 }
24

25 // Create the planner and choose the Fast Forward h e u r i s t i c
26 HSP planner = new HSP( ) ;
27 planner . s e tHeur i s t i cType ( H e u r i s t i c . Type .FAST FORWARD) ;

28

29 // Search f o r a s o l u t i o n plan
30 f i n a l Plan plan = planner . s earch (pb) ;

31 i f ( plan != n u l l ) {
32 System . out . p r i n t l n ( S t r ing . format ( ”%nfound plan as f o l l o w s :%n%n” ) ) ;
33 System . out . p r i n t l n (pb . t oS t r i ng ( plan ) ) ;

34 } e l s e {
35 s t rb . append ( St r ing . format ( ”%nno plan found%n%n” ) ) ;
36 }
37 }

Listing 3 Simple example of PDDL4J usage

First, we get the path of the domain and the path of the problem from the command
line (lines 4 and 5). Then a planning problem ”factory” is created (line 8). The factory’s
parser (line 11) takes both paths as input. Then, the planning problem is encoded by
the factory (line 18). The method ”isSovable()” (line 19) does a time-polynomial test
asserting whether a solution is possible after the encoding step. Then, a planner ”object”
is created (line 26). In our case, we create an instance of the simple planner HSP (see
Section 5.6 for more details about the planners available in Pddl4j). Then, a heuristic
for the search is chosen (line 27). In our example, the Fast Forward heuristic is chosen
(see section 5.5 for more details about the heuristics available in Pddl4j). Finally, a
solution, namely a ”plan” in Automated Planning terminology, is searched (line 30) in
exponential time (Automated Planning is NP-hard) and the solution plan is displayed.
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3. PDDL4J Background

3.1. Planning Concepts

Planners are general purpose decision problem solvers. Given a decision problem ex-
pressed in a logical high level language such as Pddl (see section 4), a planning system,
namely a planner, builds a solution to this problem. The search algorithm embedded
in planners is not specific to the problem to solve, it is a general purpose domain-
independent search algorithm used whatever the input problem. Planning efficiency is
based on the planner’s ability to extract information from problem structures and promis-
ing paths to solutions, and consequently to use informed search heuristics.

Unlike domain-dependent approaches that build upon algorithms specifically devised
for each type of problem, planners are based on a declarative (non-procedural and very
high-level) language specifying what needs to be done rather than how to do it. The
problem representation describes the initial state of the world – objects under consider-
ation and their properties, a goal to achieve and actions that can be performed on these
objects to achieve the goal. Actions have triggering preconditions and resulting postcondi-
tions, which are the actions’ effects. The preconditions define under which circumstances
(states of the world) actions can be performed. When triggered, actions change the state
of the world as specified by their effects, and generate new states. As actions are not
necessarily reversible (past states are no longer achievable from the present state), ac-
tions have precedence constraints and are not ordered in any sequence. A solution to a
planning problem is a set of ordered actions, called a plan, starting from the initial state
and ending in a goal state. For example, in graph theory, graph coloring is an assignment
of colors to vertices (objects) such that no two connected vertices share the same color
(constraint). A planning problem for graph coloring defines: a set of colours and vertices,
and their connections and associated colours (the initial state); three actions that are
solely applicable to two connected vertices (preconditions), and whose effect is always
to disconnect them (i.e. color two unpainted vertices with two different colors; color one
unpainted vertex with a color different from the another connected vertex, and simply
disconnect two painted vertices). It is obvious that these actions are not reversible be-
cause painted vertices cannot be repainted. However, any valid combination (with respect
to preconditions and precedence constraints) of actions satisfies the problem specifica-
tion. Then, the goal here is to disconnect all of the vertices, and a plan is a sequence
of colouring actions that reaches this goal. Another example of a planning problem is
logistics (see section 4.1) where the objects are parcels, trucks, airplanes, airports and
locations: the parcels can be loaded and unloaded (actions) from trucks or airplanes.
Two other actions are driving trucks from one location to another one, and flying air-
planes between airports. The initial state indicates the location of the parcels, trucks
and airplanes (properties of the objects), and the goal specifies the parcels’ destinations.
A plan is a sequence of actions of loading/unloading parcels, driving trucks and flying
airplanes between different locations in such a way that, in the final state reached by the
last action, the goal is satisfied.

Therefore planning is the process consisting in choosing appropriate actions to bring
the state of the world to the targeted goal. Classically, the dynamics of the world is
modeled as a State Transition System.

Definition 3.1: A State Transition System is a tuple Σ = (S,A, c, γ) such that:

• S is a set of states,
• A is a set of actions,
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• c : A→ R+ is a cost function,
• γ : S ×A→ S is a state transition function.

A State Transition System can be represented as a directed graph whose nodes are
states of S, and vertices are actions of A. Given an action a and a state s, if γ(s, a)
is defined, then action a is applicable in the state s. Applying a to s produces a new
state s′ = γ(s, a) with a cost c(a). Σ is deterministic if for all states s and actions a, the
transition function γ(a, s) produces a unique state s′. Σ has a unit cost if, for all a ∈ A,
c(a) = 1. A plan is any sequence of actions π = [a1, · · · , ak] (the size of π is k). The
state produced by applying π to a state s is the state obtained by applying each action
of π sequentially. We denote this by extending the state transition function to plans as
follows:

γ(s, π) =

 s, if k = 0
γ(γ(s, a1), [a2, · · · , ak]), if k > 0 and a1 is applicable to s
undefined, otherwise

A state s′ is reachable from a state s, if there exists a plan π such that s′ = γ(s, π).

3.2. Classical Planning Representations

It exists different, but equivalent ways to represent a classical planning problem as a
State Transition System. Whatever a representation is adopted, the planning community
mainly uses the Pddl language to specify planning problems. However, Pddl is not the
only language used in the planning community: see for instance Ocl (Object Constraints
Language) (Liu & McCluskey, 2001) or Opl (Other Planning Language) (McDermott,
n.d.). Most of the planners pre-process the Pddl language to encode planning problems
in their internal representation. Pddl4j is able to manage two representations that are
widely used in the planning community: the logical representation and the Finite Domain
Representation (Fdr).

3.2.1. Logical Representation

In the logical representation, each state s of the world is represented by a set of logi-
cal propositions p. If p is in s then p is true in the state s, and false otherwise. Each
logical proposition is associated to a fact of the world (the presence of an airplane in
an airport, the color of a node etc., see section 3.1). An action is an expression defining
which propositions have to be true in a state in order to apply this action, and which
propositions have to be added and removed from the state of world after the application
of the action. In this representation, actions change the states of the world by modifying
the truth values of the propositions. For simplicity and conciseness, in planning repre-
sentations, states and actions are usually given in a first order logic language (without
function symbols) rather than propositional logic. For instance, the literal ”x is at l” (x
and l are variable symbols) is a substitute for ”x0 is at t1” or ”x1 is at f1” (where x0,
x1, t1, f1 are constant symbols denoting, for example, trucks and places in the logistics
planning domain) etc. Similarly, the first order (abstract) action ”drive truck x from
place f to place t” is a substitute for ground actions like ”drive truck x0 from place f1 to
place t1” or ”drive truck x1 from place t1 to place f1” etc. Here the quoted expressions
denote terms of the Pddl language that will be presented in section 4. For the moment,
it suffices to say that in planning terminology, first order actions are operators:
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Definition 3.2: An operator o is a tuple o = (name(o),precond(o), effect(o)) whose
elements are:

• name(o), the name of the operator,
• precond(o), the preconditions of the operator, i.e. a set of literals that must be true

to apply the operator o,
• effect(o)− is a set of literals that are false after the application of the operator o,
• effect(o)+ is a set of literals that are true after the application of the operator o.

Definition 3.3: An action is any ground instance of an operator. If a is an action and
s is a state such that precond(a) are true in s, then a is applicable to s and the result of
applying action a to state s is the state s′:

s′ = γ(s, a) = (s− effects−(a)) ∪ effects+(a)

To transform the operators of the Pddl language (in the domain file) into the actions
used by the planning algorithm, an instantiation process is triggered. This process is time
consuming, and several speed-ups have been proposed in the literature. The instantiation
process of Pddl4j is described in Section 5.2.
Pddl (problem and domain) files do not provide a procedure on how to solve a plan-

ning problem as in an imperative language (the ”procedural” approach). They express
a theory of action and its underpinning grammar of decisions asserting what satisfying
combinations of actions can be tried to fulfill the targeted goal. This is a ”declarative”
approach on which the planners are based.

Definition 3.4: A planning problem in the logical representation is a quadruplet
(P,A, c, I,G) where:

• P is a finite set of propositions,
• A is a finite set of actions, for each a ∈ A precond(a) and effect(a)) are subsets of
P and effects−(a)) ∩ effects+(a) = ∅,

• c : A→ R+ is a cost function,
• I ⊆ P is the initial state,
• G ⊆ P is the goal.

The state space of a planning problem (P,A, c, I,G) in the logical representation is a
transition system (S,A, c, γ) where S ⊆ 2P is a subset of states defined on P . A solution
to a planning problem (P,A, c, I,G) is a plan π such that G ⊆ γ(I, π).

Once this specification is provided to the planner, the planning process uses a mean-
ends reasoning to decide how to achieve goals given the available actions (see section 5.6
for planning algorithms). The computational hardness of the mean-ends planning process
is high (NP-hard) because it entails non-deterministic decisions selecting objects, acting
on objects, sorting out actions, as well as the backtracting from dead end decisions in
combinatorial search spaces. For instance, in the graph coloring problem (see Section
3.1), the search space is the set of all the valid combinations of coloring actions: the
bigger the graph, the higher the number of coloring actions, and the search space size is
exponential in the number of actions. The logistics problem (see Section 3.1) empha-
sizes another determinant feature of planning problems: precedence constraints. Actions
are not necessarily reversible and have to be performed in an appropriate sequence in
order to achieve the planning goal: for example, packets have to be loaded before un-
loading etc. Furthermore, actions can have negative effects and the progression towards
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the goal is not monotone. For instance, suppose that in a logistics problem, the goal is
to have the truck x0 at place f1 and parcel p0 at place t1. If in the initial state, the truck
x0 is at place f1 and p0 is loaded in x0, driving that truck x0 from f1 to t1 to deliver
p0 will delete the fact ”truck x0 is at place f1”. This has to be added again (by driving
back the truck x0 from t1 to f1) to fulfill the goal.

The consequence of the planning computational complexity is that planners do not
rely on brute-force search. They use informed search algorithms and extract heuristic
information from planning problem representations (see Section 5.5).

3.2.2. Finite Domain Representation

Finite Domain Representation (Fdr) is slightly different from logical representation.
Each state is represented by a set of state variables and each action by a function that
maps sets of state variables. This representation has been very popular since 2006 gen-
erally combined with the Sas+ formalism (Bäckström & Nebel, 1995). New efficient
heuristics based on this representation have been developed. The advantages of the Fdr
over the logical representation are discussed in Section 4.2. However, the Fdr is more
compact (on the condition that the chosen variables do not have binary domains). For
instance, the state variable v denoting the ”location of truck x0” is assigned with a value
representing the place of the truck: v = f1 if ”x0 is at f1” etc. The preprocessing that
chooses the state variables and their respective domains to obtain compact representa-
tions is implemented in Pddl4j and detailed in Section 5.3.

Definition 3.5: Let V be a finite set of variables, where each variable v has an associated
finite domain Dom(v) that contains the default value nil. An operator in the Fdr is a
triple o = (name(o), precond(o), effect(o)), where name(o), precond(o) and effect(o) are
respectively the name, the preconditions and the effects of the operator o. precond(o)
and effects(o) are subsets of V . The parameters of the operator o are the variables of V .

Definition 3.6: An action in the Fdr is a triple a = (name(a),precond(a), effect(a))
where name(a) is the name of the action and precond(a) and effects(a) are partial variable
assignments referred to as the action preconditions and effects. A (partial) function on V
maps each v ∈ V with a member d of Dom(v). This assignment is noted (v = d). Finally,
a state s is an assignment of state variables, and action a is applicable to s if and only
if precond(a) ⊆ s.

Definition 3.7: A planning problem in Fdr is a tuple (V,A, c, I,G) where:

• V is a finite set of state variables, each v ∈ V has a finite domain Dom(v),
• A is a finite set of actions,
• c : A→ R+ is a cost function,
• I, the initial state, is a complete variable assignment,
• G, the goal, is a partial variable assignment.

Definition 3.8: Let (V,A, c, I,G) be a Fdr planning problem. The state space of
(V,A, c, I,G) is the state transition system (S,A, c, γ) where:

• states S are complete variable assignments,
• actions A and the cost function c are those of the planning problem,
• the transition function γ(s, a), when a is applicable to s, is:

if (v = d) ∈ effect(a) then (v = d) ∈ γ(s, a)
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In a way similar to the logical representation, a solution to a planning problem
(V,A, c, I,G) is a plan π such that G ⊆ γ(I, π).

4. PDDL: the Planning Definition Description Language

Proposed for the first time in 1998 (Ghallab et al., 1998), Pddl is mainly inspired by
Strips (Fikes & Nilsson, 1971) (STanford Research Institute Problem Solver) and Adl
(Pednault, 1994) (Action Description Language). It expresses planning problems in two
files: (1) the domain file describing the operators, and (2) the problem file describing the
initial state and the goal.

4.1. A simple PDDL example

To illustrate Pddl, we introduce a classical planning domain, Logistics, originally
proposed by S. Bart and H. Kautz at the first International Planning Competition2. The
domain consists in moving objects by planes and by trucks between different cities.

4.1.1. Domain Description

First, consider the head of the domain description:

(define (domain logistics)

(:requirements :strips :equality :typing

:conditional-effects :universal-effects)

(:types physobj - object

obj vehicle - physobj

truck airplane - vehicle

location city - object

airport - location)

(:predicates (at ?x - physobj ?l - location)

(in ?x - obj ?t - vehicle)

(in-city ?l - location ?c - city))

...

A domain description always starts by the declaration of its name preceded by the
keyword domain. Then, domain descriptions define its requirements, identified by the
keyword :requirements. The requirements allow the expressive representation of the
domain description. For instance, in this Logistics domain description, the requirements
specify that actions descriptions can use typed terms, preconditions with equality terms,
and effects with conditional and universal quantifier terms.

All the domains define a few primitive types, which are object representing any object
in the planning world and number. From these primitive types, it is possible to derived
all the types necessary for the domain description. In the Logistics domain, the type
vehicle is derived from the type physobj, which is itself derived from the primitive type
object. The type descriptions are identified by the keyword :types.

The predicates of a domain definition, identified by the keyword :predicates, specify
which predicate names (denoting facts about objects in the world) can be used in the
preconditions and the effects of the operators, their arguments (as well as their types,

2http://icaps-conference.org/index.php/Main/Competitions/
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if the domain uses typing as a requirement). The symbol terms are alphanumeric char-
acters, hyphens ”-” and underscores ” ”. Any argument term starts with a question
mark ”?”. For instance, (at ?x - physobj ?l - location) expresses that an object
?x whose type is physobj is located at location ?l.

In a domain description, operators, i.e. first order actions (see Section 3.1), specify
the different ways to perform changes of the world state. Consider this simple operator
description:

(:action load

:parameters (?o - object ?v - vehicle ?l - location)

:precondition (and (at ?o ?l) (at ?v ?l))

:effect (and (in ?o ?v) (not (at ?o ?l))))

This action means that an object ?o can be loaded in a vehicle ?v at a location ?l.
The preconditions require that the object ?o and the vehicle ?v are at the same location
?l. After the load action is executed, load effects express that object ?o will be in the
vehicle ?v.

Likewise, unload can be specified as follows:

(:action unload

:parameters (?o - object ?v - vehicle ?l - location)

:precondition (and (in ?o ?v) (at ?v ?l))

:effect (and (not (in ?o ?v))))

In this action, object ?o can be unloaded from a vehicle ?v at a location ?l. The
preconditions assert that object ?o has to be in the vehicle ?v, and that the vehicle ?v

is at the location ?l. After the unload is executed, the fact (in ?o ?v) will be false.
Now, consider a more complicated action description with conditional effects and a

universal quantifier:

(:action fly-airplane

:parameters (?o - object ?p - airplane ?from ?to - airport)

:precondition (and (at ?p ?from) )

:effect (and (at ?p ?to) (not (at ?p ?from))

(forall (?o - object) (when (and (in ?o ?p))

(and (not (at ?o ?from)) (at ?p ?to)))))))

This specifies that an airplane ?p can fly from a departure airport ?from to an arrival
airport ?to if the airplane is initially at the departure airport ?from. The effect of
fly-airplane is to move the airplane and all its objects to the airplane destination.
The predicates (at ?p ?from) and (not (at ?p ?from)) in the effect description are
called the unconditional effects. Conversely, the predicates in a when-expression are called
conditional effects. The term (and (in ?o ?p)) is the antecedent of the conditional
effects, and (and (not (at ?o ?from)) (at ?p ?to)) is its consequence.

Finally, the drive-truck action allows moving an object by truck:

(:action drive-truck

:parameters (?o - object ?t - truck ?from ?to - location ?c - city)

:precondition (and (at ?t ?from)

(in-city ?from ?c)

(in-city ?t ?c))

:effect (and (at ?t ?to) (not (at ?t ?from))

(forall (?o - object) (when (and (in ?o ?t))

11
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(and (not (at ?o ?from)) (at ?o ?to))))))

4.1.2. Problem Description

Now, let us see how to express a planning problem. In the logistics example:

(define (problem pb1)

(:domain logistics)

(:objects p1 p2 - obj

london paris - city

truck - truck

plane - airplane

north south east west - location

lhr cdg - airport)

(:init (in-city cdg paris) (in-city lhr london)

(in-city north paris) (in-city south paris)

(at plane lhr) (at truck cdg)

(at p1 lhr) (at p2 lhr))

(:goal (and (at p1 north) (at p2 south))))

The problem pb1 starts by listing all the objects of the world and their initial state. For
instance, this initial state is composed of 2 packages p1 and p2 and a plane at London
airport lhr, a truck at Paris airport cdg, and two depots located in the north and in the
south of Paris. The goal is to find a plan moving respectively p1 to the north depot of
Paris and p2 to the south depot of Paris.

4.2. Finite Domain Representation

Pddl semantics are easy to understand for researchers with a background in logics, and
representing the properties of the world in terms of truth values is simple. Unfortunately,
this simplicity comes with a price. Pddl representation is unstructured. For instance,
consider the logistics problem: the proposition (at p1 west) (expressing that pack-
age p1 is at west location) is semantically related to (at p1 north) (expressing that
package p1 is at north location) because both propositions express facts about the same
object. Logically, the location of p1 gives rise to 24 reachable states where p1 is at west,
simultaneously at west and north etc. Obviously, the number of meaningful states is
only 4. In order to achieve such a compact representation, planning problems can be
encoded by finite domain variables, rather than binary domains. This representation is
the Fdr. In our example, the variable at p1 with the domain {north, south, east,

west} represents all the reachable states concerning p1 locations.
The fact that Pddl representation gives rise to a larger number of reachable states is

not necessary a problem. A planner such as FastForward (Hoffmann & Nebel, 2001) does
not explore any infeasible states. Nevertheless, other planning approaches benefit from
the Fdr. For example, planners based on constraints programming (Kambhampati, 2001;
van Beek & Chen, 1999) can generate more compact Constraints Satisfaction Problem
(Csp) representations by using Fdr than a direct encoding of the state variables in the
Pddl representation. Sat planners such as MaxPlan (Y. Chen, Zhao, & Zhang, 2007)
can reduce the search space by using a Fdr to compute mutual exclusions over facts and
actions, not only at a given time step, but also across multiple steps. Planners based on
problem decomposition and causal graph heuristics such as Fast Downward (Helmert,
2006) build on simpler Fdr causal structures. Fdr is implemented in Pddl4j, and
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Figure 1. History and evolutions of the PDDL language

we present in Section 5.3 the algorithm used in Pddl4j to translate a Pddl planning
problem into a Fdr.

4.3. PDDL evolutions and extensions

The first version (Ghallab et al., 1998) of the Pddl 1.2 language was the official lan-
guage of the 1st and the 2nd Ipc (International Planning Competition) in 1998 and 2000.
An overview of the history of Pddl and of its extensions is shown Figure 1. In 2002,
a new version (Fox & Long, 2003), Pddl 2.1, became the official language of the 3rd
Ipc. To allow the representation of real-world problems, this version of Pddl introduced
functions to express numerical objects, durative actions and plan-metrics assessing plan
quality. In parallel, three extensions of Pddl 2.1 appeared. The first one (Fox & Long,
2002, 2006), called Pddl+, extended Pddl 2.1 to model predicable exogenous events
and continuous changes. The second one (Brenner, 2003), called Mapl (Multi-Agent
Planning Language), introduced finite domain state-variables, actions with duration de-
termined at runtime, and explicit plan synchronization obtained through speech acts and
communications among agents. The third one (McDermott, n.d.), called Opt (Ontology
with Polymorphic Types), proposed a general-purpose notation integrating reasoning on
ontologies in planning domains. At the same time, the Nasa proposed the Nddl (Frank
& Jónsson, 2003; Bernardini & Smith, n.d.) language. Unlike Pddl, Nddl is based on
the Fdr and the notions of activities and constraints on activities rather than states and
actions.

In 2004, a minor release of Pddl, Pddl 2.2, was proposed for the 4th Ipc. This version
(Edelkamp & Hoffmann, 2004) introduced axioms in the language and the possibility of
deriving predicates in order to model fact causality. It also allowed timed predicates to
model exogenous events occurring at given time independently from plan execution. At
the same time, Ppddl (Probabilistic Pddl) (Younes & Littman, 2004), extending Pddl
2.1 with probabilistic effects, was proposed. Ppddl has been the official language of the

13



July 4, 2017 Journal of Experimental & Theoretical Artificial Intelligence main

Instantiation Module

PDDL 3.1 Parser

Critical Path
Heuristics

Planners

State 
Space

Informative Planning Structures

Abstraction LandmarksDelete Relaxation

Planning 
Graph SAT CSP ...Plan 

Space 

PDDL4J API

Finite Domain Representation 
Translator

Figure 2. Overview of the Pddl4j toolkit

Probabilistic Track of the 4th and 5th Ipc in 2004 and 2006 respectively.
In 2006, a new major release of Pddl was proposed for the 5th Ipc. This version

(Gerevini & Long, 2005c, 2005b, 2005a) introduced state-trajectory constraints, which
have to be satisfied by the states generated by plan execution, and preferences, which are
constraints that can be violated. In parallel, Appl (Butler & Muñoz, 2006) (Abstract
Plan Preparation Language), a new version of Nddl was proposed. Its purpose was to
simplify the formal analysis and specification of planning problems.

The lastest version of Pddl, Pddl 3.1 (Helmert, n.d.; Kovacs, n.d.-a) was proposed in
2008. It has been used from Ipc6 to Ipc8 in 2014. It introduces object-fluents, i.e. func-
tions that manipulate any object type and not only numerical objects. Two extensions
of Pddl 3.1 have to be mentioned. The first one is Rddl (Relational Dynamic influence
Diagram Language) (Sanner, n.d.), which is an extension of Pddl 3.1 for probabilistic
planning. The introduction of partial observability is one of the most important changes
in Rddl with respect to Ppddl. Rddl has been used for the Uncertainty Track of the
7th Ipc in 20011. The last extension is Ma-Pddl (Multi-Agent Pddl) (Kovacs, n.d.-b)
for multi-agent planning.

5. PDDL4J Architecture

Pddl4j is composed of several independent modules (see Figure 2). It has a full PDDL
3.1 parser that has been validated on all the available benchmarks of the International
Planning Competitions (see Section 5.1 for the parser description and Section 6 for the
validation tests). On top of the parser, Pddl4j provides a pre-processing module, the
instantiation module (see Section 5.2), which is determinant for planner performances,
as well as many state-of-the-art informative structures (see Section 5.4) and their cor-
responding heuristics (see Section 5.5). Lastly, some classical planners (see Section 5.6)
are also provided.

5.1. Domain and Problem Parsing

The Pddl parser in Pddl4j implements Pddl 3.1 (Kovacs, n.d.-b). It ensures the lexical,
syntaxical and semantical analysis of the domain and problem files, which are transformed
in a compact internal representation by the instatiation module.

14
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AND

at ?t ?to

NOT

forall ?o - object 

at ?t ?from

WHEN

AND in ?o ?to

NOTAND at ?o ?from

at ?o ?to

Figure 3. Tree representation of the effects of the operator drive-truck.

The Pddl4j parser is based on JavaCC3, ”the Java Compiler Compiler”, which is a
parser and lexical analyzer generator. It takes as input file a description of the Pddl
language, i.e., its lexical and grammar specifications (the BNF), and generates the Java
parser. JavaCC is particularly adapted to Pddl4j because it allows new Pddl language
extensions and the different versions of Pddl to be easily managed without any hand-
coding. Moreover, JavaCC has good error reporting, which is very useful for domain
debugging.

The semantic layer of the parser proceeds to verifications. Some of them just raise
warnings:

• a constant, a quantified parameter, a predicate, a function or a type declared and
never used in the domain and problem files,

• a declared parameter never used in the operator,
• the domain name used in the domain file does not match with the domain name

defined in the problem file, etc.

The parser also detects different errors:

• a type, a predicate, a constant or a function used but not declared,
• an inconsistent type hierarchy,
• a quantified parameter without type etc.

After these verifications, the parser generates a compact internal representation of the
planning problem. First, all the parameters in the domain and problem files are renamed
with a unique name. For instance, the logical formula ψ(?x) ∧ ∃?x ϕ(?x) is renamed
ψ(?x1) ∧ ∃?x2 ϕ(?x2). Then, the formulas are encoded as tree structures with integer
labels (see Figure 3): each integer maps a string, i.e., predicate name, parameter name,
constant name, function name, etc.

5.2. Instantiation Module

The purpose of the instantiation module is to transform the operators of the planning
domain into ground actions. Some planners use the instantiation in order to encode
planning problems into different formalisms such as Sat (Kautz & Selman, 1992, 1999;
Rintanen, 2012) or Csp (Barták, Salido, & Rossi, 2010; Kambhampati, 2000; Lopez &
Bacchus, 2003) in order to benefit from the recent performance improvements of Sat
and Csp solvers. Other planners use the instantiation to efficiently compute heuristics
(Hoffmann & Nebel, 2001) or speedup the search algorithm by using a compact encoding
(Helmert, 2009).

3https://javacc.java.net
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In this section, we present the instantiation process implemented in Pddl4j. This
instantiation process was first introduced by J. Koehler in the Ipp planning system
(Koehler, Nebel, Hoffmann, & Dimopoulos, 1997). Given an operator, for example
drive-truck (see Section 4), the instantiation consists in replacing all the typed pa-
rameters (quantified or not) of this operator by all the corresponding typed constants
declared in the planning problem. This process relies on some possible simplifications
reducing the number of generated actions and consequently the planner’s search space.

5.2.1. Overview of the instantiation process

The complete instantiation process has 6 steps:

(1) Logical Normalization: All the formulas of the form ψ → ϕ are replaced by the
corresponding logical formula ¬ψ ∨ ϕ. Then, all the negations are moved inward.
For instance, the formula ¬(ψ∧ϕ) is replaced by ¬ψ∨¬ϕ. Finally, all the universal
and existential formulas are expanded to eliminate quantified formulas. For each
expansion, a new tree structure of the formula and consequently of the operator is
created (see Figure 4).

(2) Inferring types: This step is optional. It infers the types of the operator param-
eters whenever they are not given. The inferring process allows to the parameter
domain (the domain of untyped parameters is the set of all the constants defined
in the planning problem), and, consequently, the number of generated actions to
be reduced.

(3) Operator Instantiation: All the operator parameters are replaced by typed con-
stants. Then, these constants are propagated in the preconditions and effects for-
mulas of the operator. For each replacement, a new tree structure of the operator
is created. At the end of this step, all the operator parameters are eliminated.
The instantiation process in Pddl4j makes the assumption that all the operator
parameters are different.

(4) Predicate Simplification: This step consists, if possible, in the substituting
the predicates in operators by true or false. For instance, the predicate (in-city

?location ?city) never occurs as a positive or negative effect of any operator.
Therefore, the only possible instantiations of (in-city ?location ?city), what-
ever the state, are those defined in the initial state. Thus, all the ground predicates
matching (in-city ?location ?city), like for instance (in-city lhr paris),
can be simplified to false in the operators if they do not hold in the initial state.
Predicate simplifications are performed as soon as possible to reduce the number
of operator instantiations.

(5) Operator Simplification: This step is a generalization of the predicate simpli-
fication to first-order logic formula and operators. For instance, consider an AND
formula (see Figure 4), if one of the propositions p1, . . . , pn can be simplified to false
then the whole AND formula can be simplified to false. By extension, an action
whose preconditions can be simplified to false can be removed from the planning
problem because this action will never be triggered.

(6) Bit Set Problem Encoding: Once all the operators are instantiated into actions
and no more simplifications are possible, the instantiation process ends by encoding
the planning problem within a compact bit set representation in order to reduce
the memory consumption. A state is encoded with two bit sets: one to encode the
positive ground predicates and one for the negative ground predicates. Each ground
predicate corresponds to a position in a bit set. The set of relevant predicates is
deduced from the simplification and instantiation steps. By extension, the action
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forall (?p - package) 

?p

AND

p1 p2 ... pn

exists (?p - package) 

?p

OR

p1 p2 ... pn

Figure 4. Elimination of the quantified formulas by expansions.

Table 1. Classification of the predicates used in the logistics domain.

Predicate name Positive effect Negative effect Predicates category

in-city no no inertia
at yes yes fluent
in yes yes fluent

preconditions are encoded as a state and the conditional effects as a list of couples
of states, one for the condition and one for the effects.

5.2.2. Predicate Simplification

The predicate simplification of an operator consists, whenever possible, in replacing the
predicates used in its preconditions and effects by true or false. Deciding if a simplification
can be done relies on two steps: (1) the characterization of the predicates according to
properties that can be preprocessed, and (2) the application of simplification rules whose
triggering is based on the presence of the predicates in the initial state of the planning
problem.

The predicate characterization is done by a single pass over the domain description.
Each predicate is classified into four categories: a predicate is a positive inertia if and
only if it never occurs positively in an unconditional effect or the consequent of a con-
ditional effect of an operator. A predicate is a negative inertia if and only if it never
occurs negatively in an unconditional effect or the consequent of a conditional effect of
an operator. Predicates that are neither positive nor negative inertia are fluents. For
instance, Table 1 summarizes the predicate categories in the logistics domain.

The simplification rules can be formally defined as follows. A partially instantiated
predicate (p−→a ), where −→a defines uninstantiated parameters of p, can be simplified to
true or false by applying the following rules during the instantiation:

Rule 1. If p is a positive inertia and N(p−→a ) = 0 then (p−→a ) is simplified to false,
Rule 2. If p is a negative inertia and N(p−→a ) = Max(p−→a ) then (p−→a ) is simplified to

true.

Where in these rules:

• N(p−→a ) denotes the number of ground instances of p contained in the initial state,
• Max(p−→a ) denotes the number of ground instances of p that can be generated from

the uninstantiated parameters in −→a . Max(p−→a ) is the cartesian product of the
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domain of each parameter in −→a .

For instance, consider the predicate (in-city ?location amsterdam). This predicate is
a positive inertia. Because it does not match with any ground predicate in the initial
state, N(in-city ?location amsterdam) = 0, and the rule 1 can be applied: (in-city
?location amsterdam) is substituted by false. Now, consider the predicate (in-city

lhr london). This predicate is a negative inertia and matches one occurrence in the
initial state, thus N(in-city lhr london) = 1. Moreover, Max(in-city lhr london)

= 1 because (in-city lhr london) is a ground predicate. Therefore, rule 2 can be
applied: (in-city lhr london) is simplified by true. This means that (in-city lhr

london) is true in the initial state and no operator will make it false.
When all the predicate simplifications have been done and the instantiation process

ends, all the remaining ground predicates are necessarily fluent. All the other ground
predicates have been simplified by true or false. Only fluents are relevant for planning
and encoded in Pddl4j internal representations. Pddl4j simplification process is based
on Koehler’s work (Koehler & Hoffmann, 1999) (this algorithm requires time proportional
to the maximal arity of the predicates).

5.2.3. Inferring types from unary predicates

Typing is important because it reduces the allowed instantiations and, thus greatly im-
proves the efficiency of the instantiation process. However, formally, typing domain de-
scriptions is not mandatory and, most of the time, unary predicates are used for typing.
For instance, (vehicle ?v) indicates that parameter ?v is of type ”vehicle”. Unary
predicates are inertias that are neither produced nor consumed by the operators. For
instance, in the following untyped load operator:

(:action load

:parameters (?o ?v ?l)

:precondition (and (object ?o) (vehicle ?v) (location ?l)

(at ?o ?l) (at ?v ?l))

:effect (and (in ?o ?v) (not (at ?o ?l))))

The three predicates (object ?o), (vehicle ?v) and (location ?l) are unary in-
ertias. They encode respectively the types object, vehicle and location of the logistics

planning domain (see Section 4.1).
In order to speed-up the instantiation process, the Pddl4j instantiation module im-

plements a type inference procedure inspired from Ipp (Koehler, 1999). This procedure
has three steps:

(1) The extraction of all the unary inertias (p c) ∈ I (the initial state) where c is a
constant,

(2) The creation for every inertia (p c) of a new type τp whose domain is Dom(τp) =
{c | (p c) ∈ I};

(3) The replacement of all the unary inertias by their corresponding inferred types in
the operator descriptions.

Let o be an operator and ?x be one of its parameters. Let p be an unary inertia and
(p ?x) be a predicate that occurs in the preconditions or in the antecedents of one of the
conditional effects of o: then o is rewritten as two operators o1 and o2:

• In o1 all the occurrences of (p ?x) are replaced by true and the type τ initially
used to declare ?x is restricted to τ ∩ τp. τ ∩ τp is a new type whose domain is
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Dom(τ ∩ τp) = Dom(τ) ∩Dom(τp),
• In o2 all the occurrences of (p ?x) are replaced by false and the type τ initially used

to declare ?x is restricted to τ\τp. τ\τp is a new type whose domain is Dom(τ\τp) =
Dom(τ)\Dom(τp).

Similarly, quantified formulas in preconditions or antecedents of conditional effects are
replaced. Consider once again the operator load. It is replaced by the two following
operators such as t1 = object ∩ τobj and t2 = object\ τobj :

(:action load_1

:parameters (?o - t1 ?v ?l)

:precondition (and (true) (vehicle ?v) (location ?l)

(at ?o ?l) (at ?v ?l))

:effect (and (in ?o ?v) (not (at ?o ?l))))

(:action load_2

:parameters (?o - t2 ?v ?l)

:precondition (and (false) (vehicle ?v) (location ?l)

(at ?o ?l) (at ?v ?l))

:effect (and (in ?o ?v) (not (at ?o ?l))))

In the first operator, the simplification process removes true, and, in this second op-
erator, invalidates all the preconditions: this operator will never be applicable and is
removed from the planning domain. However, remember that preconditions can be any
logical formula and simplification follows the usual contraction rules. The simplification
process is iterated over all the operator parameters. It terminates when an inferred type
is assigned to each parameter and all the unary inertias are removed from the operators.

5.2.4. Operator simplification

Action simplification is a generalization of predicate simplification applied to precon-
ditions and effects in actions. Action simplifications are performed as soon as possible
in order to reduce the cost of operator instantiations. They are based on the following
syntaxical rules:

Rule 1. ¬true ≡ false and ¬false ≡ true,
Rule 2. true ∧ ϕ ≡ ϕ, false ∧ ϕ ≡ false, true ∨ ϕ ≡ true and false ∨ ϕ ≡ ϕ,
Rule 3. ϕ ∧ ϕ ≡ ϕ, ϕ ∧ ¬ϕ ≡ false, ϕ ∨ ϕ ≡ ϕ and ϕ ∨ ¬ϕ ≡ true,
Rule 4. If a quantified parameter is never used in the quantified formula, the quantifier

is removed, i.e., ∀?x ϕ(?y) is simplified to ϕ(?y),
Rule 5. If a quantified parameter has an empty domain, the quantified formula is re-

placed by true in the case of an universal quantifier and by false in the case of an
existential quantifier,

Rule 6. All equality formulas ?x =?x (?x is a parameter) and c = c (c is a constant)
are replaced by true. Equalities such as c1 = c2 are simplified to false.

When the precedent rules reduce the precondition, antecedent or consequent of an
operator to true or false, the following rules apply:

Rule 1. If the antecedent of a conditional effect is replaced by false, the conditional
effect is removed from the operator: this effect will never be applicable,

Rule 2. If the antecedent of a conditional effect is replaced by true, the conditional
effect becomes unconditional: this effect is always applicable,
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Rule 3. If the consequent of a conditional effect is replaced by true, the conditional effect
is removed from the operator because it will never lead to any state transition,

Rule 4. If the precondition or an unconditional effect of an operation is replaced by
false, the operator is removed from the planning domain because it will never be
applied in any state,

Rule 5. If the effect of an operator is true, the operator is removed from the planning
domain because it will never generate any new state.

5.3. Finite Domain Representation Encoder

Finite Domain Representation (Fdr) is generally more compact than Pddl (see Section
4.2). Fdr and logical representations are equivalent and translating one representation
into the other one takes polynomial time (Helmert, 2009).

5.3.1. A naive encoding procedure

First, consider a naive procedure to encode logical representation into Fdr. Let PL =
(P,A, c, I,G) be a logical planning problem. The Fdr translation of PL is the Fdr
planning problem PF = (V,AF , c, IF , GF ). This procedure creates for each proposition
p ∈ P of PL one boolean Fdr variable vp and applies trivial changes to A, I, G:

• V = {vp | p ∈ P} is the set of boolean variables, one for each proposition in P ,
• AF = {aF | a ∈ A} are actions where:

◦ pre(aF ) = {vp = true | p ∈ pre(a)} and
◦ effect(aF ) = {vp = true | p ∈ effect+(a)} ∪ {vp = false | p ∈ effect−(a)},

• IF = {vp = true | p ∈ I},
• GF = {vp = true | p ∈ G}.

This naive procedure produces a Fdr that is no more compact than the Pddl represen-
tation. A clever encoding consists in finding invariant states or sets of propositions that
can never be true at the same time, i.e. ”mutexes”. Indeed, each set of mutex propositions
can be encoded as a single variable whose values can be mapped with the propositional
values.

5.3.2. Invariants Discovery

We are only interested in invariants that express mutual exclusive sets of propositions
because they allow the grouping of a set of mutex propositions into a single finite domain
variable. For instance in the logistics domain, ∀?p (at ?p ?l) and (in ?p ?v) state
that whatever the package ?p the propositions (at ?p ?l) and (in ?p ?v) are mutually
exclusive. Then we can encode the proposition sets (at p1 ?l) and (in p1 ?v) with
only one variable p1 ∈ {at-lhr, at-cdg, at-north, at-south, in-truck, in-plane}.

In practice, there are too many candidate invariants to enumerate them exhaustively.
The Pddl4j invariant discovery procedure follows a guess, check, and repair approach.
This approach was first implemented in the planner FastDownward (Helmert, 2006).
The invariant discovery procedure starts with a set of few simple candidate invariants.
Then, it tries to prove that each candidate invariant is really an invariant. If the proof
succeeds, this candidate is kept as invariant, otherwise, it determines why this candidate
fails and tries to refine it in order to generate other invariant candidates. At the top level,
the discovery of invariants is a classical breadth-first search based on an opened and a
closed list to store the pending candidates and the explored candidates. The complete
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Table 2. Relevant propositions and mutex-groups of the logistics problem.

Mutex-Group 1 Mutex-Group 2 Mutex-Group 3 Mutex-Group 4

(at p1, lhr) (at p2, lhr) (at truck, cdg) (at plane, lhr)
(at p1, cdg) (at p2, cdg) (at truck, north) (at plane, cdg)

(at p1, north) (at p2, north) (at truck, south)
(at p1, south) (at p2, south)
(in p1, truck) (in p2, truck)
(in p1, plane) (in p2, plane)

description of the Pddl4j algorithm is in (Helmert & Domshlak, 2009).

5.3.3. FDR Encoding

The Fdr translation procedure implemented in Pddl4j is based on invariant discovery
and the instantiation process (see Section 5.2). The Fdr translation procedure involves
3 mains steps described below.

Variable Selection

Recall that each variable in the Fdr corresponds to one or more facts of the world in
the logical representation. In order to have a compact representation, we want to rep-
resent as many propositions as possible by a single variable induced by the computed
invariants. The procedure implemented in Pddl4j does not guarantee finding the most
compact representation (this is a NP-complete problem), but it uses the best approxi-
mation algorithm (Ausiello, Crescenzi, Gambosi, Kann, & Marchetti-Spaccamela, 1999).
The variable selection procedure consists in four steps:

Step 1. The procedure starts by extracting the relevant propositions of the planning
problem. This is quickly done by extracting all the propositions defined in the pre-
conditions and the effects of the grounded operators. For instance, in the Logistics
problem (see §4.1), the relevant propositions are those listed in Table 2.

Step 2. The procedure instantiates the computed invariants. In the logistics domains,
two invariants are extracted:
(1) ∀?p (at ?p ?l) and (in ?p ?v) are mutually exclusive: whatever the pack-

age ?p, ?p is either at a location ?l or in a vehicle ?v. This invariant produces
two partial instantiations: (at p1 ?l) is mutually exclusive with (in

p1 ?v), and (at p2 ?l) is mutally exclusive with (in p2 ?v),
(2) ∀?v (at ?v ?l) stating that whatever the vehicle ?v, the vehicle is at only

one location ?l. This invariant produces two partial instantiations: (at truck

?l) and (at plane ?l).
Step 3. Then, for each partial instantiation satisfying the initial state, a mutex-group of

propositions is created. This mutex-group of propositions contains all the relevant
propositions of the planning problem that unify with a predicate of the partial
instantiations. In our example, four mutex-groups shown in Table 2, one for each
partial instantiation, are generated;

Step 4. Finally, the procedure selects the mutex-group with the highest cardinality and
creates a variable of the domain that contains all the propositions of the mutex-
group plus the ⊥ value that stands for “none of propositions in the mutex-group is
true”. All the propositions of this mutex-group are removed from the other mutex-
groups, and empty mutex-groups are removed from the list of mutex-groups. The
process is repeated until this list is empty. In the logistics domain, the following
variables are created:
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• ?p1, ?p2 ∈ {at-lhr, at-cdg, at-north, at-south, in-truck, in-plane},
• ?truck ∈ {at-cdg, at-north, at-south},
• ?plane ∈ {at-lhr, at-cdg}.

Initial state and goal encoding

Based on the variables selected, encoding the initial state and the goal is straightforward.
For each proposition p of the initial state or goal, the corresponding variable is set
to the value ”p”. The other variables are set to ⊥. For instance, the initial state I
in logistics is encoded as I = {?p1 = at-lhr, ?p2 = at-lhr, ?truck = at-cdg,

?plane = at-lhr}.

Action encoding

The encoding of the preconditions and the positive effects of an action is similar to
the initial state and goal encoding. Nevertheless, encoding the negative effects requires
some care as the same variable can be simultaneously involved in positive and negative
effects. A variable encoding a negative effect is set to ⊥ only if no positive effect is
encoded with the same variable. For instance, the action (load-truck p1 truck cdg)

is encoded with the preconditions {?p1 = at-cdg, ?truck = at-cdg} and the effect
{?p1 = in-truck}.

5.4. Informative Planning Structures

Many research works have been investigating the use of informative data structures to
facilitate automated planning. These structures are mainly used to encode the search
space in a compact manner or to extract relevant information from the planning prob-
lem to build efficient heuristics. In this section, we introduce the two most important
informative data structures used for automated planning and implemented in Pddl4j:
the planning graph and the causal graph. These two structures are the basic ones used
to compute the heuristics described in Section 5.5 and used in some of the planners
implemented in Pddl4j (see Section 5.6).

5.4.1. Planning Graph

The planning graph structure was first proposed in the Graphplan (Blum & Furst, 1997)
planner. It provides an efficient way to estimate which set of propositions is reachable
from a given state. The estimation is achieved by a reachability analysis based on a
relaxed condition of reachable states. The basic idea of the planning graph structure is
to calculate, as a first approximation of reachable states, a set of propositions that can
be reached by all the applicable actions at the same time from a given state. However,
while a state is consistent, this set of propositions represents several possibly inconsistent
states. Likewise, not all the actions are simultaneously applicable. Therefore, mutually
inconsistent propositions and actions, mutexes in planning graph terminology (mutual
exclusion relation), are labelled. An example of a planning graph based on the logistics
domain is shown Figure 5.

Formally, a planning graph PG of a planning problem PL = (P,A, c, I,G) in the logical
representation is a directed graph organized as an alternated sequence of ”levels” com-
posed of propositions and actions 〈P0, A0, P1, . . . , Ai−1, Pi, . . .〉. Each proposition layer
Pi is a subset of P . P0, the first level of the planning graph contains all the propositions
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of the initial state I. The level Ai with i > 0 is an action level containing all the actions
a ∈ A applicable from the proposition level Pi, and Pi+1 contains all the propositions
generated by the effects (both positive and negative) of the actions in Ai. Edges of the
planning graph explicitly represent relations between actions and propositions. Actions
in an action level Ai are connected by precondition edges to their preconditions in level
Pi, by add-edges to their positive effects in level Pi+1, and by delete-edges to their nega-
tive effects in level Pi+1. At each level Pi, every proposition p ∈ Pi is propagated to the
next level Pi+1 by a dummy action that has one precondition p and one positive effect
p. Two actions a and b in level Ai are mutex if (i) a deletes a precondition of b, (ii) a
deletes a positive effect of b or (iii) a precondition of a is mutex with a precondition
of b. Two propositions p and q in Pi are mutex if every action in Ai−1 that has p as a
positive effect (including dummy actions) is mutex with every action that produces q.
The sets of mutual exclusion relations at a proposition level Pi and an action level Ai

is respectively µPi and µAi. For instance, in Figure 5, at the action level 1, the action
(fly-airplane plane lhr cdg) is mutex with the action (load-airplane p1 plane

lhr) and (load-airplane p2 plane lhr).
Every planning graph PG has a fixed-point level. This fixed-point level is a level i such

that for ∀j > i, level j is identical to level i, i.e., Pi = Pj , µPi = µPj , Ai−1 = Aj−1 and
µAi−1 = µAj−1. It is easy to verify the following assertions:

• The number of actions required to produce a proposition is no less than the index
of the smallest proposition level in the planning graph in which this proposition
appears. This can be generalized to a pair of propositions. In this case, the number
of actions to produce a pair of propositions is no less than the index of the smallest
proposition level in which both propositions appear without mutex,
• The set of actions at the fixed-point level contains all the actions applicable to

states reachable from the initial state.

These assertions give some indications on how the information in the planning graph can
be used to guide the search of the planners. The first assertion shows that the level index
in the planning graph can be used to estimate the ”cost” of deriving a set of propositions.
The second assertion shows which actions have to be considered by search algorithm, and
which actions have to be discarded etc.

The good news is that the computation of a planning graph takes polynomial time:
it depends on the number of actions and propositions of the problem (Kambhampati,
Parker, & Lambrecht, 1997). In Pddl4j, the planning graph is based on an efficient im-
plementation (a compact bit vector representation) proposed in the planner Ipp (Koehler,
1999) (different implementations exist, e.g., Stan (Long & Fox, 1999), Blackbox (Kautz
& Selman, 1999)).

5.4.2. Causal Graph

The concept of causal graph was first introduced by Knoblock (Knoblock, 1994). A causal
graph captures the structure of a planning problem in a meaningful way: it captures the
degree of independence among the state variables of a planning problem encoded in
Fdr. It has been used as a tool for describing tractable subclasses of planning problems
(Brafman & Domshlak, 2003; P. Jonsson & Bäckström, 1998; Williams & Nayak, 1997),
for decomposing planning problem into smaller ones (Brafman & Domshlak, 2006; A. Jon-
sson, 2007; Knoblock, 1994), as the basis for domain-independent heuristics to guide the
search toward a solution plan (Helmert, 2006), for complexity analysis and particularly
the identification of polynomial solvable sub-classes, and the analysis of search topology
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Figure 5. The two first levels of the planning graph for the logistics problem. Each box is either a proposition
or an action. Solid lines represent preconditions and positive effects of actions, and dashed lines represent negative

effects. For readability, mutexes are not shown.

?truck

?p1

?aiplane

?p2

Figure 6. Causal graph of a logistics problem: vertices are state variables in Finite Domain Representation and
arcs show variable dependencies.

of planning benchmarks (Hoffmann, 2011).
Formally, a causal graph CG for a Fdr planning problem PF = (V,A, c, I,G) is a

directed graph whose nodes are the state variables V of PF . The arcs of the graph show
the variable dependencies. There is an arc (v, u) between two variables v and u if and
only if v 6= u and there exists an action a ∈ A such as v ∈ precond(a) and u ∈ effects(a),
or v ∈ effects(a) and u ∈ effects(a).

The first condition means that modifying v may also modify u, and the second means
that modifying v may have a side effect on u as well. To illustrate the concept of a
causal graph, consider Figure 6. It depicts the causal graph of a logistics problem.
We can observe that packages p1 and p2 are independent, but that moving the truck or
the airplane modifies the state of packages p1 and p2. Note that contrary to planning
graphs, causal graphs capture only the structure of variables and actions, and cannot by
design account for the influence of different initial states and goals.

5.4.3. Domain Transition Graph

A last useful informative structure often considered in connection with the causal graph
and implemented in Pddl4j is the Domain Transition Graph. This graph describes how
an individual state variable evolves with respect to the actions of a planning problem.

Let PF = (V,A, c, I,G) be a planning problem in Fdr and v ∈ V . The Domain
Transition Graph of v is a directed labeled graph DTG(v, P ) whose vertices are the
values of Dom(v) and arcs are labeled with actions a ∈ A. There is an arc (d, d′) between
two vertices d and d′ if (v = d) ∈ precond(a) and (v = d′) ∈ effects(a) or v /∈ precond(a)
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in
airplane

in-truckat-lhr

at-south

at-north

at-cdg

at-south

at-north

at-cdgat-lhr at-cdg

Figure 7. Domain Transition Graphs of a logistics problem for the variables ?p1 and ?p2 (left), the variable

?airplane (centre) and the variable ?truck (right): vertices are values of the state variables and arcs possible
transitions. For simplicity, action labels are not depicted.

and (v = d′) ∈ effects(a). The Domain Transition Graph is said to be invertible if, for
each arc (d, d′), there is an arc (d′, d) in the graph. The Domain Transition Graphs of the
state variables of the logistics problem are shown in Figure 7. It is proved (H. Chen &
Giménez, n.d.) (1) that plan existence for a planning problem with an acyclic causal graph
and whose Domains Transition Graphs are all invertible can be decided in polynomial
time, and (2) that if the causal graph contains cycles deciding if a plan exists is NP-Hard.

5.5. Planning Heuristics

Since 2000, planners based on heuristic search have won all the deterministic tracks of
the International Planning Competition. Heuristic search (Bryce & Kambhampati, 2007;
Haslum, Botea, Helmert, Bonet, & Koenig, 2007; Liang, 2012) has become a de facto
standard method to fin plans in large deterministic search space. This approach has rev-
olutionized planning, both in terms of scalability and in terms of research methodology.
Its principle is to guide the search by using a heuristic function h that estimates the
cost h∗ of an optimal path from a state s to the goal g. In other words, heuristic search
procedures use h to decide which pending states s to expand first, i.e., the states with the
smallest value h(s, g). An important property for heuristics is their admissibility. Indeed,
if an heuristic is admissible, it can be proved that the first solution plan returned by the
classical A* search procedure is optimal in terms of plan length. A heuristic is admissible
if it never overestimates the optimal cost h∗ from s to g.

A common key idea to derive heuristics is ”relaxation”, i.e., ignoring some features
in the original problem to obtain a simpler problem, which has polynomial time solu-
tions. There are essentially four categories of methods to automatically generate heuristic
functions (Helmert & Domshlak, 2009):

• Critical path heuristics (Haslum & Geffner, 2000; Haslum, Bonet, & Geffner, 2005)
estimate the goal distance by computing lower bound estimates on the cost of
achieving sets of facts of a predefined size,
• Delete relaxation heuristics (Nguyen, Kambhampati, & Nigenda, 2002; Hoffmann

& Nebel, 2001; Domshlak, Hoffmann, & Katz, 2015) estimate the cost of reaching
a goal state by ignoring the negative effects of actions,
• Abstraction heuristics (Ededlkamp, 2001; Helmert, Haslum, Hoffmann, & Nissim,

2014; Katz & Domshlak, 2008) try to collapse several states into one depending on
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Figure 8. Overview of the heuristics available in the Pddl4j library

their properties in order to reduce the size of the search space. When the abstraction
is small enough it is feasible to quickly find an optimal solution for the abstracted
problem that is used as a heuristics value during the search,

• Landmarks heuristics (Hoffmann, Porteous, & Sebastia, 2004; Richter, Helmet, &
Westphal, 2008) are based on the observation that some propositions are true at
some point in every plan to reduce and decompose the search space.

For now, Pddl4j only implements critical path and delete relaxation heuristics (see
Figure 8. Heuristics in gray are admissible heuristics).

5.5.1. Critical path heuristics

The critical path heuristic (Haslum & Geffner, 2000) hm is defined by a relaxation of the
planning problem in which the cost of deriving a set of propositions is approximated by
the cost of the most costly subset of size m. Formally, it is defined as follows:

h(s, g)m =

 0 if g ⊆ s
mina∈A(cost(a)) + hm(s, γ−1(g, a)) if |g| ≤ m
maxg′⊆g∧|g′|≤m hm(s, g′) otherwise

(1)

Where γ−1(g, a) = (g − effet+(a)) ∪ precond(a): a are ”relevant” actions contributing
to reach the goal g, and γ−1(g, a) is the new goal to achieve from a state s.
hm(s, g) is admissible. For fixed m, hm(s, g) can be computed in polynomial time:

the greater m, the more informative is the heuristic. For small values of m, an explicit
solution can be computed by a simple shortest-path algorithm such as Dijkstra. The
solution can be stored in a table of heuristic values for sets of m or fewer predicates,
so that only maxg′⊆g∧|g′|≤m hm(s, g′) has to be computed when a state s is evaluated
during the search. This heuristic is relatively slow to compute at each state, and it is
mainly used in backward search.

The Pddl4j library also implements an admissible additive variant (Haslum et al.,
2005) of hm. The main improvement is to partition the set of actions A, from which hm

is computed, into n disjoint subsets. Then, for each subset, the heuristic hm is separately
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computed and the sum of these individual computations is returned as the heuristic
value. This computation requires less time than the original heuristic.

5.5.2. Delete relaxation heuristics

In these heuristics, the idea is to relax planning problems by neglecting the negative
effects of the actions. Thus, once a proposition becomes true, it remains true forever. The
transition function of the relaxed planning problem monotonically increases the number
of propositions. Hence, it is easier to estimate the distances to the goal (recent works
consider partial relaxation (Domshlak et al., 2015)). Pddl4j implements the following
heurisitics:

Additive Heuristic. The additive heuristic (Bonet & Geffner, 2001) h+ as in all the
heuristics of the delete relaxation heuristics category ignores the negative effects of the
actions. It approximates the distance from a state s to a goal g as the sum of the distances
to the propositions p ∈ g. h+ is given by the following equations:

h+(s, g) = Σp∈g h
+(s, p) (2)

where:

h(s, p)+ = 0 if p ∈ s
h(s, p)+ =∞ if ∀a ∈ A, p 6∈ effect+(a)
h(s, p)+ = min(cost(a)) + h+(s, pre(a)) if ∃a ∈ A, p ∈ effect+(a)

This heuristic requires polynomial time in the number of propositions and actions of the
planning problem. However h+ is not admissible.

Maximum Heuristic. In contrast to h+, the maximum heuristic (Bonet & Geffner,
2001) hmax is admissible. It estimates the distance to the goal g as the largest distance
to its propositions:

hmax(s, g) = maxp∈g h
+(s, p) (3)

Although hmax is admissible, in practice, it is less informative than the additive heuristic.
Note that hmax is equivalent to hm when m = 1.

Additive Mutex Heuristic. The additive mutex heuristic h+M improves the additive
heuristic by using mutex relations as in Graphplan (Blum & Furst, 1997). The mutex
relation used in h+M are ”structural” mutexes (time independent mutexes). Two propo-
sitions p and q are mutex when they cannot be present together in any reachable states
from the initial state of the planning problem. The additive mutex heuristic is as follows:

h+M (s, g) =

{
∞ if ∃(p, q) ∈ s and mutex(p, q)
Σp∈g h

+(s, p) otherwise
(4)

h+M is admissible, but empirical evaluations (Nguyen et al., 2002) show that h+M is more
informative than h+ specially when subgoals are relatively independent. The procedure
used to compute mutex relations starts with a large set of potential mutex pairs and
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then precludes those that are not actually mutex. The initial set M of mutex pairs is
defined as the union of two sets M1 and M2 defined as follows:

• M1 is the set of pairs P = {p, q} such that some action adds p and deletes q,
• M2 is the set of pairs P = {r, q} such that for some pair m′ = {p, q} in M1 and

some action a, r ∈ pre(a) and p ∈ effect+(a).

Then, for each mutex pair m = {p, q} ∈ M , given a set of actions A and an initial
state I, m is not derived if and only if m is not true in I. Therefore, for every a ∈ A
that adds p, either a deletes q, or a does not add q, and for some precondition r of a,
m′ = {r, q} is a pair in M .

Set-Level Heuristic. The set-level heuristic (Nguyen et al., 2002) computation is based
on the extraction of information from a planning graph structure. Suppose a planning
graph PG = 〈P0, µP0, A0, µA0, . . . , Pn, µPn〉 is expanded until its fixed point is reached.
Pi and Ai represent respectively the ith propositional and action level, and µPi and
µAi, the propositional and action mutex relation at level i. We call level(p) the first
propositional level of the planning graph where p appears. By extension, level(g) denotes
the first level of the planning graph where all the propositions of the goal g are present
in the propositional level Pi and are mutex free, i.e., g /∈ µPi. The set-level heuristic is:

hlev(s, g) =

{
level(g)
∞ otherwise

(5)

The set-level heuristic is admissible and more informative than the maximum heuristic.
This is because the maximum heuristic is equivalent to the set-level heuristic without
mutex constraints. Moreover, in practice, the set-level heuristic outperforms the additive
heuristic because it subsumes most of the structural mutex relations computed by the
additive heuristic.

Adjusted Additive Heuristic. The adjusted additive heuristic (Nguyen et al., 2002)
tries to avoid the drawbacks of the set-level heuristic that tends to underestimate the
goal distance as well as those of the additive heuristic that tends to overestimate the goal
distance by neglecting the negative effects of the actions. The main idea of the adjusted
additive heuristic is to make a partition of k subsets of the goal propositions and to apply
the set-level heuristic on each subset. The adjusted additive heuristic is:

h+Adj(s, g) = Σp∈g h
+(s, p)︸ ︷︷ ︸

h+(s,g)

+∆(g) (6)

where

∆(g) = level(g)−maxp∈glevel(p) (7)

∆(g) can be considered as a measure of the interdependence between the goal propositions
contained in g. In the best case, if there is no interdependence in g, i.e., all the goal
propositions are independent, ∆(g) = 0 and the adjusted additive heuristics is equivalent
to h+. However, the adjusted additive heuristics, like h+, is not admissible.
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Pddl4j also implements two improvements of the adjusted additive heuristic. The
first improvement consists in taking into account the propositions that are derived by an
action. The computation of h+ in equation 6 is then given by:

cost(s, g) = cost(a) + cost(s, g ∪ pre(a)− effect+(a)) (8)

where a is an action that derives p ∈ g such that level(p) = maxpi∈glevel(pi). Note that
recursively applying this equation implies extracting a sequence of actions. In this sense,
this adjusted additive heuristic variant is similar to the relaxed plan heuristic develop by
J. Hoffmann and B. Nebel in the FastForward planner (Hoffmann & Nebel, 2001).

The second improvement consists in improving the computation of ∆(g) by counting
more precisely the interdependences between the goal propositions. Instead of considering
goal propositions individually, the interdependence between each pair p and q of goal
propositions is considered. ∆(g) in equation 7 is then given by:

∆max(g) = maxp,q∈glevel({p, q})−max(level(p), level(q)) (9)

Combo Heuristic. As with the adjusted additive heuristic, the combo heuristic tries
to take advantage of combining two heuristic: the set-level heuristic and the additive
heuristic. Unlike the adjusted additive heuristic, it neglects the second term of equation 7.
The Combo heuristic is calculated as follows:

hcomb(s, g) = h+(s, g) + hlev(s, g) (10)

Empirical evaluations show that the combo heuristic is slightly faster than the adjusted
additive heuristic.

Relaxed Planning Graph Heuristic. The relaxed planning graph heuristic (Hoffmann
& Nebel, 2001) is based on the delete relaxation idea. The heuristic computation starts
by constructing a relaxed variant of the planning graph (see § 5.4.1) in which the negative
effects of the actions and the mutex relations are ignored. Then, a backward procedure is
applied to extract a relaxed plan from the first level k of the planning graph containing the
set of goal propositions. During the extraction, two sequences are maintained: a sequence
of goal propositions g1, . . . , gk achieved at each propositional level and a sequence of set of
actions A0, . . . , Ak−1 that represents the actions chosen to derive these goal propositions
g1, . . . , gk. The sequence A0, . . . , Ak−1 is the relaxed plan. Formally, the relaxed planning
graph heuristic can be defined as follows:

hr(s, g) = Σi=0,...,k−1|Ai| (11)

The relaxed planning graph heuristic returns the number of actions of the relaxed plan
as an estimation of the goal achievement if such a plan exists, or∞ otherwise. Note that
building a relaxed planning graph and extracting a relaxed plan are polynomial time
operations. However, the relaxed planning graph heuristic is not admissible.

5.6. Planners

Several state-of-the-art planners are implemented in Pddl4j. The objective of the toolkit
is not to be exhaustive, but rather (1) to propose for pedagogical purposes an implementa-
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tion of some canonical planners, and (2) to allow researchers to build on existing planners.
We present in this section the implemented planners in three categories: state-space plan-
ning, graph planning, and Sat planning. Other planning techniques exists, for instance
plan-space search (Penberthy & Weld, 1992), Model checking techniques (Triantafillou,
Baier, & McIlraith, 2015) or Markov Decision Process (Mausam & Kolobov, 2012). But,
for now, no planner based on these techniques is implemented in Pddl4j.

5.6.1. State-Space Planners

The planners in this category rely on search algorithms whose search space is a subset
of the state space (see Section 3.1). Each node corresponds to a state of the world, each
arc represents a state transition, i.e., an action, and a plan is a path from the initial
state to a goal state in the search space.

Heuristic Search Planner (HSP) is an extended version of the planner proposed by B.
Bonnet (Bonet & Geffner, 2001). This planner includes several basic search algorithms:
best-first search, bread-first search, A* and iterative deepening search. Each search
algorithm, except bread-first search, can be coupled with the heuristic described in
Section 5.5.

Fast Forward is a state-space planner based on the relaxed planning graph heuristic
(Hoffmann & Nebel, 2001). The search procedure is based on a variation of the
hill-climbing search called enforced hill-climbing. The idea of this search procedure is to
perform an exhaustive search only for the best states. The search uses also a heuristic
called ”helpful actions” to reduce the branching factor: only the actions of the relaxed
planning graph at the first level are used to compute the successor states. This heuristic
with the enforced hill climbing search makes Fast Forward incomplete. To guarantee
the completeness, Fast Forward launches an A* search without helpful actions when the
enforced hill-climbing search fails. Fast Forward does not find optimal plans. However,
in practice, the plans are relatively close to the optimum.

Fast Downward is a state-space search planner based on Fdr and the causal graph
heuristic (Helmert, 2006). The main search procedure of Fast Downward is a greedy best-
first search procedure, which is a modified version of classical best-first with deferred
heuristic evaluations to mitigate the negative influence of wide branching factors. It
extends the helpful actions proposed by Fast Forward in the context of causal graphs.
This planner is the foundation of several other planners, as for instance Lama (Richter
& Westphal, 2010) etc.

5.6.2. Planning Graph Planners

In contrast to the state-space planners, the planners in this category encode their search
space in a structure called the planning graph (see §5.4.1). This planning encoding is
compact as, at every level, states are fused with sets of propositions. Moreover, mutex
relations denoting inconsistencies among propositions and actions are stored at each
level of the graph. All the planners in this category start by extending the planning
graph until a proposition level is built that contains all the goal propositions without
any mutex. Then, the planner starts its search: if it fails, the planning graph is extended
to one more level, and a new search is carried out. Graph extension ends when the
planning graph reaches its fixed-point (the two last levels are equal). In this case, there
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is no solution and the planner returns failure. The planners presented below differ
mainly in the search procedure used to extract a solution plan from the planning graph:

Graphplan was the first planner that introduced a planning graph structure (Blum &
Furst, 1997). The extraction of a solution plan from the planning graph is a backward
search from the last proposition level containing the goal to the first proposition level,
which is the initial state of the planning problem. For each goal proposition at the
last level of the planning graph, the search procedure non-deterministically chooses
a set of mutex free actions producing the goal propositions. If such a set exists, the
new goal becomes the union of the preconditions of these actions. Otherwise, there
is no solution, the search procedure backtracks and tries another set of mutex free
actions. The search is exponential in time. More information about Graphplan implemen-
tation in Pddl4j is available in Ipp planner papers (Koehler, 1999; Koehler et al., 1997).

SATPlan is a graph-based planner where the search is carried out by a Sat solver. The
implementation in Pddl4j relies on the papers of H. Kautz and B. Selman (Kautz,
Selman, & Hoffmann, 2006; Kautz & Selman, 1999). Once the planning graph is
extended, it is encoded as a Sat problem. This Sat problem is then solved with the
Sat4j (Le Berre & Parrain, 2010) library.

GP-CSP is a graph-based planner where the search is carried out by a Csp solver. The
implementation in Pddl4j is based on the M. Do and S. Kambhampati paper (Do
& Kambhampati, 2001). In this case, the planning graph is encoded as a Constraints
Satisfaction Problem (CSP). The CSP problem is then solved with the Choco library
(Prud’homme, Fages, & Lorca, 2014). Note that alternative approaches (Lopez & Bac-
chus, 2003; Barták & Toropila, 2008; Cooper, de Roquemaurel, & Régnier, 2011) based
on different planning graph encodings exist.

5.6.3. Propositional Satisfiability Planners

The general idea underlying propositional satisfiability planners is to encode planning
problems into Sat problems for which very efficient algorithms exist. In the last decade,
performances of Sat planners have considerably increased due to parallel Sat solvers
that can now exploit several Cpu cores (Rintanen, Heljanko, & Niemelä, 2006). Like-
wise, important improvements in compact Sat encodings and heuristic (Rintanen, 2012)
have been achieved. In contrast to encodings that have quadratic sizes (Kautz et al., 2006;
Kautz & Selman, 1999) (e.g. the case of action exclusion axioms), it is now possible to
carry out planning problem encodings in asymptotically optimal linear-size (Rintanen
et al., 2006). These different encodings can be classified into three categories with re-
spect to action parallelism allowed in the solution plan. In the first category of encoding
(Kautz & Selman, 1992), only sequential actions are allowed. In the second category
(Rintanen et al., 2006; Robinson, Gretton, Pham, & Sattar, 2009), a set of actions can
be simultaneously executed if they are pairwise independent. The actions parallelism
used in this category is similar to the one used in the planning graph structure. In the
third category (Dimopoulos, Nebel, & Koehler, 1997; Wehrle & Rintanen, 2007), a set
of actions can be simultaneously executed if they can be totally ordered so that any
action does not disable any later action or change its effects. This kind of encoding is
the fastest encoding currently used by the most efficient Sat planner known to date and
called Madagascar (Rintanen, 2014). These three kind of encodings are implemented in
Pddl4j in the planner called PSPlan (the solving is done with the Sat4j library).
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6. Evaluation and Experimental Results

In this section, we propose a comparison of Pddl4j with the two other planning toolkits:
Fast-Downward (Fd) (Helmert, 2006) and Fast-Forward (Ff) (Hoffmann & Nebel, 2001)
(the Lightweight Automated Planning ToolKiT (Ramirez, Lipovetzky, & Muise, 2015) is
based on Fd and Ff). For each toolkit, we evaluate the comparable modules: the parsing
module and the encoding module. These modules are written respectively in Java for
Pddl4j, in Python for Fd and in C for Ff. The exhautive comparison was made on all
the 29 Strips planning domains of the successive International Planning Competitions.
The experiments were carried out on a 6-core Intel Xeon clocked at 2.2 GHz. For each
experiment a memory of 16 GBytes was allocated.

The performances of the parsing modules are shown Figure 9. For every domain, Fig-
ure 9 shows the average time in seconds needed by Pdd4j, Ff and Fd to parse all the
domains and problems files. Ff has the most performant parsing module. Then there is
Pddl4j and finally Fd. The difference of performance between, on the one hand, Fd
and, on the other hand, Ff and Pddl4j, is significant for domains like openstracks or
optical-telegraph where problem files are very large (more than 10 MBytes). The im-
plementation of the parsing module of Fd written in Python is definitely less performant
than the implementation of Pddl4l based on JavaCC, and the implementation of Ff
based on Flex and Bison. However, whatever the parsing implementation, the average
time for parsing remains relatively small and comparable (between 0.1 to 8 seconds).

The performances of the encoding modules are evaluated by : (1) the average time
needed to encode all the planning problems of a domain (see Figure 10) and (2) the
average memory needed to store all the encoded planning problems of a domain (see
Figure 11). The time needed to encode planning problems remains relatively small (be-
tween 1 to 60 seconds for most of the domains). The encoding module of Fd is much
slower than Pddl4l and Ff in this order. Fd encoding module takes more time for the
large problems (those identified in the evaluation of the parsing modules). However, Fd
outperforms Pddl4j and Ff in two domains: logistics and thoughtful. These two
domains have the particularity of having planning operators with a lot of parameters. For
instance, the thoughtful domain has operators with more than 6 parameters. If we go
into detail in the implementation of the encoding modules of Ff and Pddl4j, we can no-
tice that the computation of the inertias requires the creation of several multi-dimensions
arrays whose size is exponential with the number of operator parameters. This explains
why Ff and Pddl4j, which implement inertia computation, are less performant to en-
code the logistics and thoughtful problems. Concerning the average memory used to
store the encoded planning problems (see Figure 11), Pddl4j is broadly less memory-
hungry than the other toolkits except for logistics and thoughtful for the reasons
above.

To summarize, the experiments show that Pddl4j parsing and encoding modules
are competitive with the two main research planning toolkits Ff and Fd, even if
Pddl4j is written in Java. Moreover, Pdd4j is more mature than research code. It
has been completely refectored by professional developers and its development pro-
cess follows software engineering standards: there is a source code repository avail-
able at http://pddl4j.imag.fr. Continuous inspection of code quality is managed by the
SonarQube platform (see http://pddl4j.imag.fr/sonar). Pddl4j source code is imple-
mented according ”Continous Integration” (CI) principles (through Jenkins CI server,
see http://pddl4j.imag.fr/jenkins): CI consists in verifying that each code modification
does not produce code regression with respect to automated unit and integration tests.
This is meant to avoid and/or efficiently identify bugs in code upgrades which could im-
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Figure 9. Average time for domain and problem parsing

pair Pddl4j functionalities and performances. We would like to highlight that Pddl4j
comes with an exhaustive code documentation making Pddl4j a relevant Java toolkit
for both industrial and research applications. Note that Pddl4j is released under LGPL
license.

Conclusion

Pddl4j is a mature open-source toolkit providing access to a large number of planning-
related technologies to software developers. Our objective is to facilitate developments
of new planners and techniques in the planning community but also to disseminate
planning techniques to other communities. Pddl4j provides state-of-the-art tools for
the Pddl language, a Java Api to design new algorithms and the most important
heuristics developed for automated planning.

The future developments and extensions of Pddl4j will focus on the following points:

(1) Add new state-of-art planners and heuristics developed in the planning research
community in order to integrate the lastest advances and keep the Pddl4j toolkit
competitive.

(2) Develop the interfaces of Pddl4j to ease its integration and use in different contexts
of applications. In particular, we will tackle the following implementions:
(a) Simplified interfaces with other solvers based on Sat and Csp techniques such

as Sat4j and Choco to bridge the gap between these communities, and
(b) an interface to the Robot Operating System (Quigley, Gerkey, & Smart, 2015)

(Ros) to facilitate Pddl4j usage in the robotics community. Ros is an open
source framework aiming at writing softwares for robots. It is a collection
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Figure 10. Average time for planning problem encoding
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Figure 11. Average memory usage of the encodings of the planning problems

of tools, libraries, and conventions that help to create complex and robust
robot behaviors on a wide variety of robotic platforms. It is currently used
by hundreds of research groups and companies in the robotics industry. A
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preliminary version of this interface is already available as an open source
project4.
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