
Thin Layers in Micromagnetism

Gilles Carbou
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Abstract - In this paper we study the solutions of micromagnetism equation in thin domain
and we prove that the magnetic field induced by the magnetisation behaves like the projection
of the magnetic moment on the normal to the domain.

1 Introduction

The aim of this work is to study the behavior of solutions of micromagnetism equations in thin
domains. This paper concerns for example the magnetic microscopes composed by a thin layer
of ferromagnetic material deposited on a dielectric point.

In the micromagnetism theory, a ferromagnetic material is characterized by a spontaneous mag-
netisation represented by a magnetic moment u defined on the domain Ω in which the material
is confined. This moment satisfies |u| ≡ 1 on Ω and links the magnetic field H and the magnetic
induction B by the relation B = H + ū, where ū is the extension of u by zero outside Ω.

The magnetic field H satisfies curl H = 0 by static Maxwell Equations, and by the law of
Faraday we have div B = div (H + ū) = 0. Hence the magnetic moment u induces a magnetic
field H(u) given by : 




H(u) ∈ L2(IR3),

curl H(u) = 0 in D′(IR3),

div (H(u) + ū) = 0 in D′(IR3).

(1.1)

We will study two models of ferromagnetism.

Model I : steady state model

For u ∈ H1(Ω;S2) =

{
v ∈ H1(Ω; IR3), such that |v| ≡ 1 almost everywhere

}
, we set

E(u) =

∫

Ω
|∇u|2 +

∫

IR3
|H(u)|2.

The steady state configurations of u are the minimizers of E in the space H 1(Ω;S2). They satisfy
the following Euler equation :

−∆u− u|∇u|2 −H(u) + (u,H(u))u = 0 in D′(Ω).

Existence of the minimizers of E is proved in [6]. Regularity results about these minimizers are
proved in [3] and [5].

Model II : Quasi-stationary Model

In this model u depends on the time t and satisfies the Landau Lifschitz equation :

∂u

∂t
+ u ∧

∂u

∂t
= 2u ∧ (∆u+H(u)) (1.2)
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where H(u) is defined by (1.1).
In [6] and [4], it is proved that if u0 ∈ H1(Ω;S2), there exists at least one weak solution of (1.2)
which satisfies :





• u ∈ L∞(IR+;H1(Ω)),

• |u| = 1 a.e.

•
∂u

∂t
∈ L2(IR+ × Ω),

• for all χ ∈ D(IR+ × Ω),
∫

R+×Ω

(
∂u

∂t
+ u ∧

∂u

∂t

)
χ = −2

∫

R+×Ω

3∑

i=1

u ∧
∂u

∂xi
·
∂χ

∂xi
+ 2

∫

R+×Ω
u ∧H(u) · χ,

• for all t ≥ 0, EQS(t) +

∫ t

0
‖
∂u

∂t
‖2

L2(Ω) ≤ EQS(0)

where EQS(t) =

∫

Ω
|∇u(t, x)|2dx+

∫

IR3
|H(u)(t, x)|2dx.

(1.3)

Our first result is the following

Theorem 1.1 We set Ωh = ω × [0, h], where ω is a regular bounded domain of IR2.
Let uh ∈ H1(Ωh;S2) be a minimizer of E in H1(Ωh;S2).
For (x, y, z) ∈ ω×]0, 1[ we set ũh(x, y, z) = uh(x, y, hz).
Then there exists a subsequence still denoted ũh such that ũh tends in H1(ω × [0, 1];S2) to a
constant vector field e.
This constant e satisfies |e| = 1 and is contained in the plane of ω. Moreover it minimizes the
following energy :

Ẽ(ξ) =

∫

∂ω
|(ξ, ν(y))|2dσ(y), for ξ ∈ IR2, |ξ| = 1, (1.4)

where ν is the outward unitary normal to ∂ω.

For the same kind of flat thin layer, we prove the following theorem which concerns weak solutions
of Landau-Lifschitz equations (model II) :

Theorem 1.2 Let u0 ∈ H1(ω;S2). Let vh ∈ L∞(IR+;H1(ω × [0, h];S2)) be a weak solution of
(1.3) with initial data v0

h(x, y, z) = u0(x, y). For (t, x, y, z) ∈ IR+×ω×[0, 1], we set ṽh(t, x, y, z) =
vh(t, x, y, hz).
Then there exists a subsequence still denoted ṽh such that ṽh tends to a function ṽ in
L∞(IR+;H1(ω × [0, 1];S2)) ? weak, in L2([0, T ] × ω × [0, 1]) strong and almost everywhere.
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Furthermore, ṽ does not depend on z and satisfies :





• ṽ(t = 0) = u0,

• ṽ ∈ L∞(IR+;H1(ω)),

• |ṽ| = 1 a.e.

•
∂ṽ

∂t
∈ L2(IR+ × ω),

• for all χ ∈ D(IR+ × ω),
∫

IR+×ω

(
∂ṽ

∂t
+ ṽ ∧

∂ṽ

∂t

)
χ = −2

∫

IR+×ω

2∑

i=1

ṽ ∧
∂ṽ

∂xi
·
∂χ

∂xi
− 2

∫

R+×ω
ṽ ∧ P (ṽ) · χ,

with P (ṽ) = −(ṽ, e3)e3 where e3 is the third vector of the canonical basis of IR3,

• for all t ≥ 0, E2(t) +

∫ t

0
‖
∂ṽ

∂t
‖2

L2(ω) ≤ E2(0),

where E2(t) =

∫

ω
|∇ṽ(t)|2 +

∫

ω
ṽ2
3(t).

(1.5)

Remark 1.1 When h goes to zero, the non local operator H behaves like the local operator P .
We remark that −P is the projection of u onto e3, the normal to the domain.

Remark 1.2 Theorem 1.2 remains valid if we suppose that the initial data v0
h satisfies :

1. ṽ0
h −→ u0 in H1(ω × [0, 1]) strongly, where ṽ0

h(x, y, z) = v0
h(x, y, hz),

2.
1

h

∂ṽ0
h

∂z
tends to zero in L2(ω × [0, 1]) strongly.

Afterward we will prove the same kind of theorems in a more complicated geometry.

Let us consider a surface S ⊂ IR3 such that S is diffeomorphic to B2. We denote by ~n a regular
unitary vector field defined on S and normal to S.
We set

Oh =
{
X ∈ IR3, X = u+ t~n(u), u ∈ S, t ∈ [0, h]

}
.

On the other hand, we endow IR3 with a chart compatible with Oh : let ψ be a global diffeo-
morphism from IR3 to IR3 such that :





there exists R such that ψ|CB(0,R) = Id|CB(0,R),

ψ(B2 × {0}) = S,

∀ x ∈ B2, ∀ z ∈ [0, h0],
∂ψ

∂s
(x, s) = ~n(ψ(x, 0))

We remark that Oh = ψ(B2 × [0, h]).

Remark 1.3 This geometry describes the thin layer of ferromagnetic material in the magnetic
microscopes.

3



For this kind of thin layer, we first prove the following

Theorem 1.3 Let uh ∈ H1(Oh;S2) be a minimizer of E in H1(Oh;S2). We set uh = uh ◦ ψ−1

(uh ∈ H1(B2 × [0, h];S2)). We consider the rescaled ũh(x, y, z) = uh(x, y, hz).

Then there exists a subsequence still denoted ũh such that ũh tends to ũ in H1(B2 × [0, 1];S2)
strong. The limit ũ does not depend on its third variable, and if we set u(X) = ũ(ψ−1(X)) for
X ∈ S, then u minimizes the following energy :

Ẽ(v) =

∫

S
|∇Sv|

2dσ +

∫

S
|v · ~n|2dσ, v ∈ H1(S;S2).

Remark 1.4 We can remark that the demagnetizing energy behaves in thin domains like an
anisotropy energy forcing the magnetic moment to be tangential to the domain.

For the solutions of Landau-Lifschitz equations in the domain Oh, we have the following

Theorem 1.4 Let u0 ∈ H1(S;S2). We consider uh
0 ∈ H1(Oh;S2) satisfying :





uh
0 = u0 in S

uh
0 is constant along the lines [x, x+ h~n(x)] for x ∈ S.

let vh ∈ L∞(IR+;H1(Oh;S2)) be a weak solution of (1.3) in IR+ ×Oh with initial data uh
0 .

Like in Theorem 1.3 we set vh(t,X) = vh(t, ψ(X)) for t ∈ IR+ and X ∈ B2 × [0, h] and we set
ṽh(t, x, y, z) = vh(t, x, y, hz).

Then extracting a subsequence, ṽh tends to ṽ in the L∞(IR+;H1(B2×[0, 1];S2)) ? weak, L2([0, T ]×
B2 × [0, 1]) strong and almost everywhere.
Furthermore ṽ does not depend on his third variable and if we denote v(X) = ṽ(ψ(X)) for
X ∈ S, v satisfies





• v(0, X) = u0(X),

• v ∈ L∞(R+;H1(S)),

• |v| = 1 a.e.

•
∂v

∂t
∈ IL2(IR+ × S)

• v is a weak solution of
∂v

∂t
+ v ∧

∂v

∂t
= v ∧

(
∆Sv − (v · ~n)~n

)
,

• for all t ≥ 0, E3(t) +

∫ t

0
‖
∂v

∂t
‖2

L2(S) ≤ E3(0)

where E3(t) =

∫

S
|∇Sv(t)|

2dσ +

∫

S
|v · ~n|2dσ.

Remark 1.5 In this more complicated geometry we remark that the same phenomenon than in
flat domains occurs : the non local operator H behaves like the opposite of the projection onto
the normal to the domain.
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Remark 1.6 The hypothesis on the initial data uh
0 can be weakened in the following form :

If we set ũh
0(x, y, z) = uh

0(ψ(x, y, hz)), we assume that

1. ũh
0 tends to ũ0 in H1(B(0, 1) × [0, 1]) strongly,

2.
1

h

∂ũh
0

∂z
tends to zero in L2(B(0, 1) × [0, 1]) strongly.

This paper is organized as follows : Chapter two is devoted to the proof of Theorems 1.1 and
1.2. We prove Theorems 1.3 and 1.4 in Part 3.

2 Thin Domains of the form ω × [0.h]

2.1 Proof of Theorem 1.1

Let uh be a minimizer of E on H1(ω × [0, h];S2). We denote ũh(x, y, z) = uh(x, y, hz). We
consider Kh the rescaling of H(uh) :

Kh(x, y, z) = H(uh)(x, y, hz).

First step : energy estimate.

Let e be a constant vector field on Ωh. We suppose that |e| = 1. We have e ∈ H1(Ωh;S2), so
E(uh) ≤ E(e).
We have,

E(e) =

∫

IR3
|H(e)|2.

Now, there exists a constant C such that

∀ v ∈ L2(IR3), ‖H(v)‖L2(IR3) ≤ C‖v‖L2(IR3). (2.6)

So,
E(uh) ≤ E(e) ≤ C‖ē‖2

L2(IR3) ≤ Ch

hence ∫

ω×[0,h]
|∇uh|

2 +

∫

IR3
|H(uh)|2 ≤ Ch.

We re-scale this inequality and we obtain that :

∫

ω×[0,1]

(
|
∂ũh

∂x
|2 + |

∂ũh

∂y
|2 +

1

h2
|
∂ũh

∂z
|2
)

+

∫

IR3
|Kh|

2 ≤ C. (2.7)

Second step : limit when h goes to zero.

Extracting a subsequence we can suppose that there exists ũ ∈ H1(ω×[0, 1];S2) andK ∈ L2(IR3)
such that ũh tends to ũ in H1 weak, L2 strong and almost everywhere and Kh tends to K in L2

weak.

Furthermore we remark that
∂ũh

∂z
tends to zero in L2 strong hence ũ does not depend on z.

We remark also that |ũ| = 1 a.e.
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Lemma 2.1 Let w̃h ∈ L2(ω×]0, 1[) such that w̃h −→ w̃ in L2(ω × [0, 1]).
For (x, y, z) ∈ ω×]0, h[, we set wh(x, y, z) = w̃h(x, y, z

h
). We consider the rescaling of H(wh)

setting Wh(x, y, z) = H(wh)(x, y, hz).
Then, Wh tends to P (w̃) = −(w̃, e3)e3 in L2(IR3) strong as h goes to zero.

Remark 2.1 We recall that w̃ is the extension of w̃ by zero outside of ω × [0, 1].

Proof of Lemma 2.1.

let us write the equations satisfied by Wh = (W 1
h ,W

2
h ,W

3
h ).

We know that H(wh) satisfies curl H(wh) = 0 and div (H(wh) + wh) = 0.
After rescaling we obtain that





−
1

h

∂W 2
h

∂z
+
∂W 3

h

∂y
= 0

1

h

∂W 1
h

∂z
−
∂W 3

h

∂x
= 0

∂W 1
h

∂y
−
∂W 2

h

∂x
= 0

∂

∂x
(W 1

h + w̃h
1) +

∂

∂y
(W 2

h + w̃h
2) +

1

h

∂

∂z
(W 3

h + w̃h
3) = 0

(2.8)

These equations are satisfied in D′(IR3). Let us take the weak formulation of the first equation
of (2.8) : we fix Ψ ∈ D(IR3) and we have

∫

IR3
W 2

h

∂Ψ

∂z
= h

∫

IR3
W 3

h

∂Ψ

∂y
.

Taking the limit when h tends to zero, since W 2
h ⇀ K2 and W 3

h ⇀ K3 in L2(IR3) weak, we
obtain that

∀ Ψ ∈ D′(R3),

∫

IR3
W 2∂Ψ

∂z
= 0,

hence W 2 does not depend on the variable z and since W 2 ∈ L2(IR3), we deduce that W 2 = 0.
In the same way we prove that W 1 = 0.
Now, taking the limit in the weak formulation of the fourth equation in (2.8), we obtain that
W 3 + w̃3 = 0. Therefore

W = −(w̃, e3)e3.

In order to prove that Wh −→W in L2(IR3) strong, we remark that

∫

IR3
|W h|2 = h

∫

IR3
|H(wh)|2

and by property of the operator H (since −H is an orthogonal projection in L2(IR3) onto the
fields of gradients), we have :

∫

IR3
|W h|2 = −h

∫

IR3
wh ·H(wh) = −

∫

ω×[0,1]
w̃h ·Wh.
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Since w̃h tends to w̃ in L2 strong and since Wh tends to −(w̃, e3)e3 in L2 weak, we obtain that
‖Wh‖L2(IR3) tends to ‖ − (w̃, e3)e3‖L2(IR3).

Hence, Wh tends to −(w̃, e3)e3 in L2 strong, which fulfills the proof of Lemma 2.1.

Applying Lemma 2.1 in our case, we obtain that Kh tends to K = −(ũ, e3)e3 in L2(IR3) strong.

Third step : ũ is a constant.

Let e be a unitary vector contained in the plan of ω.
We set eh(x, y, z) ≡ e for (x, y, z) ∈ Ωh. We have :

E(eh) =

∫

IR3
|H(eh)|2 = −

∫

Ωh

H(eh) · eh.

We take the rescaling of the previous equality and we obtain :

E(eh) = −h

∫

ω×[0,1]
Bh · e,

where Bh(x, y, z) = H(eh)(x, y, hz).

As in the second step we prove that Bh ⇀




0
0
e3


 = 0 in L2(IR3) weak, so

∫

ω×[0,1]
Bh · e tends

to zero when h tends to zero.
Now by minimality of uh, we obtain after the rescaling that

∫

ω×[0,1]
|∇xyũh|

2 +
1

h2

∫

ω×[0,1]
|
∂ũh

∂z
|2 +

∫

R3

|Kh|
2 ≤ −

∫

IR3
Bh · e,

which implies first that ∇ũ = 0 i.e. ũ is a constant vector field, and that Kh tends strongly to
zero in L2(IR3), hence K ≡ 0, i.e. ũ3 ≡ 0.
So ũ is a constant unitary vector field contained in the plan of ω.

Fourth step : ũ minimizes Ẽ.

In order to prove that ũ minimizes Ẽ , we will compute an equivalent of E(eh) when eh is a
constant unitary vector field defined on Ωh and contained in the plane of ω. We denote ν the
outward unitary normal to the domain ω.
We recall that of H(eh) = −∇ϕh and that :

‖H(eh)‖2
L2(IR3) =

∫

IR3
|∇ϕh|

2 = −

∫

IR3
∇ϕh · ēh = −

∫

∂Ωh

ϕh(eh, ν) +

∫

Ωh

ϕhdiv eh.

Furthermore we have :

ϕh(x) =

∫

Ωh

1

‖x− y‖
div eh(y) dy −

∫

∂Ωh

1

‖x− y‖
(eh, ν)(y)dσ(y).

Now, since eh is a constant vector field,

‖H(eh)‖2
L2(IR3) =

∫

x∈∂Ωh

∫

y∈∂Ωh

1

‖x− y‖
(eh, ν)(x)(eh, ν)(y) dσ(x) dσ(y).

The boundary of Ωh has three parts : ∂ω × [0, h], ω × {0}, and ω × {h}.
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Since eh is a constant included in the plan of ω, the expression of Ah = ‖H(eh)‖2
L2(IR3)

becomes :

Ah = h2
∫

(X,Y )∈∂ω2,(z,z′)∈[0,1]2

1

( ‖X − Y ‖2 + h2|z − z′|2)
1

2

(e, ν)(X)(e, ν)(Y )dσ(X) dσ(Y ) dz dz ′,

= 2h2
∫

X∈∂ω
(e, ν)(X)Gh(X)dσ(X),

where

Gh(X) =

∫

Y ∈∂ω

∫

z∈[0,1]

1 − z

( ‖X − Y ‖2 + h2z2)
1

2

(e, ν)(Y ) dσ(Y ) dz.

Hence
Gh(X) = G1

h(X) +G2
h(X),

with

G1
h(X) = −

∫

Y ∈∂ω

[
(‖X − Y ‖2 + h2)

1

2 − ‖X − Y ‖
]
(e, ν)(Y )dσ(Y )

and

G2
h(X) = h

∫

Y ∈∂ω
Argsh

(
h

‖X − Y ‖

)
(e, ν)(Y )dσ(Y ).

Let us compute now an equivalent of G1
h. We prove that

1

−h2 lnh
G1

h(X) tends to −
1

2
(e, ν)(X)

as h tends to zero. Furthermore, this limit is uniform in X ∈ ∂ω.
Let u : IR −→ IR2, be a L-periodic normal parameterization of ∂ω (L is the length of ∂ω). Let
X ∈ ∂ω.
Let ε > 0 be fixed. As the frontier ∂ω is regular and compact, there exists α0 > 0 such that :

∀ s0 ∈ IR, ∀ s ∈]s0 − α0, s0 + α0[,





(1 − ε)|s− s0| ≤ ‖u(s) − u(s0)‖ ≤ (1 + ε)|s− s0|
and
(e, ν(s0)) − ε ≤ (e, ν(s)) ≤ (e, ν(s0)) + ε.

We remark that α0 does not depend on X.
Even if it means translating the parameterization of ∂ω, we can suppose that X = u(0).
We have :

G1
h(X) = −

∫ L

2

L

2

[
(‖u(s) − u(0)‖2 + h2)

1

2 − ‖u(s) − u(0)‖
]
(e, ν(s))ds.

We split the integral of G1
h in 2 parts using the periodicity of u :

∫ L

2
·

L

2

=

∫ α0

−α0

· +

∫ L−α0

α0

·

Let us study the first part of this expression. If s ∈] − α0, α0[,

[(
(1 + ε)2s2 + h2

) 1

2

− (1 + ε)|s|

] [
(e, ν(X)) − ε

]
≤
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[
(‖u(s) − u(0)‖2 + h2)

1

2 − ‖u(s) − u(s0)‖
]
(e, ν(u(s))) ≤

[(
(1 − ε)2s2 + h2

) 1

2

− (1 − ε)|s|

] [
(e, ν(X)) + ε

]

We integrate this inequality between −α0 and α0. We remark that

lim
h−→0

1

−h2 lnh

∫ α0

−α0

[(
γ2s2 + h2

) 1

2

− γ|s|

]
ds = −

1

γ

Hence there exists h0 > 0 such that for all h < h0,

1 − ε

1 + ε

[
(e, ν(X)) − ε

]
≤

1

−h2 lnh

∫ α0

−α0

[
(‖u(s) − u(0)‖2 + h2)

1

2 − ‖u(s) − u(0)‖
]
(e, ν(s))ds ≤

1 + ε

1 − ε

[
(e, ν(X)) + ε

]
.

We remark that h0 is independent of X.

Let us study now the second part of the integral defining Gh
1 (X).

Since the parameterization of ∂ω is an embedding in [0, L[, there exists β > 0 such that if
α0 < |s1 − s2| < L then ‖u(s1) − u(s2)‖ ≥ β. Hence, for all h > 0 ,

∣∣∣∣∣

∫ L−α0

α0

[
(‖u(s) − u(0)‖2 + h2)

1

2 − ‖u(s) − u(0)‖
]
(e, ν(s))ds

∣∣∣∣∣ ≤
∫ L−α0

α0

[
(β2 + h2)

1

2 − β
]
.

Now,
1

−h2 lnh

∫ L−α0

α0

[
(β2 + h2)

1

2 − β
]

tends to zero when h tends to zero. So this part of G1
h(X) can be neglected, and we have proved

that
1

−h2 lnh
G1

h(X) tends uniformly in ∂ω to − (e, ν(X)).

In the same way we study now G2
h(X) :

G2
h(X) = h

∫ L

0
Argsh

(
h

‖u(s)‖

)
(e, ν(u(s)))ds.

We remark now that

lim
h−→0

1

−h2 lnh
h

∫ α0

−α0

Argsh

(
h

|s|

)
= 2,

hence, we prove that :

1

−h2 lnh
G2

h(X) tends uniformly to 2(e, ν(X)).

Therefore
1

−h2 lnh
Gh(X) tends uniformly on ∂ω to (e, ν(X))
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Hence,

H(eh) is equivalent to − h2 lnh

∫

∂ω
(e, ν(X))2dσ(X)

when h tends to zero.
Since uh minimizes H on ∂ω× [0, h], and since uh tends to a constant which belongs to the plane
of ω, this constant minimizes the energy :

Ẽ(e) =

∫

∂ω
(e, ν(X))2dσ(X).

2.2 Proof of Theorem 1.2

Following [4] we build a weak solution of (1.2) which satisfies :

Eh(t) +

∫ t

0

∫

Ωh

∣∣∣∣
∂vh

∂t

∣∣∣∣
2

≤ Eh(0),

with

Eh(t) =

∫

Ωh

|∇vh(t, x)|2dx+

∫

IR3
|H(vh)|2(t, x)dx.

As in the proof of Theorem 1.1 we consider the rescaling of vh : we set ṽh(t, x, y, z) = vh(t, x, y, hz).
We set

Fh(t) =

∫

ω×[0,1]

(
|∇xyṽh|

2 +
1

h2
|
∂ṽh

∂z
|2
)

(t, x, y, z)dx dy dz +

∫

IR3
|Kh(t, x, y, z)|2dx dy dz

where Kh(t, x, y, z) = H(vh)(t, x, y, hz).
The energy inequality writes :

Fh(t) +

∫ t

0

∫

ω×[0,1]
|
∂ṽh

∂t
|2 ≤ Fh(0).

We remark that

Fh(0) =

∫

ω×[0,1]
|∇xyu0|

2 +

∫

IR3
|Kh(0)|2

since u0 does not depend on z.
Furthermore, ∫

IR3
|Kh(0)|2 =

1

h

∫

IR3
|H(uh

0)|2

where uh
0(x, y, z) = u0(x, y)χ[0,h](z).

As the operator H is continuous on L2(IR3) we obtain that

∫

IR3
|H(uh

0 )|2 ≤ Ch.

Hence, there exists a constant C such that for all h > 0,




‖∇xyṽh‖L∞(IR+;L2(ω×[0,1])) ≤ C

‖
∂ṽh

∂z
‖L∞(IR+;L2(ω×[0,1])) ≤ Ch2

‖
∂ṽh

∂t
‖L2(IR+×ω×[0,1]) ≤ C

‖Kh‖L∞(IR+;L2(IR3)) ≤ C.

(2.9)

Extracting a subsequence, we can assume that :
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• ṽh ⇀ v in L∞(R+;H1(ω× [0, 1])) ? weak, L2([0, T ] ×ω× [0, 1]) strong, and almost every-
where,

•
∂ṽh

∂t
⇀

∂v

∂t
in L2(IR+ × ω × [0, 1]) weakly,

• Kh ⇀K in L∞(IR+;L2(IR3)) ? weak.

We know that |v| ≡ 1 since ṽh −→ v almost everywhere.
Following the proof of Lemma 2.1, we obtain that

K = −(v, e3)e3.

Now, in order to take the limit in Landau-Lifschitz equation, let us consider the weak formulation
of (1.2). Let Φ ∈ D(IR+ × Ωh). We have :

∫

IR+×Ωh

(
∂vh

∂t
+ vh ∧

∂vh

∂t

)
Φ = −2

3∑

i=1

∫

IR+×Ωh

vh ∧
∂vh

∂xi
·
∂Φ

∂xi
+ 2

∫

IR+×Ωh

vh ∧H(vh) · Φ.

Let us take Φ(t, x, y, z) = ϕ(t, x, y) where ϕ ∈ D(IR+ × ω) (i.e. ϕ does not depend on z).
Taking the same rescaling, we obtain that :

∫

IR+×ω×[0,1]

(
∂ṽh

∂t
+ ṽh ∧

∂ṽh

∂t

)
ϕ = −2

2∑

i=1

∫

IR+×ω×[0,1]
ṽh ∧

∂ṽh

∂xi
·
∂ϕ

∂xi
+ 2

∫

IR+×ω×[0,1]
ṽh ∧Kh ·ϕ.

It is now straightforward to take the limit of this expression when h tends to zero, since :

∂ṽh

∂t
⇀

∂v

∂t

∂ṽh

∂xi
⇀

∂v

∂xi

Kh ⇀ −(v, e3)e3





in L2([0, T ] × ω × [0, 1]) weakly.

Now the integrand of the limit does not depend on z. We obtain that v is in L∞(IR+;H1(ω))
and satisfies :

∫

IR+×ω

(
∂v

∂t
+ v ∧

∂v

∂t

)
ϕ = −2

2∑

i=1

∫

IR+×ω
v ∧

∂v

∂xi
·
∂ϕ

∂xi
+ 2

∫

IR+×ω
v ∧ (−(v, e3)e3) · ϕ.

which is the weak formulation of

∂v

∂t
+ v ∧

∂v

∂t
= 2v ∧ (∆v − (v, e3)e3) .

It remains to show that v satisfies the energy inequality. By lower semi-continuity of the norm
for the weak topology, we obtain that

E2(t) +

∫ t

0

∫

ω
|
∂ṽ

∂t
|2 ≤ lim inf

1

h
Eh(0),

with

E2(t) =

∫

ω
|∇ṽ(t, x)|2dx+

∫

ω
|v3|

2(t, x) dx.
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Let us compute lim inf 1
h
Eh(0). We have :

Eh(0) =

∫

ω×[0,1]
|∇xyu0|

2 +

∫

IR3
|H(uh

0 )|2

where uh
0 = u0(x, y)χ[0,h](z).

We set Kh
0 (x, y, z) = H(uh

0)(x, y, hz).
So

Eh(0) = h

∫

ω
|∇xyu0|

2 + h

∫

IR3
|Kh

0 |
2.

By Lemma 2.1 we know that Kh
0 tends to (0, 0,−u3

0) in L2 strong, hence

1

h
Eh(0) −→

∫

ω
|∇xyu0|

2 +

∫

ω
|u3

0|
2 = E2(0),

which concludes the proof of Theorem 1.2.

3 Non flat domain

We only detail the proof of Theorem 1.3. The proof of Theorem 1.4 follows with the same kind
of arguments.

First step : geometrical preliminaries.

We recall that Ψ is a global diffeomorphism of IR3 such that :





there exists R such that ψ|CB(0,R) = Id|CB(0,R),

ψ(B2 × {0}) = S,

∀ x ∈ B2, ∀ z ∈ [0, h0],
∂ψ

∂s
(x, s) = ~n(ψ(x, 0))

We remark that Oh = ψ(B2 × [0, h]).
We will use the following notations :

• ϕ = Ψ−1,

• gij(x) = (
∂ψ

∂xi
(x),

∂ψ

∂xj
(x)),

• g(x) is the matrix of the gij ’s,

• gh(x1, x2, z) = g(x, y, hz),

• ψh(x1, x2, z) = ψ(x1, x2, hz),

• gij are the coefficients of g−1(x),

• ~ν(x1, x2) = ~n(Ψ(x1, x2, 0)).
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By property of the diffeomorphism ψ, we remark that g(x) is on the form :

g(x) =




· · 0
· · 0
0 0 1


 ,

and g−1 is on the same form.
In particular, g13 ≡ g23 ≡ 0.
On the other hand we remark that for all (x1, x2, z), we have ϕ3(ψ(x1, x2, z)) = z thus





∇ϕ3(ψ(x1, x2, z)) ·
∂ψ

∂x1
= 0

∇ϕ3(ψ(x1, x2, z)) ·
∂ψ

∂x2
= 0

∇ϕ3(ψ(x1, x2, z)) ·
∂ψ

∂z
= 1,

so ∇ϕ3(ψ(x1, x2, z)) = ~n(ψ(x1, x2, 0)) = ~ν(x1, x2).
We will now translate the energy in the new coordinates in order to perform the classical
rescaling.

Second step : formulation of the energy in the new coordinates.

We have ∫

Ωh

|∇uh|
2 =

∫

B2×[0,h]

∑

α,β

gαβ(x)
∂uh

∂xα

∂uh

∂xβ

√
|g(x)|dx1dx2dx3.

and after rescaling we obtain that :

∫

Ωh

|∇uh|
2 = h

∫

B2×[0,1]

∑

α,β∈{1,2}

gαβ(x, y, zh)
∂ũh

∂xα

∂ũh

∂xβ

√
| g(x1, x2, hz)|dx1dx2dz+

1

h

∫

B2×[0,1]
|
∂ũh

∂z
|2
√
| g(x1, x2, hz)|dx1 dx2dz.

In order to study the rescaling of Hh, we set Kh(x, y, z) = H(uh)(ψ(x, y, hz)), and we have :

∫

IR3
|H(uh)|2 =

∫

IR3
|Kh(x, y, z)|2|Jac ψh(x, y, z)|

and since | Jac ψh(x, y, z)| = h
√
|g(x, y, zh)|, we have

∫

IR3
|H(uh)|2 = h

∫

IR3
|Kh(x, y, z)|2

√
|g(x, y, zh)|dx dy dz.

Third step : energy estimate.

Comparing the energy of uh with the energy of a constant, using that there exists two constants
µ and ν such that

∀ x ∈ IR3, ∀ ξ ∈ IR3, µ‖ξ‖2 ≤
∑

i,j

gij(x)ξiξj ≤ ν‖ξ‖2,
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we obtain that there exists a constant C such that :




‖
∂ũh

∂x
‖L2(B2×[0,1]) ≤ C

‖
∂ũh

∂y
‖L2(B2×[0,1]) ≤ C

‖
∂ũh

∂z
‖L2(B2×[0,1]) ≤ Ch

‖Kh‖L2(IR3) ≤ C

(3.10)

Extracting a subsequence, we can suppose that :





ũh ⇀ ũ in H1(B2 × [0, 1]) weakly,

ũh −→ ũ in L2(B2 × [0, 1]) strongly, and almost everywhere.

Kh ⇀K in L2(B2 × [0, 1]) weakly.

(3.11)

Fourth step : fundamental lemma.

Lemma 3.1 Let (w̃h)h a sequence of L2(B2 × [0, 1]) such that w̃h tends to w̃ in L2 strong.

For x ∈ Ωh we set wh(x) = w̃h(ϕ1(x), ϕ2(x),
1

h
ϕ3(x)) and we consider the rescaling of H(wh)

setting :
Wh(x1, x2, z) = H(wh)(ψ(x1, x2, hz)).

Then Wh tends in L2(IR3) strong to −(w̃ · ~ν)~ν.

Proof of the Lemma :

We have

H(wh)(x) = Wh(ϕ1(x), ϕ2(x),
1

h
ϕ3(x)).

By property of the operator H we know that ‖H(wh)‖L2(IR3) ≤ ‖wh‖L2(IR3). Hence there exists
a constant C such that

‖Wh‖L2(IR3) ≤ C‖w̃h‖L2(B2×[0,1]),

thus there exists a subsequence still denoted Wh such that Wh tends to W in L2(IR3) weak.

Let us prove that W = −(w̃ · ~ν)~ν.
We write that div (H(wh) + wh) = 0 :

∀ ξ ∈ D(IR3),

∫

IR3
(H(wk) + wh) · ∇ξ = 0

and taking ξ(x) = η(ϕ1(x), ϕ2(x),
1

h
ϕ3(x)), we obtain

∫

IR3

3∑

i=1

2∑

j=1

(W i
h + w̃1

h)(x) ·
∂η

∂xj
(x)

∂ϕi

∂xi
(ψh(x))

1√
|Jac ϕh(ψh(x))|

dx +
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1

h

∫

IR3

3∑

i=1

(
∂η

∂x3
(x)(W i

h + w̃i
h)(x)

∂ϕ3

∂xi
(ψh(x))

1√
|Jac ϕh(ψh(x))|

dx = 0

Multiplying by h and taking the limit when h goes to zero, one obtains that :

∫

IR3

3∑

i=1

(
∂η

∂z
(x)(W i + w̃i)(x)

∂ϕ3

∂xi

(ψ0(x))
1√

|Jac ϕ0(ψ0(x))|
dX = 0.

Now we know from the first step that ∇ϕ3(ψ0(X)) = ~ν(X).

Hence we have obtain that :
∫

IR3

∂η

∂z

(
W + w̃, ~ν

)√
|g0| = 0.

We deduce of this last assertion that
(
W + w̃, ~ν

)√
|g0| does not depend on z and since this

quantity is in L2 we obtain that (
W + w̃, ~ν

)
≡ 0.

Let us write now that curl H(wh) = 0. Taking a test function of the same type and taking the
limit when h goes to zero, we obtain that

∫

IR3

∂η2

∂z

(
W 1∂ϕ

3

∂z
(ψ0(x)) −W 3(x)

∂ϕ3

∂x1
(ψ(x))

)√
|g0(x)| = 0,

and using the same argument we get W 1~ν3 −W 3~ν1 ≡ 0.
Therefore we have shown that : {

W ∧ ~ν ≡ 0

(W,~n) ≡ −(w̃, ~ν).

So
W ≡ −(w̃, ~ν)~ν.

It remains to prove that Wh tends to W in L2(IR3) strongly.

There exists a constant C independent of h such that :

∫

IR3
|Wh −W |2 ≤ C

∫

IR3
|Wh −W |2

√
| gh(x)|

≤ C

∫

IR3
|Wh|

2
√
| gh(x)|

−2C

∫

IR3
Wh ·W

√
| gh(x)| + C

∫

IR3
|W 2|

√
| gh(x)|

We remark now that ∫

IR3
|Wh|

2
√
| gh(x)| =

1

h

∫

IR3
|H(wh)|2

= −
1

h

∫

IR3
whH(wh)

by property of the operator H,

= −

∫

B(0,1)×[0,1]
Wh · w̃h

√
|gh(x)|.
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Now taking the limit when h tends to zero, using that





Wh ⇀W in L2(IR3) weakly,

w̃h −→ w̃ in L2(B(0, 1) × [0, 1]) strong,

√
|gh(x)| −→

√
|g0(x)| in L∞(B(0, 1) × [0, 1]) strong,

we deduce that ‖Wh −W‖L2(IR3) tends to zero, thus Wh tends to W in L2(IR3) strong.

Fifth step : end of the proof.

With (3.10) we obtain that
∂ũ

∂z
= 0. Hence ũ does not depend on z and we can define u on S

by u(x) = ũ(ψ−1(x)) for X ∈ S.

Let w ∈ H1(S;S2). Let us prove that Ẽ(u) ≤ Ẽ(w).

We introduce wh ∈ H1(Ωh;S2) equal to w on S and constant along the radius [x, x+ h~n(x)] for
x ∈ S. We set wh = wh ◦ ψ−1 and w̃h(x1, x2, z) = wh(x1, x2, hz). We remark that w̃h does not
depend on z.
We set :

Wh(x1, x2, z) = H(wh)(ψ(x1, x2, hz)).

Since wh ∈ H1(Ωh;S2), by minimality of uh we have

E(uh) ≤ E(wh).

We obtain that
∫

B2×[0,1]

∑

α,β∈{1,2}

gαβ(x1, x2, zh)
∂ũh

∂xα

∂ũh

∂xβ

√
| g(x1, x2, hz)|dx1dx2dz

+

∫

IR3
|Wh(x1, x2, z)|

2
√
|g(x1, x2, zh)|dx1 dx2 dz ≤

∫

B2×[0,1]

∑

α,β∈{1,2}

gαβ(x1, x2, zh)
∂w̃h

∂xα

∂w̃h

∂xβ

√
| g(x1, x2, hz)|dx1dx2dz

+

∫

IR3
|Wh(x1, x2, z)|

2
√
|g(x1, x2, zh)|dx1dx2 dz,

since
∂w̃h

∂z
= 0.

Now taking the limit when h goes to zero and using Lemma 3.1 we obtain that

E(u) ≤ E(w).
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