Penalization method for viscous incompressible flow around a porous thin layer
Gilles Carbou

To cite this version:

HAL Id: hal-01728852
https://hal.archives-ouvertes.fr/hal-01728852
Submitted on 12 Mar 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Penalization method for viscous incompressible flow around a porous thin layer

Gilles CARBOU

MAB, Université Bordeaux 1,
331, Cours de la Libération, 33405 Talence Cedex, France
carbou@math.u-bordeaux.fr

1 Introduction

1.1 Numerical context

Penalization methods are now quite classical to compute the flow of an incompressible fluid around a no-slip boundary. The advantage of these methods is to avoid body-fitted unstructured mesh. In this paper, we study a penalization method conceived by C.H. Bruneau and I. Mortazavi. They use this method in [5] to compute the flow around an obstacle surrounded by a thin layer of porous material, with applications in passive control for ground vehicles.

Let Ω be a regular bounded domain of \mathbb{R}^3 and \mathcal{O} be a regular open subset of Ω such that $\partial \mathcal{O} \subset \Omega.$ We denote $\mathcal{U} = \Omega \setminus \mathcal{O}$ and $\Gamma = \partial \mathcal{O}$. We fix $\kappa > 0.$ For $\varepsilon > 0$, we set

$$\omega_\varepsilon = \left\{ x \in \mathcal{O}, \ 0 < \text{dist}(x, \Gamma) < \kappa \varepsilon \right\}$$

We denote $\mathcal{U}^\varepsilon = \mathcal{U} \cup \omega_\varepsilon$. The obstacle is represented by $\mathcal{O} \setminus \omega_\varepsilon$ and ω_ε is the thin layer of porous material. We set $\Gamma_\varepsilon = \left\{ x \in \mathcal{O}, \ \text{dist}(x, \Gamma) = \varepsilon \right\}$.

We are interested in the following penalized problem:

$$
\begin{cases}
\frac{\partial u^\varepsilon}{\partial t} - \Delta u^\varepsilon + (u^\varepsilon \cdot \nabla) u^\varepsilon + \frac{1}{\varepsilon} \chi_{\omega_\varepsilon} u^\varepsilon + \nabla p^\varepsilon = f \text{ in } \mathcal{U}^\varepsilon \\
u^\varepsilon = 0 \text{ on } \partial \mathcal{U}^\varepsilon \\
\text{div } u^\varepsilon = 0 \text{ in } \mathcal{U}^\varepsilon
\end{cases}
$$

where $\chi_{\omega_\varepsilon}(x) = 1$ if $x \in \omega_\varepsilon$ and equals zero if $x \notin \omega_\varepsilon$, that is we add to Navier Stokes equation a penalization term of order ε^{-1} in the thin layer ω_ε of thikness $\kappa \varepsilon$.

In this paper we first give an asymptotic expansion of u^ε when ε goes to zero. Furthermore we study another model of porous thin layer which consists in replacing the equation in the thin
layer by an equivalent boundary condition on \(\Gamma \):

\[
\begin{align*}
\frac{\partial \psi}{\partial t} - \Delta \psi + (v^\varepsilon \cdot \nabla) \psi + \nabla q^\varepsilon &= f \quad \text{in } \mathcal{U}, \\
\psi &= -\kappa \left(\frac{\partial \psi}{\partial n} \right)_T \quad \text{on } \Gamma,
\end{align*}
\]

where \(\left(\frac{\partial \psi}{\partial n} \right)_T \) is the tangential part of \(\frac{\partial \psi}{\partial n} \) on \(\Gamma \).

For this equation we give an asymptotic expansion of \(\psi^\varepsilon \) when \(\varepsilon \) goes to zero and we prove that \(u^\varepsilon - \psi^\varepsilon \) is of order \(\varepsilon^2 \).

1.2 Mains Results

We introduce \(\mathbf{V} = \{ v \in H^1_0(\mathcal{U}; \mathbb{R}^3), \quad \text{div} \, v = 0 \} \).

We recall a proposition partially proved in [7] concerning the Navier Stokes equation around the obstacle \(\mathcal{O} \):

Proposition 1.1 Let \(v_0 \in H^8(\mathcal{U}) \cap \mathbf{V} \). Let \(f \in C^\infty(\mathbb{R}^+ \times \mathcal{U}) \) with space support included in \(\mathcal{U} \). There exists a time \(T^* > 0 \) and there exists \(V^0 \) defined on \([0, T^*] \times \mathcal{U} \) such that

\[
\begin{align*}
\frac{\partial V^0}{\partial t} - \Delta V^0 + (V^0 \cdot \nabla)V^0 + \nabla p^0 &= f \quad \text{in } [0, T^*] \times \mathcal{U}, \\
\text{div} \, V^0 &= 0 \quad \text{in } [0, T^*] \times \mathcal{U}, \\
V^0 &= 0 \quad \text{on } [0, T^*] \times \partial \mathcal{U}, \\
V^0(t = 0) &= v_0 \quad \text{in } \mathcal{U}.
\end{align*}
\]

For all \(T < T^* \), this solution \(V^0 \) is in \(L^\infty(0, T; H^8(\mathcal{U})) \cap L^2(0, T; H^9(\mathcal{U})) \).

Remark 1.1 In the two-dimensional case we can prove that \(T^* = +\infty \).

We consider the following penalized thin layer problem:

\[
\begin{align*}
\frac{\partial u^\varepsilon}{\partial t} - \Delta u^\varepsilon + (u^\varepsilon \cdot \nabla)u^\varepsilon + \nabla p^\varepsilon + \frac{1}{\varepsilon} \chi_{\omega^\varepsilon} u^\varepsilon &= f \quad \text{in } [0, T^*] \times \mathcal{U}^\varepsilon, \\
\text{div} \, u^\varepsilon &= 0 \quad \text{in } [0, T^*] \times \mathcal{U}^\varepsilon, \\
u^\varepsilon &= 0 \quad \text{on } [0, T^*] \times \partial \mathcal{U}^\varepsilon, \\
u^\varepsilon(0, x) &= u_0^\varepsilon(x) \quad \text{in } \mathcal{U}^\varepsilon.
\end{align*}
\]

For \(x \in \omega \), we introduce \(\varphi(x) = \text{dist}(x, \Gamma) \) and \(P(x) \) the orthogonal projection of \(x \) onto \(\Gamma \). We remark that since \(\Gamma \) is a regular surface of \(\mathbb{R}^3 \), \(\varphi \) and \(P \) are regular in a neighbourhood of \(\Gamma \).

For well prepared initial data, we obtain an asymptotic expansion of \(u^\varepsilon \) described in the following theorem:
Theorem 1.1 Let v_0, f, V^0 and T^* as in Proposition 1.1.
There exists two profiles $V^1 : [0,T^*] \times \mathcal{U} \rightarrow \mathbb{R}^3$ and $W^1 : [0,T^*] \times \Gamma \times [0,1] \rightarrow \mathbb{R}^3$ such that if u_0^ε is an initial data of the form:

$$u_0^\varepsilon(x) = \begin{cases} v_0(x) + \varepsilon V^1(0, x) + \varepsilon^2 r^\varepsilon(x) & \text{if } x \in \mathcal{U} \\ \varepsilon W^1 \left(t, P(x), \frac{\varphi(x)}{\varepsilon} \right) + \varepsilon^2 r^\varepsilon(x) & \text{if } x \in \omega^\varepsilon \end{cases}$$

where $\|r^\varepsilon\|_{L^2(\omega^\varepsilon)} \leq K$ and such that $\text{div } u_0^\varepsilon = 0$ on \mathcal{U}^ε, then there exists u^ε a solution of the penalized problem (1.1) which satisfies

$$u^\varepsilon(t, x) = \begin{cases} V^0(t, x) + \varepsilon V^1(t, x) + \varepsilon^2 v^\varepsilon(t, x) & \text{for } x \in \mathcal{U} \\ \varepsilon W^1(t, P(x), \frac{\varphi(x)}{\varepsilon}) + \varepsilon^2 w^\varepsilon(t, x) & \text{for } x \in \omega^\varepsilon \end{cases}$$

where v^ε and w^ε are bounded in $L^\infty(0,T; L^2) \cap L^2(0,T; H^1), \forall T < T^*$.

In order to perform the asymptotic expansion of u^ε we will use a BKW method, that is we will formally write u^ε on the form of its ansatz:

$$u^\varepsilon(t, x) = \begin{cases} V^0(t, x) + \varepsilon V^1(t, x) + \varepsilon^2 V^2(t, x) + \varepsilon^3 V^3(t, x) & \text{if } x \in \mathcal{U} \\ \varepsilon W^1 \left(t, P(x), \frac{\varphi(x)}{\varepsilon} \right) + \varepsilon^2 W^2(t, P(x), \frac{\varphi(x)}{\varepsilon}) + \varepsilon^3 W^3\left(t, P(x), \frac{\varphi(x)}{\varepsilon} \right) & \text{if } x \in \omega^\varepsilon \end{cases}$$

and we will plot this ansatz in Equations (1.1). Then we will identify the different powers of ε to characterize each term of the ansatz.

Remark 1.2 We will see that in order to obtain a remainder of order ε^2 we have to perform the formal asymptotic expansion at order ε^3. This phenomenon is quite classical in this type of problems (see [6] and [8] for example).

Remark 1.3 Each term V^i is deduced from the value on Γ of $\frac{\partial V^{i-1}}{\partial n}$. It is the reason why we need a lot of regularity on V^0 and thus on the initial data v^0. Here is the weakness of BKW method : it is very expensive in regularity.

Remark 1.4 We will see that the profile V^1 is characterized by:

$$\begin{align*}
\frac{\partial V^1}{\partial t} - \Delta V^1 + V^0 \cdot \nabla V^1 + V^1 \cdot \nabla V^0 + \nabla p^1 &= 0 & \text{in } \mathbb{R}^+ \times \mathcal{U}, \\
\text{div } V^1 &= 0 & \text{in } \mathbb{R}^+ \times \mathcal{U}, \\
V^1(t, x) &= -\kappa \left(\frac{\partial V^0}{\partial n} \right)_T & \text{on } \mathbb{R}^+ \times \partial \omega,
\end{align*}$$

where $\left(\frac{\partial V^0}{\partial n} \right)_T = \frac{\partial V^0}{\partial n} - \left(\frac{\partial V^0}{\partial n} \cdot n \right) n$ is the tangential part of $\frac{\partial V^0}{\partial n}$.
Furthermore W^1 is given by the expression:

$$W^1(t, \sigma, z) = (z - \kappa) \left(\frac{\partial V^0}{\partial n} \right)_T (t, \sigma).$$

In addition we remark that W^1 is tangential to Γ.

Remark 1.5 In the penalized thin layer, the principal terms of the ansatz satisfy an approximation of Brinkmann equation, that is

$$-\Delta u + \frac{1}{\varepsilon} u + \nabla p \text{ is small in } \omega_{\varepsilon}$$

The phenomenon has been remarked by Khadra and all (see [12]).

We study now a physical model for the flow of an incompressible fluid around a porous obstacle. It consists in computing the flow in the fluid \mathcal{U} and in giving an equivalent boundary condition on Γ:

$$\begin{cases}
\frac{\partial v^\varepsilon}{\partial t} - \Delta v^\varepsilon + (v^\varepsilon \cdot \nabla) v^\varepsilon + \nabla p^\varepsilon = f & \text{in } [0, T^*] \times \mathcal{U} \\
\text{div } v^\varepsilon = 0 & \text{in } [0, T^*] \times \mathcal{U} \\
v^\varepsilon = 0 & \text{in } [0, T^*] \times \partial \Omega \\
v^\varepsilon \cdot n = 0 & \text{in } [0, T^*] \times \Gamma \\
v^\varepsilon = -\kappa \varepsilon \left(\frac{\partial v^\varepsilon}{\partial n} \right)_T & \text{in } [0, T^*] \times \Gamma \\
v^\varepsilon(0, x) = v_0^\varepsilon(x) & \text{in } \mathcal{U}
\end{cases}$$

(1.2)

Remark 1.6 This model is obtained by Miketic in [14], using an homogenization process in the porous material.

We will prove that this model is equivalent to the thin layer penalization problem since we have the following theorem:

Theorem 1.2 Let u_0, V^0 and T^* as in Proposition 1.1. Let V^1 given by Theorem 1.1. Then if v_0^ε is an initial data of the form:

$$v_0^\varepsilon(x) = u_0(x) + \varepsilon V^1(0, x) + \varepsilon^2 r^\varepsilon(x) \text{ if } x \in \mathcal{U}$$

with $\|r^\varepsilon\|_{L^2(\mathcal{U})} \leq K$ and such that $\text{div } v_0^\varepsilon = 0$ on \mathcal{U}, then there exists v^ε a solution of the problem (1.2) which satisfies

$$v^\varepsilon(t, x) = V^0(t, x) + \varepsilon V^1(t, x) + \varepsilon^2 v^\varepsilon(t, x),$$

where v^ε is bounded in $L^\infty(0, T; L^2(\mathcal{U})) \cap L^2(0, T; H^1(\mathcal{U}))$, $\forall T < T^*$.

Since u^ε and v^ε have the same asymptotic expansion, we have the following result:

Corollary 1.1 The error between the penalized thin layer solution and the solution of Equation (1.2) is of order ε^2 in $L^\infty(0, T; L^2(\mathcal{U})) \cap L^2(0, T; H^1(\mathcal{U}))$.

4
This paper is organized as follows.
In the second part we explain the geometrical tools used for the study of the thin layer \(\omega_\varepsilon \). Indeed we seek the profiles in the coordinates \((P(x), \varphi(x)) \in \Gamma \times [0,1] \) and we have to express the differential operators in these coordinates.
All this work will allow us to prove an important lemma of relevance, that is: if \(g \in L^2(\omega_\varepsilon) \) with \(\int_{\omega_\varepsilon} g = 0 \), there exists \(\Psi_\varepsilon \in H^1_0(\omega_\varepsilon) \) such that \(\text{div} \Psi_\varepsilon = g \) and we can estimate \(\Psi_\varepsilon \) since there exists a constant \(C \) independent on \(\varepsilon \) such that \(\|\Psi_\varepsilon\|_{H^1_0(\omega_\varepsilon)} \leq \frac{C}{\varepsilon} \|g\|_{L^2(\omega_\varepsilon)} \).
In the third part, using BKW method we characterize the different profiles of the asymptotic expansion of \(u^\varepsilon \). Next we prove existence and regularity of these profiles, and it is here that we will see why we need a so big regularity for the initial data \(v_0 \).
In the fourth part we estimate the remainder term of the asymptotic expansion using a classical Gronwall Lemma and we conclude the proof of Theorem 1.1.
The fifth part is devoted to the proof of Theorem 1.2. BKW method for this problem and the proof of the regularity for the profiles are already done in the previous section and we only have to estimate the remainder term for this equation.
At last, in the Appendix, we detail the calculations of the second part, for the interested reader.

Remark 1.7 In a previous paper, Carbou and Fabrie study a penalization method without effect of thin layer, i.e. the penalization occurs on the whole domain \(\Omega \), but is numerically smaller (of order \(10^{-8} \)). They prove in this case that the error between the penalized problem and the physical obstacle problem is of order \(\sqrt{\varepsilon} \). The proof of this result is based on an asymptotic expansion of the solution which describes the boundary layer in the penalized obstacle.

2 Tools for the study of thin layers

We will use the following notations:

- \((p \cdot q)\) is the scalar product in \(\mathbb{R}^3 \).
- \(\Gamma = \partial \Omega\),
- for \(\sigma \in \Gamma\), \(n(\sigma)\) is the unitary normal to \(\Gamma\) at the point \(\sigma\), entering in \(\Omega\),
- for \(\sigma \in \Gamma\), \(T_\sigma \Gamma\) is the tangent plane of \(\Gamma\) at the point \(\sigma\):
 \[
 T_\sigma \Gamma = (n(\sigma))^\perp
 \]
- \(\varphi(x) = \text{dist}(x, \Gamma)\) for \(x \in \Omega\),
- \(P(x)\) the orthogonal projection of \(x\) onto \(\Gamma\), for \(x \in \omega \Omega\),
- \(\omega_\varepsilon = \{ x \in \Omega, \quad 0 < \varphi(x) < \kappa \varepsilon \}\),
- for \(s > 0\), \(\Gamma_s = \{ x \in \Omega, \quad \varphi(x) = s \varepsilon \}\).

2.1 Geometrical tools

For \(\eta_0 > 0\) small enough, we define a parametrization of \(\omega_{\eta_0}\) by:

\[
\Psi : \Gamma \times [0, \kappa \eta_0] \rightarrow \omega_{\eta_0}, \quad \sigma, z \mapsto \sigma + zn(\sigma)
\]
Since $\Gamma = \partial \omega$ is a regular compact surface of \mathbb{R}^3 without boundary, there exists $\eta_0 > 0$ such that Ψ is a C^∞-diffeomorphism from $\Gamma \times [0, \kappa \eta_0]$ onto ω_{η_0}. We remark that for $\varepsilon < \eta_0$ the restriction of Ψ to $\Gamma \times [0, \kappa \varepsilon]$ is a C^∞-parametrization of ω_{ε}.

Furthermore φ and P are regular on ω_{η_0} and

$$\forall \ x \in \omega_{\eta_0}, \ \nabla \varphi(x) = n(P(x)).$$

We are lead to precise the expression of the differential operators in the coordinates (σ, z).

On the submanifold Γ we can classically define the integrale and the differential operators ∇_Γ, div_Γ and Δ_Γ (see the Appendix for the expression of these operators in a coordinate map). Furthermore, n is a map defined from Γ with values in the unit sphere S^2 so for $\sigma \in \Gamma$, the differential $dn(\sigma)$ is a linear map from $T_\sigma \Gamma$ into $T_{n(\sigma)}S^2$ and since $T_{n(\sigma)}S^2 = T_\sigma \Gamma$, we can consider $dn(\sigma)$ as an endomorphism of $T_\sigma \Gamma$.

Integration : we set for $s \in [0, \kappa \eta_0]$ and $\sigma \in \Gamma$:

$$\gamma_s(\sigma) = \det(\text{Id} + s \ dn(\sigma)).$$

If $u : \omega_{\eta_0} \rightarrow \mathbb{R}$, denoting $\tilde{u} = u \circ \Psi$, we have :

$$\int_{\omega_{\eta_0}} u = \int_0^{\kappa \eta_0} \int_{\Gamma} \tilde{u}(\sigma, s) \gamma_s(\sigma) d\sigma ds.$$

Gradient : for $\tilde{\vartheta} : \Gamma \rightarrow \mathbb{R}$, we define:

$$\nabla_\Gamma \tilde{\vartheta}(\sigma) = (\text{Id} + s \ dn(\sigma))^{-1} (\nabla_\Gamma \tilde{\vartheta}(\sigma))$$

and if $u : \omega_{\eta_0} \rightarrow \mathbb{R}$, denoting $\tilde{u} = u \circ \Psi$, we have:

$$\nabla u(x) = \frac{\partial \tilde{u}}{\partial z}(P(x), \varphi(x)) n(P(x)) + \left(\nabla_{\gamma_{\varphi}(x)} \tilde{u} \right)(P(x), \varphi(x)).$$

Divergence Operator : let $\tilde{Y} : \Gamma \rightarrow TT$ be a tangent vector field defined on Γ. We define:

$$\text{div}_\Gamma \tilde{Y}(\sigma) = \frac{1}{\gamma_s(\sigma)} \text{div}_\Gamma \left[\gamma_s(\text{Id} + s \ dn) \right]^{-1} \tilde{Y}(\sigma)$$

and if $Z : \omega_{\eta_0} \rightarrow \mathbb{R}^3$, denoting $\tilde{Z} = Z \circ \Psi$, we have

$$\text{div} Z(x) = \frac{\partial \tilde{Z}_N}{\partial z}(P(x), \varphi(x)) + G_{\varphi(x)}(P(x)) \tilde{Z}_N(P(x), \varphi(x)) + \left(\text{div}_{\gamma_{\varphi}(x)} \tilde{Z}_T \right)(P(x), \varphi(x))$$

where $\tilde{Z}_N(\sigma, z) = (\tilde{Z}(\sigma, z) \cdot n(\sigma))$ is the normal part of \tilde{Z} and $\tilde{Z}_T(\sigma, z) = \tilde{Z}(\sigma, z) - \tilde{Z}_N(\sigma, z) n(\sigma)$ is its tangential part, and where:

$$G_s(\sigma) = \frac{1}{\gamma_s(\sigma)} \frac{\partial \gamma_s}{\partial s}(\sigma).$$

Laplace operator : for $\tilde{\vartheta} : \Gamma \rightarrow \mathbb{R}$ we define

$$\Delta_\Gamma \tilde{\vartheta} = \text{div}_\Gamma \nabla_\Gamma \tilde{\vartheta}$$

and if $u : \omega_{\eta_0} \rightarrow \mathbb{R}$, denoting $\tilde{u} = u \circ \Psi$, we have:

$$\Delta u(x) = \frac{\partial^2 \tilde{u}}{\partial z^2}(P(x), \varphi(x)) + G_{\varphi(x)}(P(x)) \frac{\partial \tilde{u}}{\partial z}(P(x), \varphi(x)) + \left(\Delta_{\gamma_{\varphi}(x)} \tilde{u} \right)(P(x), \varphi(x)).$$

Remark 2.1 All these expressions in the new coordinates are proved in the appendix.
2.2 Functionnal spaces in thin layers

In this subsection we precise the dependance on \(\varepsilon \) of the Sobolev constants on \(H^1(\omega_\varepsilon) \). The dependance on \(\varepsilon \) of these Sobolev constant acts a crucial part in the estimates of Section 4.

Proposition 2.1 There exists a constant \(C \) such that for all \(\varepsilon < \eta_0 \), for all \(u \in H^1(\omega_\varepsilon) \),

\[
\| u \|_{L^p(\omega_\varepsilon)} \leq \frac{C}{\varepsilon^p} \left(\| u \|_{L^2(\omega_\varepsilon)} + \| \nabla u \|_{L^2(\omega_\varepsilon)} \right)
\]

\[
\| u \|_{L^3(\omega_\varepsilon)} \leq \frac{C}{\varepsilon^p} \left(\| u \|_{L^2(\omega_\varepsilon)} + \| \nabla u \|_{L^2(\omega_\varepsilon)} \right)^{\frac{1}{3}} \| u \|_{L^2(\omega_\varepsilon)}^{\frac{2}{3}}
\]

\[
\| u \|_{L^2(\Gamma)} \leq C \| u \|_{L^2(\omega_\varepsilon)} \left(\frac{1}{\sqrt{\varepsilon}} \| u \|_{L^2(\omega_\varepsilon)}^{\frac{1}{2}} + \| \nabla u \|_{L^2(\omega_\varepsilon)}^{\frac{1}{2}} \right)
\]

Proof: using an atlas of maps covering \(\Gamma \) and a partition of the unity, we have to prove the different inequalities in \(U \times [0, \kappa \varepsilon] \) where \(U \) is an open bounded set of \(\mathbb{R}^2 \) where the map is defined.

The first inequality is proved in Ladyzenskaya (see [13]) and in Teman Ziane (see [15]). From this result and using a classical interpolation inequality between \(L^2 \) and \(L^6 \) we deduce easily the second inequality.

For the last estimate, we consider \(u \in D(\omega_\varepsilon) \), and we set \(\tilde{u} = u \circ \Psi \). Then for \(z \in [0, \kappa \varepsilon] \) and \(\sigma \in \Gamma \),

\[
\tilde{u}(\sigma, 0) = (\tilde{u}(\sigma, z))^2 - 2 \int_0^z \tilde{u}(\sigma, s) \frac{\partial \tilde{u}}{\partial z}(\sigma, s)ds.
\]

Integrating in \(\sigma \) on \(\Gamma \) we obtain that for all \(z \in [0, \kappa \varepsilon] \),

\[
\| \tilde{u}(\cdot, 0) \|_{L^2(\Gamma)}^2 \leq \int_\Gamma |\tilde{u}(\sigma, z)|^2 d\sigma + C \| \tilde{u} \|_{L^2(\omega_\varepsilon)} \| \frac{\partial \tilde{u}}{\partial z} \|_{L^2(\omega_\varepsilon)}.
\]

Now we integrate this inequality in \(z \) between 0 and \(\kappa \varepsilon \) we obtain that :

\[
\varepsilon \| \tilde{u}(\cdot, 0) \|_{L^2(\Gamma)} \leq K \left(\| \tilde{u} \|_{L^2(\omega_\varepsilon)}^2 + \varepsilon \| \tilde{u} \|_{L^2(\omega_\varepsilon)} \| \nabla \tilde{u} \|_{L^2(\omega_\varepsilon)} \right),
\]

that is dividing by \(\varepsilon \),

\[
\| u \|_{L^2(\Gamma)} \leq K \left(\frac{1}{\sqrt{\varepsilon}} \| u \|_{L^2(\omega_\varepsilon)} + \| u \|_{L^2(\omega_\varepsilon)}^{\frac{1}{2}} \| \nabla u \|_{L^2(\omega_\varepsilon)}^{\frac{1}{2}} \right).
\]

Proposition 2.2 We endow \(H^1_0(\omega_\varepsilon) \) with the norm :

\[
\| u \|_{H^1_0(\omega_\varepsilon)} = \left(\int_{\omega_\varepsilon} \| \nabla u \|^2 \right)^{\frac{1}{2}}.
\]

There exists \(C \) such that for all \(\varepsilon < \eta_0 \), for all \(u \in H^1_0(\omega_\varepsilon) \), then

\[
\| u \|_{L^2(\omega_\varepsilon)} \leq C \varepsilon \| u \|_{H^1_0(\omega_\varepsilon)}.
\]

Proof: we prove this Poincaré inequality for regular \(u \) as

\[
u(x) = \int_0^{x(x)} \frac{\partial \tilde{u}}{\partial z}(P(x), s)ds
\]

and using Cauchy Schwarz inequality.
2.3 Divergence operator in thin domains

The goal of this part is to prove the following fundamental result:

Theorem 2.1 There exists η with $0 < \eta < \eta_0$, there exists a constant K such that for all $\varepsilon < \eta$, for all $g \in L^2(\omega_\varepsilon)$, if $\int_{\omega_\varepsilon} g = 0$ there exists $U \in (H^1_0(\omega_\varepsilon))^3$ such that:

$$\begin{cases}
div U = g \text{ in } \omega_\varepsilon \\
\|U\|_{H^1_0(\omega_\varepsilon)} \leq \frac{K}{\varepsilon} \|g\|_{L^2(\omega_\varepsilon)}
\end{cases} \quad (2.2)$$

Remark 2.2 It is well known that the divergence operator is a surjection from $(H^1_0(\omega_\varepsilon))^3$ onto $L^2_0(\omega_\varepsilon) = \left\{ g \in L^2(\omega_\varepsilon), \int_{\omega_\varepsilon} g = 0 \right\}$, and so there exists a constant such that estimate (2.2) occurs. Here we determine the dependance of this constant on the thickness $\kappa \varepsilon$ of the thin domain.

Remark 2.3 For fixed domain, this proposition is proved in details in [10] (cf Theorem 2.1, p. 18). Here we adapt their proof for variable domains.

Proof of Theorem 2.1

If $U : \omega_\varepsilon \rightarrow \mathbb{R}^3$ and $g : \omega_\varepsilon \rightarrow \mathbb{R}^3$, we denote $\tilde{U} = u \circ \Psi$ and $\tilde{g} = g \circ \Psi$. Then equation (2.2) is equivalent to:

$$\frac{\partial \tilde{U}_N}{\partial s} + G_s \tilde{U}_N + \text{div} \Gamma_s \tilde{U}_T = \tilde{g} \text{ for } s \in]0, \kappa \varepsilon[\text{ and } \sigma \in \Gamma.$$

We seek \tilde{U} on the form:

$$\begin{cases}
\tilde{U}_N(\sigma, s) = \frac{\varepsilon}{\eta_0} Y_N(\sigma, \frac{\eta_0 s}{\varepsilon}) \\
\tilde{U}_T(\sigma, s) = Y_T(\sigma, \frac{\eta_0 s}{\varepsilon})
\end{cases}$$

where Y is defined on $\Gamma \times]0, \kappa \eta_0[$.

Setting $h(\sigma, s) = \tilde{g}(\sigma, \frac{\varepsilon s}{\eta_0})$, the existence of X is equivalent to the existence of $Y : \Gamma \times]0, \kappa \eta_0[$ satisfying:

$$\frac{\partial Y_N}{\partial z} + \frac{\varepsilon}{\eta_0} G_z Y_N + \text{div} \Gamma_z Y_T = h \text{ for } (\sigma, z) \in \Gamma \times]0, \kappa \eta_0[. \quad (2.3)$$

We define L^2 and H^1_0 spaces on $\Gamma \times]0, \kappa \eta_0[$:

$$L^2(\Gamma \times]0, \kappa \eta_0[) = \left\{ v : \Gamma \times]0, \kappa \eta_0[\rightarrow \mathbb{R}, \ v \circ \Psi \in L^2(\omega_\varepsilon) \right\}$$

$$H^1_0(\Gamma \times]0, \kappa \eta_0[) = \left\{ v : \Gamma \times]0, \kappa \eta_0[\rightarrow \mathbb{R}, \ v \circ \Psi \in H^1_0(\omega_\varepsilon) \right\}$$

We endow $L^2(\Gamma \times]0, \kappa \eta_0[)$ with a family of scalar products:

$$< u | v > = \int_0^{\kappa \eta_0} \int_{\Gamma} u(\sigma, z) v(\sigma, z) \gamma_{\eta_0}(\sigma) \, dz \, d\sigma,$$

and we denote $\| \cdot \|_{\varepsilon}$ the norm associated with this scalar product.
We remark that the composition by Ψ is an isometric map from $L^2(\omega_{\eta_0})$ to $L^2(\Gamma \times [0, \eta_{\eta_0}])$ endowed with the scalar product $\langle \cdot, \cdot \rangle_{\eta_0}$. For $u : \Gamma \times [0, \eta_{\eta_0}] \rightarrow \mathbb{R}$ we denote ∇_ε the following operator:

$$\nabla_\varepsilon u(\sigma, z) = \frac{\partial u}{\partial z} n(\sigma) + \nabla_{\Gamma_{\eta_{\eta_0}}} u.$$

For $Y : \Gamma \times [0, \eta_{\eta_0}] \rightarrow \mathbb{R}^3$ we consider div_ε the operator:

$$\text{div}_\varepsilon Y(\sigma, z) = \frac{\partial Y_N}{\partial z} + \frac{\varepsilon}{\eta_0} G_{\eta_{\eta_0}} Y_N + \text{div}_{\Gamma_{\eta_{\eta_0}}} Y_T.$$

By construction div_ε and ∇_ε are in duality for the scalar product $\langle \cdot, \cdot \rangle_{\varepsilon}$. Let $L^2_{0, \varepsilon}(\Gamma \times [0, \eta_{\eta_0}])$ defined by:

$$L^2_{0, \varepsilon}(\Gamma \times [0, \eta_{\eta_0}]) = \left\{ h \in L^2(\Gamma \times [0, \eta_{\eta_0}]), \int_0^{\eta_{\eta_0}} \int_{\Gamma} h(\sigma, s) \gamma_{\eta_{\eta_0}}(\sigma) ds d\sigma = 0 \right\}.$$

We have then the following proposition:

Proposition 2.3 There exists a constant C such that for all $\varepsilon < \eta_0$, for all $h \in L^2_{0, \varepsilon}(\Gamma \times [0, \eta_{\eta_0}])$, there exists $V \in (H^1_0(\Gamma \times [0, \eta_{\eta_0}]))^3$ such that:

$$\begin{cases}
\text{div}_\varepsilon V = h \\
\|\nabla_\varepsilon V\|_{\varepsilon} \leq C\|h\|_{\varepsilon}
\end{cases}$$ (2.4)

Assuming that Proposition 2.3 is true we can complete the proof of Proposition 2.1.

End of the proof of Proposition 2.1

Let $g \in L^2_0(\omega_\varepsilon)$. We define $h : \Gamma \times [0, \eta_{\eta_0}]$ by

$$h(\sigma, z) = \tilde{g}(\sigma, \frac{\varepsilon z}{\eta_0}).$$

We remark that:

$$\int_0^{\eta_{\eta_0}} \int_{\Gamma} h(\sigma, s) \gamma_{\eta_{\eta_0}}(\sigma) ds d\sigma = \frac{\eta_0}{\varepsilon} \int_0^{\eta_{\eta_0}} \int_{\Gamma} h(\sigma, \frac{\varepsilon}{\eta_0} z) \gamma_z(\sigma) dz d\sigma = \int_{\omega_\varepsilon} g = 0$$

and so $h \in L^2_{0, \varepsilon}(\Gamma \times [0, \eta_{\eta_0}])$. According to Proposition 2.3 there exists $V \in (H^1_0(\Gamma \times [0, \eta_{\eta_0}]))^3$ satisfying (2.4). We then define $U : \omega_\varepsilon \rightarrow \mathbb{R}^3$ by:

$$U_N(x) = \frac{\varepsilon}{\eta_0} V_N \left(P(x), \frac{\eta_0}{\varepsilon} \varphi(x) \right) \text{ and } U_T(x) = V_T \left(P(x), \frac{\eta_0}{\varepsilon} \varphi(x) \right)$$

and we already know that $\text{div} U = g$ in ω_ε.

9
Furthermore,
\[
\| \nabla U \|_{L^2(\omega_\varepsilon)}^2 = \int_0^\varepsilon \int_\Gamma \left(\left| \frac{\partial \tilde{U}}{\partial s} \right|^2 + \left| \nabla_{\Gamma, s} \tilde{U} \right|^2 \right) \gamma_s(\sigma, s) d\sigma d\sigma
\]
\[
= \int_0^\varepsilon \int_\Gamma \left(\left| \nabla_{\Gamma, s} Y_T \right|^2 + \frac{\eta_0^2}{\varepsilon^2} \left| \frac{\partial Y_T}{\partial z} \right|^2 + \frac{\varepsilon^2}{\eta_0^2} \left| \nabla_{\Gamma, s} Y_N \right|^2 + \left| \frac{\partial Y_N}{\partial z} \right|^2 \right) (\sigma, \frac{\eta_0 s}{\varepsilon}) \gamma_s(\sigma, s) d\sigma d\sigma
\]
\[
\leq \frac{\eta_0^2}{\varepsilon^2} \int_0^\varepsilon \int_\Gamma \left(\left| \nabla_{\Gamma, s} Y_T \right|^2 + \left| \frac{\partial Y_T}{\partial z} \right|^2 + \left| \nabla_{\Gamma, s} Y_N \right|^2 + \left| \frac{\partial Y_N}{\partial z} \right|^2 \right) (\sigma, \frac{\eta_0 s}{\varepsilon}) \gamma_s(\sigma, s) d\sigma d\sigma
\]
\[
\leq \frac{\eta_0}{\varepsilon} \| \nabla Y \|_{L^2(\varepsilon)}^2
\]
\[
\leq C \frac{\eta_0}{\varepsilon} \| h \|_{L^2(\varepsilon)}^2
\]
\[
\leq C \frac{\eta_0^2}{\varepsilon^2} \| g \|_{L^2(\omega_\varepsilon)}^2.
\]
Hence this complete the proof of Proposition 2.1.

Proof of Proposition 2.3

We endow \(H^1_0(\Gamma \times [0, \eta_0]) \) with the family of norms:
\[
\| u \|_{1, \varepsilon} = \| \nabla_{\varepsilon} u \|_{\varepsilon}.
\]
We remark that the composition by \(\Psi \) is an isometric map from \(H^1_0(\omega_{\eta_0}) \) to \(H^1_0(\Gamma \times [0, \eta_0]) \) endowed with the norm \(\| . \|_{1, \eta_0} \).

The dual space \(H^{-1} \) can be endowed with the family of norms:
\[
\forall \ l \in L^2, \ \| l \|_{-1, \varepsilon} = \sup_{u \in H^1_0(\Gamma \times [0, \eta_0])} \frac{| < l, u \|_{\varepsilon} > |}{\| u \|_{1, \varepsilon}}.
\]

Lemma 2.1 There exists \(C_1 \) and \(C_2 \) such that for all \(\varepsilon \in [0, \eta_0[\),
\[
1. \ \forall \ u \in L^2(\Gamma \times [0, \eta_0]), \ C_1 \| u \|_{\eta_0} \leq \| u \|_{\varepsilon} \leq C_2 \| u \|_{\eta_0}
\]
\[
2. \ \forall \ u \in H^1_0(\Gamma \times [0, \eta_0]), \ C_1 \| \nabla_{\eta_0} u \|_{\eta_0} \leq \| \nabla_{\varepsilon} u \|_{\eta_0} \leq C_2 \| \nabla_{\eta_0} u \|_{\eta_0}
\]
\[
3. \ \forall \ l \in H^{-1}(\Gamma \times [0, \eta_0]), \ C_1 \| l \|_{-1, \eta_0} \leq \| l \|_{-1, \varepsilon} \leq C_2 \| l \|_{-1, \eta_0}
\]

Proof of Lemma 2.1.

We remark that \((\sigma, z) \mapsto \gamma_s(\sigma) \) is regular, \(\gamma_0 \equiv 1, \Gamma \) is compact, thus, even if it means reducing \(\eta_0 \), we can suppose that for all \(z \in [0, \eta_0[\), for all \(\sigma \in \Gamma \),
\[
\frac{9}{10} \leq \gamma_z(\sigma) \leq \frac{11}{10}.
\]
Therefore for all \(z \in [0, \kappa \eta_0] \), for all \(\varepsilon \in [0, \eta_0] \), for all \(\sigma \in \Gamma \),
\[
\frac{9}{11} \gamma_z(\sigma) \leq \gamma_{\frac{9 \varepsilon}{\eta_0}}(\sigma) \leq \frac{11}{9} \gamma_z(\sigma).
\]
For \(u \in L^2(\Gamma \times [0, \kappa \eta_0]) \),
\[
\|u\|_z^2 = \int_0^{\kappa \eta_0} \int_{\Gamma} u^2(\sigma, z) \gamma_{\frac{9 \varepsilon}{\eta_0}} d\sigma d\sigma
\]
thus
\[
\frac{9}{11} \|u\|_z^2 \leq \|u\|_z^2 \leq \frac{11}{9} \|u\|_z^2.
\]
For the second inequality,
\[
\|\nabla \varepsilon u\|_z^2 = \|M_\varepsilon(s, \sigma) \nabla \eta_0 u\|_z^2
\]
where \(M_\varepsilon(s, \sigma) \) is the endomorphism defined by :
\[
M_\varepsilon(s, \sigma)(\xi) = \xi_N + \left(Id + \frac{\varepsilon s}{\eta_0} \frac{d n(\sigma)}{d n(\sigma)} \right)^{-1} \circ \left(Id + s d n(\sigma) \right)(\xi_T)
\]
(since \(\nabla \Gamma_\varepsilon = (Id + s d n(\sigma)) \nabla \Gamma_0 \)).
Now for \(s = 0 \), \(M_\varepsilon(0, \sigma) = Id \) so even if it means reducing \(\eta_0 \), since \((\sigma, \varepsilon, \sigma) \mapsto M_\varepsilon(s, \sigma)\) is regular, we can suppose that :
\[
|M_\varepsilon(\sigma, s)| \leq K \quad \text{and } |(M_\varepsilon(\sigma, s))^{-1}| \leq K.
\]
Hence we have :
\[
\frac{1}{K} \|\nabla \varepsilon \eta_0 u\|_z^2 \leq \|\nabla \varepsilon u\|_z^2 \leq K \|\nabla \eta_0 u\|_z^2.
\]
In conclusion, for the last inequality, we remark that for \(l \in L^2(\Gamma \times [0, \kappa \eta_0]) \), for \(\xi \in H^1_\delta(\Gamma \times [0, \kappa \eta_0]) \), we have :
\[
<l|\xi>_\varepsilon = \int_0^{\kappa \eta_0} \int_{\Gamma} l(\sigma, z) \xi(\sigma, z) \gamma_{\frac{9 \varepsilon}{\eta_0}}(\sigma) d\sigma d\sigma
\]
\[
= \int_0^{\kappa \eta_0} \int_{\Gamma} l(\sigma, z) \xi(\sigma, z) \frac{\gamma_{\frac{9 \varepsilon}{\eta_0}}(\sigma)}{\gamma_z(\sigma)} \gamma_z(\sigma) d\sigma d\sigma
\]
and since \((\sigma, s) \mapsto \gamma_s(\sigma)\) is regular, there exists an universal constant \(K \) such that for all \(\varepsilon \in [0, \eta_0] \),
\[
\left\| \frac{\gamma_{\frac{9 \varepsilon}{\eta_0}}}{\gamma_z} \right\|_{H^1_{\Gamma_0}} \leq C \left\| \gamma_{\frac{9 \varepsilon}{\eta_0}} \right\|_{H^\infty_0} + \left\| \nabla \eta_0 \left(\frac{\gamma_{\frac{9 \varepsilon}{\eta_0}}}{\gamma_z} \right) \right\|_{L^\infty_0}
\]
we have
\[
<l|\xi>_\varepsilon \leq C \|l\|_{-1, \eta_0} \|\nabla \xi\|_{\eta_0}
\]
\[
\leq C \|l\|_{-1, \eta_0} K \|\nabla \varepsilon \xi\|_{\eta_0}
\]
\[
\leq CK \sqrt{\frac{11}{10} \|l\|_{-1, \eta_0} \|\nabla \varepsilon \xi\|_{\varepsilon}}.
\]
Hence we obtain that:
\[\|l\|_{-1, \varepsilon} \leq C K \sqrt{\frac{11}{10} \|l\|_{-1, \eta_0}} \]
and we can obtain in the same way the inverse inequality.

Lemma 2.2 There exists a constant K such that for all \(\varepsilon \in [0, \eta_0] \), for all \(u \in L^2(\Gamma \times [0, \kappa \eta_0]) \),
\[
\frac{1}{K} \|\nabla_{\eta_0} u\|_{-1, \eta_0} \leq \|\nabla_{\varepsilon} u\|_{-1, \eta_0} \leq K \|\nabla_{\eta_0} u\|_{-1, \eta_0}.
\]

Proof of Lemma 2.2. We prove the inequality for \(u \) regular and we conclude the proof by density. For \(\xi \in H^1_0(\Gamma \times [0, \kappa \eta_0]) \) we have:
\[
< \nabla_{\varepsilon} u, \xi >_{\eta_0} = \int_0^{\kappa \eta_0} \int_{\Gamma} (M_{\varepsilon}(s, \sigma) \nabla_{\eta_0} u \cdot \xi) \gamma_s
\]
\[= \int_0^{\kappa \eta_0} \int_{\Gamma} (\nabla_{\eta_0} u \cdot M_{\varepsilon}(s, \sigma) \xi) \gamma_s
\]
hence
\[
|< \nabla_{\varepsilon} u, \xi >_{\eta_0}| \leq \|\nabla_{\eta_0} u\|_{-1, \eta_0} \|M_{\varepsilon}(s, \sigma)\xi\|_{1, \eta_0}
\]
\[
\leq \|\nabla_{\eta_0} u\|_{-1, \eta_0} (\|M_{\varepsilon}(s, \sigma)\|_{L^\infty} + \|\nabla_{\eta_0} M_{\varepsilon}(s, \sigma)\|_{L^\infty}) \|\xi\|_{1, \eta_0}
\]
thus since \(M_{\varepsilon} \) and \(\nabla_{\eta_0} M_{\varepsilon} \) are uniformly bounded, there exists \(K \) such that
\[
\|\nabla_{\varepsilon} u\|_{-1, \eta_0} \leq K \|\nabla_{\eta_0} u\|_{-1, \eta_0}.
\]
In the same way, we obtain the inverse inequality.

Lemma 2.3 There exists \(C \) there exists \(\eta_1 < \eta_0 \) such that for all \(\varepsilon < \eta_1 \), for all \(u \in L^2_{0, \varepsilon}(\Gamma \times [0, \kappa \eta_0]) \),
\[
\|u\|_{\varepsilon} \leq C \|\nabla_{\varepsilon} u\|_{-1, \varepsilon}.
\]

Proof of Lemma 2.3. We suppose that Lemma 2.3 is false. Then there exists a subsequence \(\varepsilon_n \rightarrow 0 \), and \(u_n \in L^2_{0, \varepsilon_n}(\Gamma \times [0, \kappa \eta_0]) \) such that:
\[
\|u_n\|_{\varepsilon_n} = 1 \text{ and } \|\nabla_{\varepsilon_n} u_n\|_{-1, \varepsilon_n} \leq \frac{1}{n}.
\]
With (1) in (2.5) we obtain that:
\[
\forall \ n, \quad \frac{1}{C_2} \leq \|u_n\|_{\eta_0} \leq \frac{1}{C_2}
\]
(2.6)
thus we can extract a subsequence still denoted \(u_n \) such that:
\[
u_n \rightharpoonup u \text{ in } L^2(\Gamma \times [0, \kappa \eta_0]) \text{ weak.}
\]
We remark that for all \(n \), with Lemma 2.1 and Lemma 2.2,
\[
\|\nabla_{\eta_0} u_n\|_{-1, \eta_0} \leq K \|\nabla_{\varepsilon_n} u_n\|_{-1, \eta_0}
\]
\[
\leq KC \|\nabla_{\varepsilon_n} u_n\|_{-1, \varepsilon_n}
\]
\[
\leq \frac{KC}{n}.
\]
\[\nabla \eta_0 \nabla u_n \text{ tends to zero in } H^{-1}(\Gamma \times [0, \kappa \eta_0]) \text{ strongly, hence } u \text{ is constant.} \]

Now, from [10], we know that there exists \(C \) such that :
\[\forall \, v \in L^2(\omega_\eta), \quad \| v \|_{L^2(\omega_\eta)} \leq C \left(\| v \|_{H^{-1}(\omega_\eta)} + \| \nabla v \|_{H^{-1}(\omega_\eta)} \right). \]

Since the composition with \(\Psi \) is an isometry, we obtain that :
\[\forall \, u \in L^2(\Gamma \times [0, \kappa \eta_0]), \quad \| u \|_{\eta_0} \leq C \left(\| u \|_{-1, \eta_0} + \| \nabla u \|_{-1, \eta_0} \right). \]

Using this inequality, since the injection of \(L^2 \) in \(H^{-1} \) is compact, the Cauchy criterium in \(L^2(\Gamma \times [0, \kappa \eta]) \) gives that :
\[u_n \longrightarrow u \text{ strongly in } L^2(\Gamma \times [0, \kappa \eta]). \]

Thus with (2.6) we have :
\[\| u \|_{\eta_0} \geq \frac{1}{C_2}, \quad (2.7) \]

On the other hand, we know that for all \(n \) we have :
\[\int_0^{\kappa \eta_0} \int_{\Gamma} u_n(\sigma, z) \gamma_{\eta_0} = 0. \]

We know that \(u_n \) tends to \(u \) in \(L^2 \) strongly and that \(\gamma_{\eta_0} \) tends to 1 uniformly. Then, we have :
\[\int_0^{\kappa \eta_0} \int_{\Gamma} u = 0. \]

Since \(u \) is a constant, this implies that \(u \equiv 0 \), and this leads to a contradiction with 2.7 and concludes the proof of Lemma 2.3.

End of the proof of Proposition 2.3.

Following [10], using their Theorem 2.1 page 18 and a duality argument in the spirit of Corollary 2.4 page 24, we conclude the proof of Proposition 2.3.

3 BKW Method for the penalized thin layer problem

3.1 Formal asymptotic expansion

We consider the following penalized problem :

\[
\begin{align*}
\frac{\partial u^\varepsilon}{\partial t} - \Delta u^\varepsilon + (u^\varepsilon \cdot \nabla) u^\varepsilon + \nabla \pi^\varepsilon + \frac{1}{\varepsilon} \chi_{\omega^\varepsilon} u^\varepsilon &= f \quad \text{in } \mathbb{R}^+ \times \mathcal{U}^\varepsilon, \\
\nabla u^\varepsilon &= 0 \quad \text{in } \mathbb{R}^+ \times \mathcal{U}^\varepsilon, \\
 u^\varepsilon &= 0 \quad \text{on } \mathbb{R}^+ \times \partial \Omega, \\
 u^\varepsilon &= 0 \quad \text{on } \mathbb{R}^+ \times \Gamma^\varepsilon, \\
 u^\varepsilon(0, x) &= u^\varepsilon_0(x) \quad \text{in } \mathcal{U}^\varepsilon.
\end{align*}
\]

We denote by \(v^\varepsilon \) (resp. \(p^\varepsilon \)) the restriction of \(u^\varepsilon \) (resp. \(\pi^\varepsilon \)) in \(\mathcal{U} = \Omega \setminus \overline{\omega} \) and \(w^\varepsilon \) (resp. \(q^\varepsilon \)) the restriction of \(u^\varepsilon \) (resp. \(\pi^\varepsilon \)) on \(\omega \).
Equation (3.1) is equivalent to the following system on \(\psi^\varepsilon \) and \(\psi^\varepsilon \):

\[
\begin{aligned}
\frac{\partial \psi^\varepsilon}{\partial t} - \Delta \psi^\varepsilon + (\psi^\varepsilon \cdot \nabla) \psi^\varepsilon + \nabla p^\varepsilon &= f \quad \text{in } \mathbb{R}^3_t \times \Omega \quad (1) \\
\frac{\partial \pi^\varepsilon}{\partial t} - \Delta \pi^\varepsilon + (\pi^\varepsilon \cdot \nabla) \pi^\varepsilon + \sqrt{\pi^\varepsilon} + \frac{1}{\varepsilon} \psi^\varepsilon &= 0 \quad \text{in } \mathbb{R}^3_t \times \omega^\varepsilon \quad (2) \\
\text{div } \psi^\varepsilon &= 0 \quad \text{in } \mathbb{R}^3_t \times \Omega \quad (3) \\
\text{div } \pi^\varepsilon &= 0 \quad \text{in } \mathbb{R}^3_t \times \Omega \quad (4) \quad (3.2)
\end{aligned}
\]

where \(n \) is the outward unitary normal at \(\partial \Omega \).

Remark 3.1 The boundary condition (6) in the previous equation comes from the variational formulation of Equation (3.1) since:

\[
\int_{\Omega} (-\Delta \psi^\varepsilon + \nabla \pi^\varepsilon) \cdot \psi = \int_{\Omega} ((\nabla \psi^\varepsilon \cdot \nabla \psi^\varepsilon) - \pi^\varepsilon \text{div } \psi^\varepsilon) + \int_{\Gamma} \left(-\frac{\partial \psi^\varepsilon}{\partial n} + \pi^\varepsilon n \right) \cdot \psi
\]

and

\[
\int_{\omega^\varepsilon} (-\Delta \psi^\varepsilon + \nabla \pi^\varepsilon) \cdot \psi = \int_{\omega^\varepsilon} ((\nabla \psi^\varepsilon \cdot \nabla \psi^\varepsilon) - \pi^\varepsilon \text{div } \psi^\varepsilon) - \int_{\Gamma} \left(-\frac{\partial \psi^\varepsilon}{\partial n} + \pi^\varepsilon n \right) \cdot \psi
\]

since \(n \) is outing from \(\Omega \) and entering into \(\omega^\varepsilon \).

We perform an asymptotic expansion of \(\psi^\varepsilon \), \(\pi^\varepsilon \), \(p^\varepsilon \) and \(q^\varepsilon \) of the form:

\[
\psi^\varepsilon(t, x) = V^0(t, x) + \epsilon V^1(t, x) + \ldots,
\]

\[
p^\varepsilon(t, x) = p^0(t, x) + \epsilon p^1(t, x) + \ldots,
\]

\[
w^\varepsilon(t, x) = W^0(t, P(x), \frac{\varphi(x)}{\epsilon}) + \epsilon W^1(t, P(x), \frac{\varphi(x)}{\epsilon}) + \ldots,
\]

\[
q^\varepsilon(t, x) = q^0(t, P(x), \frac{\varphi(x)}{\epsilon}) + \epsilon q^1(t, P(x), \frac{\varphi(x)}{\epsilon}) + \epsilon \epsilon q^2(t, P(x), \frac{\varphi(x)}{\epsilon}) + \ldots
\]

where \(P(x) \) is the projection of \(x \) on \(\Gamma \) and \(\varphi(x) = \text{dist}(x, \Gamma) \).

We assume that the terms \(W^i : \mathbb{R}^3_t \times \Omega \times [0, \kappa] \rightarrow \mathbb{R}^3 \)

\[
\forall \ t \in \mathbb{R}^3_t, \ \forall \ \sigma \in \Gamma, \ W^i(t, \sigma, z = \kappa) = 0.
\]

The coordinates of \(\mathbb{R}^3_t \times \Gamma \times [0, \kappa] \) are denoted \((t, \sigma, z) \).
We denote W^i_T the tangential part of W_i, and W^i_N its normal part:

$$W^i_N(t, \sigma, z) = W^i(t, \sigma, z) \cdot n(\sigma)$$

$$W^i_T(t, \sigma, z) = W^i(t, \sigma, z) - W^i_N(t, \sigma, z)n(\sigma)$$

where $n(\sigma)$ is the outward unitary normal at ∂U at the point σ.

In (3.2) we will formally replace $u^\varepsilon, v^\varepsilon, p^\varepsilon$ and w^ε by their asymptotic expansion and we will identify the different powers of ε.

We recall that if $\tilde{\alpha} : \Gamma \times [0, \kappa] \rightarrow \mathbb{R}$, if we denote $\alpha(x) = \tilde{\alpha}(P(x), \frac{\varphi(x)}{\varepsilon})$, then

$$\nabla \alpha(x) = \frac{1}{\varepsilon} \frac{\partial \tilde{\alpha}}{\partial z}(P(x), \frac{\varphi(x)}{\varepsilon})n(P(x)) + \nabla_{\Gamma_{\varphi(x)}} \tilde{\alpha}(P(x), \frac{\varphi(x)}{\varepsilon})$$

and

$$\Delta \alpha(x) = \frac{1}{\varepsilon^2} \frac{\partial^2 \tilde{\alpha}}{\partial z^2}(P(x), \frac{\varphi(x)}{\varepsilon}) + \frac{1}{\varepsilon} G_{\varphi(x)}(P(x)) \frac{\partial \tilde{\alpha}}{\partial z}(P(x), \frac{\varphi(x)}{\varepsilon}) + \Delta_{\Gamma_{\varphi(x)}} \tilde{\alpha}(P(x), \frac{\varphi(x)}{\varepsilon}).$$

Furthermore, if $\tilde{\beta} : \Gamma \times [0, \kappa] \rightarrow \mathbb{R}^3$, if $\beta(x) = \tilde{\beta}(P(x), \frac{\varphi(x)}{\varepsilon})$, then

$$\text{div} \beta(x) = \frac{1}{\varepsilon} \frac{\partial \tilde{\beta}}{\partial z}(P(x), \frac{\varphi(x)}{\varepsilon}) + G_{\varphi(x)}(P(x)) \frac{\partial \tilde{\beta}}{\partial z}(P(x), \frac{\varphi(x)}{\varepsilon}) + \text{div}_{\Gamma_{\varphi(x)}} \tilde{\beta}_T(P(x), \frac{\varphi(x)}{\varepsilon}).$$

In addition we can perform an asymptotic expansion of G_ε, $\nabla_{\Gamma_\varepsilon}$ and $\text{div}_{\Gamma_\varepsilon}$ and we have:

- $G_{\varepsilon z}(\sigma) = G_0(\sigma) + \varepsilon z G_0(\sigma) + \mathcal{O}(\varepsilon^2)$,

- for $\tilde{Z} : \Gamma \rightarrow TT$ a tangential vector field,

$$\text{div}_{\Gamma_\varepsilon} \tilde{Z}(\sigma) = \text{div}_\Gamma \tilde{Z} + \varepsilon \text{div}_\Gamma \tilde{Z} + \mathcal{O}(\varepsilon^2)$$

with

$$\text{div}_\Gamma \tilde{Z} = -G_0(\sigma) \text{div}_\Gamma \tilde{Z} + \text{div}_\Gamma (G_0(\sigma) \tilde{Z}) - \text{div}_\Gamma (dn(\sigma) \tilde{Z})$$

- for $\tilde{\alpha} : \Gamma \rightarrow \mathbb{R}$,

$$\nabla_{\Gamma_\varepsilon} \tilde{\alpha}(\sigma) = \nabla_\Gamma \tilde{\alpha}(\sigma) + \varepsilon z \nabla_\Gamma \tilde{\alpha}(\sigma) + \mathcal{O}(\varepsilon^2)$$

with $\nabla_\Gamma \tilde{\alpha}(\sigma) = -dn(\sigma)(\nabla_\Gamma \tilde{\alpha}(\sigma))$

Remark 3.2 Since $n(\sigma)$ does not depend on z, we remark that $\left(\frac{\partial \tilde{\beta}}{\partial z}\right)_N = \left(\frac{\partial \tilde{\beta}}{\partial z} \cdot n\right)_T = \frac{\partial \tilde{\beta}_T}{\partial z}$.

15
Step 1: we write (2) at order ε^{-2}:

$$- \frac{\partial^2 W^0}{\partial z^2} = 0.$$

With (7) at order ε^{-1}, on Γ, i.e. for $z = 0$, $W^0_z = 0$. Since $W^0(\sigma, z = \kappa) = 0$, we obtain:

$$W^0 \equiv 0.$$

Step 2: we write (1), (3) and (6) at order ε^0 and we obtain:

$$\begin{cases}
\frac{\partial V^0}{\partial t} - \Delta V^0 + (V^0 \cdot \nabla)V^0 + \nabla p^0 = f & \text{in } \mathbb{R}^+ \times \mathcal{U} \\
\text{div} V^0 = 0 & \text{in } \mathbb{R}^+ \times \mathcal{U} \\
V^0 = W^0 = 0 & \text{on } \mathbb{R}^+ \times \partial \mathcal{U}
\end{cases}$$

which determine V^0 completely (if we precise the initial data).

Remark 3.3 We will prove in the following section that since V^0 is regular in \mathcal{U}, since $\text{div} V^0 = 0$ in \mathcal{U} and as $V^0 = 0$ on Γ, we have:

$$\left(\frac{\partial V^0}{\partial n} \right)_N = 0 \text{ on } \Gamma$$

that is $\frac{\partial V^0}{\partial n}$ is tangential on the boundary Γ.

Step 3: with (4) at order ε^0 we obtain $\frac{\partial W^1_N}{\partial z} = 0$. Hence W^1_N does not depend on z and since it is zero at $z = 1$,

$$W^1_N \equiv 0.$$

(2) at order ε^{-1} gives:

$$- \frac{\partial^2 W^1}{\partial z^2} + W^0 + \frac{\partial q^0}{\partial z} n = 0,$$

and taking the scalar product of this equation with n we obtain that q^0 does not depend on z (since $W^0 = 0$).

With (7) at order ε^0 we have:

$$- \frac{\partial W^1}{\partial z} + q^0 n = p^0 n - \frac{\partial V^0}{\partial n} \text{ on } \Gamma.$$

Taking this equation scalar n we have:

$$q^0(z = 0) = p^0$$

and we extend this expression in $\Gamma \times [0, 1]$ to obtain q^0:

$$q^0(\sigma, z) = p^0(\sigma).$$
We know then that
\[\begin{align*}
-\frac{\partial^2 W^1}{\partial z^2} &= 0 \\
W^1(z = \kappa) &= 0 \\
\frac{\partial W^1}{\partial z}(z = 0) &= \frac{\partial V^0}{\partial n}
\end{align*} \]
that is
\[W^1(t, \sigma, z) = (z - \kappa) \frac{\partial V^0}{\partial n}(t, \sigma). \]

Step 4: With (1), (3) and (6) at order 1 we obtain that
\[\begin{align*}
\frac{\partial V^1}{\partial t} - \Delta V^1 + V^0 \cdot \nabla V^1 + V^1 \cdot \nabla V^0 + \nabla p^1 &= 0 \quad \text{in } \mathbb{R}^+ \times U, \\
\text{div } V^1 &= 0 \quad \text{in } \mathbb{R}^+ \times U, \\
V^1(t, x) &= W^1(t, x, 0) = -\kappa \frac{\partial V^0}{\partial n} \quad \text{on } \mathbb{R}^+ \times \Gamma,
\end{align*} \]
hence we determine \(V^1 \).

Remark 3.5 The existence of a vector field satisfying \(\text{div } V^1 = 0 \) in \(U \), \(V^1 = 0 \) on \(\partial \Omega \) and \(V^1 = W^1 \) on \(\Gamma \) is assured by the fact that \(\int_\Gamma (W^1 \cdot n) = 0 \) (since \(W^1 \) = 0).

Step 5: (4) at order \(\varepsilon^0 \) gives:
\[\frac{\partial W^2}{\partial z} + \text{div}_\Gamma W^1 = 0 \]
thus the normal part of \(W^2 \) is given by:
\[W^2_N(t, \sigma, z) = -\int^z_\kappa \text{div}_\Gamma W^1(t, \sigma, \xi) d\xi = -\frac{1}{2} (z - \kappa)^2 \text{div}_\Gamma \left(\frac{\partial V^0}{\partial n}(t, \sigma) \right) \]

We write (7) at order \(\varepsilon \) and we obtain:
\[-\frac{\partial W^2}{\partial z} + q^1 n = p^1 n - \frac{\partial V^1}{\partial n} \quad \text{at } z = 0. \tag{3.3} \]
Taking the scalar product of this equation with \(n \) we determine \(q^1 \) at \(z = 0 \):
\[q^1(t, \sigma, 0) = \left(p^1 - \left(\frac{\partial V^1}{\partial n} \cdot n \right) \right)(t, \sigma) + \left(\frac{\partial W^2_N}{\partial z} \right)(t, \sigma, z = 0) \]

17
that is
\[q^1(t, \sigma, 0) = \left(p^1 - \left(\frac{\partial V^1}{\partial n} \cdot n \right) \right) (t, \sigma) + \kappa \text{div}_\Gamma \left(\frac{\partial V^0}{\partial n} \right) \quad (3.4) \]

With (2) at order \(\varepsilon^0 \) we have:
\[- \frac{\partial^2 W^2}{\partial z^2} - G_0 \frac{\partial W^1}{\partial z} + \nabla \Gamma_0 q^0 + \frac{\partial q^1}{\partial z} n + W^1 = 0. \quad (3.5)\]

Taking the normal part of this equation, since \(W^1 \) is tangential, we determine \(\frac{\partial q^1}{\partial z} \)
\[\frac{\partial q^1}{\partial z} = \frac{\partial^2 W^2}{\partial z^2} \]

and then
\[q^1(t, \sigma, z) = \left(p^1 - \left(\frac{\partial V^1}{\partial n} \cdot n \right) \right)_\Gamma (t, \sigma) - (z - \kappa) \text{div}_\Gamma \left(\frac{\partial V^0}{\partial n} \right). \quad (3.6) \]

In order to precise the tangential part of \(W^2 \) we take the tangential part of (3.5) and the tangential part of (3.3) and we derive the equation satisfied by \(W^2_T \):
\[
\begin{cases}
\frac{\partial^2 W^2_T}{\partial z^2} = -G_0 \frac{\partial V^0}{\partial n} + \nabla \Gamma_0 q^0 + (z - \kappa) \frac{\partial V^0}{\partial n} \\
\frac{\partial W^2_T}{\partial z}(t, \sigma, z = 0) = - \left(\frac{\partial V^1}{\partial n} \right)_\Gamma (t, \sigma) \\
W^2_T(t, \sigma, z = \kappa) = 0
\end{cases}
\text{in } \mathbb{R}^+ \times \Gamma \times [0, 1]
\]

hence
\[W^2_T(t, \sigma, z) = \frac{1}{6}(z - \kappa)^3 \frac{\partial V^0}{\partial n} + \frac{1}{2}(z - \kappa)^2 \left(-G_0 \frac{\partial V^0}{\partial n} + \nabla \Gamma_0 q^0 \right) \]
\[-(z - \kappa) \left(\left(\frac{\partial V^1}{\partial n} \right)_\Gamma + \frac{\kappa^2}{2} \frac{\partial V^0}{\partial n} + \kappa G_0 \frac{\partial V^0}{\partial n} - \kappa \nabla \Gamma_0 q^0 \right) \quad (3.7) \]

Step 6: we remark that \(\int_{\Gamma} (W^2 \cdot n) d\sigma = 0 \), since:
\[\int_{\Gamma} W^2_N = \int_{z=0}^\kappa \left(\int_{\Gamma} \text{div}_\Gamma W^1_T(\sigma, z) d\sigma \right) \, dz = 0 \]

Thus we can define the extension \(V^2 \) of \(W^2 \) satisfying:
\[
\begin{cases}
V^2 = W^2 \text{ on } \Gamma \\
V^2 = 0 \text{ on } \partial \Omega \\
\text{div} V^2 = 0 \text{ in } \mathcal{U}
\end{cases}
\]

18
\textbf{Step 7:} with (4) at order \(\varepsilon^2 \) we obtain that :

\[
\frac{\partial W^3_N}{\partial z} + G_0 W^3_N + \text{div} \Gamma_0 W^2_T + z \text{div} \Gamma_0 W^1_T = 0
\]

with :

\[
\text{div} \Gamma_0 Z = -G_0 \text{div} \Gamma Z + \text{div} \Gamma (G(0) Z - dn(\sigma)Z).
\]

We define then \(W^3_N \) by :

\[
W^3_N(\sigma, z) = \int_z^\kappa \left(G_0(\sigma)W^2_N(\sigma, s) + \text{div} \Gamma_0 W^2_T(\sigma) + s \text{div} \Gamma_0 W^1_T(\sigma, s)\right) ds.
\] (3.8)

\textbf{Step 8:} with (2) at order \(\varepsilon \) we have

\[
\frac{\partial W^1}{\partial t} - \frac{\partial^2 W^3}{\partial z^2} - G_0 \frac{\partial W^2}{\partial z} - zG_0 \frac{\partial W^1}{\partial z} - \Delta \Gamma_1 W^1 + W^1_N \frac{\partial W^1}{\partial z} + \frac{\partial q^2}{\partial z} n
\]

\[
+ \nabla \Gamma q^1 + z \nabla \Gamma q^0 + W^2 = 0.
\] (3.9)

Taking the normal part of this equation we obtain since \(W^1 \) is tangential :

\[
-\frac{\partial^2 W^3}{\partial z^2} - G_0 \frac{\partial W^2}{\partial z} + \frac{\partial q^2}{\partial z} n + W^2 = 0,
\]

so we can determine \(\frac{\partial q^2}{\partial z} \).

Writing (7) at order \(\varepsilon^2 \) we have :

\[
-\frac{\partial W^3}{\partial z} + q^2 n = p^2 n - \frac{\partial V^2}{\partial n} \quad \text{at } z = 0.
\]

Taking the scalar product with \(n \), we obtain the value of \(q^2 \) at \(z = 0 \) :

\[
q^2(\sigma, z = 0) = p^2(\sigma) - \left(\frac{\partial V^2}{\partial n}\right)_N(\sigma) + \left(\frac{\partial W^3_N}{\partial z}\right)(z = 0)
\]

thus \(q^2 \) is completely defined.

Taking now the tangential part of (3.9) we obtain that \(W^3_T \) is completely defined by :

\[
\begin{cases}
\frac{\partial^2 W^3_T}{\partial z^2} = \frac{\partial W^1}{\partial t} - G_0 \frac{\partial W^2}{\partial z} - \Delta W^1 + \nabla \Gamma q^1 + z \nabla \Gamma q^0 + W^2_T \\
W^3_T(t, \sigma, z = \kappa) = 0 \\
\frac{\partial W^3_T}{\partial z}(t, \sigma, z = 0) = -\left(\frac{\partial V^2}{\partial n}\right)_T(t, \sigma)
\end{cases}
\] (3.10)

\textbf{Step 9:} knowing \(W^3 \) we fix \(V^3 \) satisfying :

\[
\begin{cases}
V^3(x) = W^3(x, 0) \text{ for } x \in \partial \omega \\
V^3 = 0 \text{ on } \partial \Omega \\
\text{div} V^3 = 0 \text{ in } \mathcal{U}
\end{cases}
\]

19
Remark 3.6 The existence of \(V^3 \) is assured by the fact that \(\int_{\Gamma} (V^3 \cdot n) = 0 \) since:

\[
\int_{\Gamma} (V^3 \cdot n) = \int_{\sigma=0}^{\sigma=k} \left(G_0(\sigma)W_N^2(\sigma,z) + \text{div}_\Gamma W_T^2(\sigma,z) + z\text{div}_\Gamma W_T^1(\sigma,z) \right) dzd\sigma
\]

\[
= \int_{\sigma=0}^{\sigma=k} \int_{\Gamma} \left(G_0(\sigma)W_N^2(\sigma,s) + s\text{div}_\Gamma W_T^1(\sigma,s) \right) d\sigma ds
\]

\[
= \int_{\sigma=0}^{\sigma=k} \int_{\sigma=s}^{\sigma=k} G_0(\sigma)\text{div}_\Gamma W_T^1(\sigma,s) d\sigma ds - \int_{\sigma=0}^{\sigma=k} \int_{\Gamma} G_0(\sigma)\text{div}_\Gamma W_T^1(\sigma,z) dz d\sigma
\]

\[
+ \int_{\sigma=0}^{\sigma=k} \int_{\Gamma} z\text{div}_\Gamma \left(G_0(\sigma)W_T^1(\sigma,z) - \text{dn}(\sigma)W_T^1(\sigma,z) \right)
\]

\[
= \int_{\sigma=0}^{\sigma=k} \int_{\Gamma} sG_0(\sigma)\text{div}_\Gamma W_T^1(\sigma,s) d\sigma ds - \int_{\sigma=0}^{\sigma=k} \int_{\Gamma} zG_0(\sigma)\text{div}_\Gamma W_T^1(\sigma,z)
\]

\[
= 0.
\]

Remark 3.7 we will see in the remainder term estimates that inside \(\omega_\varepsilon \), we are lead to push the asymptotic expansion at order \(\varepsilon^3 \). In \(\mathcal{U} \) it is not necessary to be so precise, but to avoid the creation of jumps at the boundary of \(\omega_\varepsilon \), we have to extend \(W^2 \) and \(W^3 \) with \(V^2 \) and \(V^3 \).

3.2 Existence and regularity of the terms of the ansatz

We denote

\[
H = \left\{ V \in (L^2(\mathcal{U}))^3 \text{ such that } \text{div} V = 0 \text{ in } \mathcal{U} \text{ and } V \cdot n = 0 \text{ on } \partial \mathcal{U} \right\}
\]

and

\[
V = \left\{ V \in (H^1_0(\mathcal{U}))^3 \text{ such that } \text{div} V = 0 \text{ in } \mathcal{U} \right\}.
\]

Let \(\mathcal{P} \) be the orthogonal projection for the \(L^2 \) scalar product onto \(H \). We denote by \(A \) the operator with domain \(H \cap H^2(\mathcal{U}) \) defined by \(A = -\mathcal{P} \circ \Delta \), that is if \(f \in H \),

\[
AV = f \iff \exists \pi \in H^1(\mathcal{U})/\mathbb{R}, \quad -\Delta \pi + \nabla \pi = f.
\]

We recall the results due to Cattabriga (see [9]):

Proposition 3.1 There exists \(C \) such that for all \(V \in D(A) \),

\[
\|V\|_{H^2(\mathcal{U})} + \|\pi\|_{H^1(\mathcal{U})/\mathbb{R}} \leq C\|AV\|_{L^2(\mathcal{U})},
\]

\[
\|V\|_{H^1(\mathcal{U})} + \|\pi\|_{L^2(\mathcal{U})/\mathbb{R}} \leq C\|AV\|_{H^{-1}(\mathcal{U})}.
\]
3.2.1 Existence of V^0

We recall Proposition 1.1. We only give the sketch of the proof of this result. The complete proof can be found in [7].

Proposition 3.2 Let $v_0 \in H^8(U) \cap V$. There exists a time $T^* > 0$ and there exists $V^0: [0, T^*[\times U \rightarrow \mathbb{R}^3$ and $p^0: [0, T^*[\times U \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
\frac{\partial V^0}{\partial t} - \Delta V^0 + (V^0 \cdot \nabla) V^0 + \nabla p^0 &= f \quad \text{in } [0, T^*[\times U \\
\text{div} V^0 &= 0 \quad \text{in } [0, T^*[\times U \\
V^0 &= 0 \quad \text{on } [0, T^*[\times \partial U \\
V^0(t = 0) &= v_0 \quad \text{in } U.
\end{align*}
$$

(3.11)

For all $T < T^*$ and for $0 \leq k \leq 4$,

$$
\frac{\partial^k V^0}{\partial t^k} \in L^\infty(0, T; H^{8-2k}(U)) \cap L^2(0, T; H^{9-2k}(U)).
$$

Furthermore for $0 \leq k \leq 3$, the associated pressure p^0 satisfies :

$$
\frac{\partial^k p^0}{\partial t^k} \in L^\infty(0, T; H^{7-2k}(U)) \cap L^2(0, T; H^{8-2k}(U)).
$$

Remark 3.8 The regular solution of (3.11) is unique.

Sketch of the proof: we consider a Galerkin approximation of equation (3.11) based on the eigenspaces of the Stokes Operator A. We denote by (3.11)$_a$ this approximation of (3.11) and by V^0_a (resp. p^0_a) the approximation of V^0 (resp. p^0) obtained solving (3.11)$_a$. Multiplying (3.11)$_a$ by V^0_a and by $A V^0_a$ we obtain using Gronwall Lemma that there exists T^* such that for all $T < T^*$, there exists a constant C with :

$$
\| V^0_a \|_{L^\infty(0, T; H^1)} + \| A V^0_a \|_{L^2(0, T; L^2)} \leq C,
$$

that is using Proposition 3.1

$$
\| V^0_a \|_{L^\infty(0, T; H^1)} + \| V^0_a \|_{L^2(0, T; H^2)} + \| p^0_a \|_{L^\infty(0, T; L^2)} + \| p^0_a \|_{L^2(0, T; H^1)} \leq C. \tag{3.12}
$$

In a second step, derivating (3.11)$_a$ with respect to t, we obtain the equation satisfied by $\frac{\partial V^0_a}{\partial t}$.

Multiplying this equation by $\frac{\partial V^0_a}{\partial t}$ and by $A \frac{\partial V^0_a}{\partial t}$, using Proposition 3.1 we obtain that

$$
\| \frac{\partial V^0_a}{\partial t} \|_{L^\infty(0, T; H^1)} + \| \frac{\partial V^0_a}{\partial t} \|_{L^2(0, T; H^2)} + \| \frac{\partial p^0_a}{\partial t} \|_{L^\infty(0, T; L^2)} + \| \frac{\partial p^0_a}{\partial t} \|_{L^2(0, T; H^1)} \leq C. \tag{3.13}
$$

In a third step we rederive (3.11)$_a$ with respect to t and in the same way we obtain an estimate on $\frac{\partial^2 V^0_a}{\partial t^2}$:

$$
\| \frac{\partial^2 V^0_a}{\partial t^2} \|_{L^\infty(0, T; H^1)} + \| \frac{\partial^2 V^0_a}{\partial t^2} \|_{L^2(0, T; H^2)} + \| \frac{\partial^2 p^0_a}{\partial t^2} \|_{L^\infty(0, T; L^2)} + \| \frac{\partial^2 p^0_a}{\partial t^2} \|_{L^2(0, T; H^1)} \leq C. \tag{3.14}
$$
Using these estimates and the equation satisfied by $\frac{\partial V_0^a}{\partial t}$, we obtain that $A \frac{\partial V_0^a}{\partial t}$ is bounded in $L^\infty(0,T;H^1) \cap L^2(0,T;H^2)$ hence using Proposition (3.1), there exists a time T^* such that for $T < T^*$ there exists C such that

$$\| \frac{\partial V_0^a}{\partial t} \|_{L^\infty(0,T;H^5)} + \| \frac{\partial V_0^a}{\partial t} \|_{L^2(0,T;H^4)} + \| \frac{\partial p_0^a}{\partial t} \|_{L^\infty(0,T;H^3)} + \| \frac{\partial p_0^a}{\partial t} \|_{L^2(0,T;H^4)} \leq C.$$

In the same way, using this estimate and the equation satisfied by V_0^a we obtain that

$$\| V_0^a \|_{L^\infty(0,T;H^5)} + \| V_0^a \|_{L^2(0,T;H^4)} + \| p_0^a \|_{L^\infty(0,T;H^3)} + \| p_0^a \|_{L^2(0,T;H^4)} \leq C.$$

Using the same method of derivation in time, we prove first that $\frac{\partial^3 V_0^a}{\partial t^3}$ is bounded in $L^\infty(0,T;H^1(\mathcal{U})) \cap L^2(0,T;H^2(\mathcal{U}))$ and after that $\frac{\partial^4 V_0^a}{\partial t^4}$ is bounded in $L^2(0,T;L^2(\mathcal{U})) \cap L^2(0,T;H^1(\mathcal{U}))$. Using Proposition 3.1 and using the equation satisfied by V_0^a we obtain that:

V_0^a is bounded in $L^\infty(0,T;H^8(\mathcal{U})) \cap L^2(0,T;H^9(\mathcal{U}))$

and for $i \in \{1,\ldots,4\}$,

$\frac{\partial^i V_0^a}{\partial t^i}$ is bounded in $L^\infty(0,T;H^{8-2i}(\mathcal{U})) \cap L^2(0,T;H^{9-2i}(\mathcal{U}))$

and concerning p_0^a,

p_0^a is bounded in $L^\infty(0,T;H^7(\mathcal{U})) \cap L^2(0,T;H^8(\mathcal{U}))$

and for all $i \in \{1,2,3\}$,

$\frac{\partial^i p_0^a}{\partial t^i}$ is bounded in $L^\infty(0,T;H^{7-2i}(\mathcal{U})) \cap L^2(0,T;H^{8-2i}(\mathcal{U}))$

Since the bounds do not depend on the dimension of the approximation Galerkin space, taking the weak limit, we obtain the existence of V^0 and p^0 which satisfy the same estimates.

Proposition 3.3 Let V^0 given by Proposition 3.2. Then $\frac{\partial V^0}{\partial n}$ is tangential on Γ.

Proof: as in ω_ε we build in a neigbourhood of Γ in \mathcal{U} a normal parametrization considering $\Phi : \Gamma \times [0,\varepsilon] \longrightarrow \mathcal{U}$ defined by:

$$\Psi(\sigma,z) = \sigma - zn(\sigma).$$

(we recall that $n(\sigma)$ is the normal outgoing from \mathcal{U}.

We denote $\tilde{V}^0 = V^0 \circ \Phi$ and \tilde{V}^0_N (resp. \tilde{V}^0_T) the normal part (resp. the tangential part) of \tilde{V}^0.

In the new coordinates (σ,z) we have:

$$0 = \text{div } V^0 = \frac{\partial \tilde{V}^0_N}{\partial z} + G_z \tilde{V}^0_N + \text{div}_\Gamma \tilde{V}^0_T.$$

On Γ, $\tilde{V}^0 = 0$ hence, $\text{div}_\Gamma \tilde{V}^0_T = 0$ and $\tilde{V}^0_N = 0$ on Γ. Thus on Γ,

$$0 = \frac{\partial \tilde{V}^0_N}{\partial z} = \left(\frac{\partial V^0}{\partial n} \right)_N.$$

22
3.2.2 Regularity for W^1 and q^0

We define $W^1 : [0, T^*] \times \Gamma \times [0, \kappa] \rightarrow \mathbb{R}$ by the formula:

$$W^1(\sigma, z) = (z - \kappa) \frac{\partial V^0}{\partial n}(t, \sigma),$$

where V^0 is given by Proposition 3.2.

On the other hand we define q^0 by $q^0(\sigma, z) = p^0(\sigma)$.

Using the results of regularity concerning V^0 and p^0 (see Proposition 3.2), we have the following proposition:

Proposition 3.4 Under the hypothesis of Proposition 3.2, for all $T < T^*$, for $0 \leq k \leq 3$,

$$\frac{\partial^k W^1}{\partial t^k} \in \left(L^\infty(0, T; H^{\frac{13-4k}{2}}(\Gamma)) \cap L^2(0, T; H^{\frac{15-4k}{2}}(\Gamma)) \right) \otimes C^\infty([0, \kappa])$$

and

$$\frac{\partial^k q^0}{\partial t^k} \in \left(L^\infty(0, T; H^{\frac{13-4k}{2}}(\Gamma)) \cap L^2(0, T; H^{\frac{15-4k}{2}}(\Gamma)) \right) \otimes C^\infty([0, \kappa])$$

3.2.3 Existence of V^1

We have the following result:

Proposition 3.5 Under the hypothesis of proposition 3.2, there exists $V^1 : [0, T^*] \times \mathcal{U} \rightarrow \mathbb{R}^3$ and $p^1 : [0, T^*] \times \mathcal{U} \rightarrow \mathbb{R}$ such that:

$$\begin{cases}
\frac{\partial V^1}{\partial t} - \Delta V^1 + (V^0 \cdot \nabla)V^1 + (V^1 \cdot \nabla)V^0 + \nabla p^1 = 0 & \text{in } \mathbb{R}^+ \times \mathcal{U},
\div V^1 = 0 & \text{in } \mathbb{R}^+ \times \mathcal{U},
V^1(t, x) = W^1(t, x, 0) = -\kappa \frac{\partial V^0}{\partial n} & \text{on } \mathbb{R}^+ \times \partial \omega,
\end{cases}$$

and satisfying for $T < T^*$ and for $0 \leq k \leq 2$:

$$\begin{align*}
\frac{\partial^k V^1}{\partial t^k} & \in L^\infty(0, T; H^{5-2k}(\mathcal{U})) \cap L^2(0, T; H^{6-2k}(\mathcal{U})) \\
\frac{\partial^k p^1}{\partial t^k} & \in L^\infty(0, T; L^{1-2k}(\mathcal{U})) \cap L^2(0, T; H^{5-2k}(\mathcal{U}))
\end{align*}$$

Proof. We consider Y^1 the extension of W^1 satisfying:

$$\begin{cases}
Y^1(t, x) = W^1(t, x, 0) & \text{for } x \in \Gamma \\
Y^1(t, x) = 0 & \text{for } x \in \partial \Omega \\
-\Delta Y^1 + \nabla p^1 = 0 & \text{in }]0, T^*[\times \mathcal{U} \\
\div Y^1 = 0 & \text{in }]0, T^*[\times \mathcal{U}
\end{cases}$$

23
The regularity of W^1 and its derivatives in times gives that for all $T < T^*$,

$$\Upsilon^1 \in L^\infty(0, T; H^7(U)) \cap L^2(0, T; H^8(U))$$

and for all $i \in \{1, 2, 3\}$,

$$\frac{\partial^i \Upsilon^1}{\partial t^i} \in L^\infty(0, T; H^{7-2i}(U)) \cap L^2(0, T; H^{8-2i}(U)).$$

We will seek V^1 on the form $V^1 = \Upsilon^1 + Z^1$ where Z^1 satisfies:

$$\begin{cases}
\frac{\partial Z^1}{\partial t} - \Delta Z^1 + (V^0 \cdot \nabla)Z^1 + (Z^1 \cdot \nabla)V^0 + \nabla p^1 = Q^1 \\
\text{div} Z^1 = 0 \\
Z^1 = 0 \text{ on } \partial U
\end{cases}
$$

(3.15)

with

$$Q^1 = - \left(\frac{\partial \Upsilon^1}{\partial t} + (V^0 \cdot \nabla)\Upsilon^1 + (\Upsilon^1 \cdot \nabla)V^0 \right).$$

We remark that for $0 \leq k \leq 2$,

$$\frac{\partial^k Q^1}{\partial t^k} \in L^\infty(0, T; H^{5-2k}(U)) \cap L^2(0, T; H^{6-2k}(U)).$$

As in the proof of Proposition 3.2 we consider a Galerkin approximation of (3.15). We multiply this approximation by AZ^1 and we obtain with Proposition 3.1 that:

$$Z^1 \in L^\infty(0, T; H^1(U)) \cap L^2(0, T; H^2(U)).$$

We derivate in time the approximation of (3.15) and multiplying this new equation by $A \frac{\partial Z^1}{\partial t}$ we obtain that

$$\frac{\partial Z^1}{\partial t} \in L^\infty(0, T; H^1(U)) \cap L^2(0, T; H^2(U)),$$

thus using (3.15),

$$Z^1 \in L^\infty(0, T; H^3(U)) \cap L^2(0, T; H^4(U)).$$

Now rederivating in time Equation 3.15 and using the same process we obtain the desired regularity result on Z^1 and so on V^1.

3.2.4 Regularity of W^2 and W^3

We define $W^2 : [0, T^*] \times \Gamma \times [0, \kappa]$ by:

$$W^2_N(t, \sigma, z) = -\frac{1}{2}(z - \kappa)^2 \text{div}_\Gamma \left(\frac{\partial V^0}{\partial n} \right)$$

and

$$W^2(t, \sigma, z) = \frac{1}{6}(z - \kappa)^3 \frac{\partial V^0}{\partial n} + \frac{1}{2}(z - \kappa)^2 \left(-G_0 \frac{\partial V^0}{\partial n} + \nabla_{\Gamma_0} q^0 \right)$$

$$- (z - \kappa) \left(\left(\frac{\partial V^1}{\partial n} \right)_T + \frac{\kappa^2}{2} \frac{\partial V^0}{\partial n} + \kappa G_0 \frac{\partial V^0}{\partial n} - \kappa \nabla_{\Gamma_0} q^0 \right)$$

(3.16)
and with the regularity proved for q^0, W^1 and V^1 we obtain that:

$$ W^2 \in \left(L^\infty(0, T; H^{\frac{7}{2}}(\Gamma)) \cap L^2(0, T; H^{\frac{9}{2}}(\Gamma)) \right) \otimes C^\infty([0, 1]) $$

$$ \frac{\partial W^2}{\partial t} \in \left(L^\infty(0, T; H^{\frac{5}{2}}(\Gamma)) \cap L^2(0, T; H^{\frac{7}{2}}(\Gamma)) \right) \otimes C^\infty([0, 1]) $$

Now W^3 is defined by (3.8) and (3.10), and it is a polynomial map in the z variable with coefficients depending on t and σ, obtained with the previous profiles.

Therefore we obtain that:

$$ W^3 \in \left(L^\infty(0, T; H^{\frac{5}{2}}(\Gamma)) \cap L^2(0, T; H^{\frac{7}{2}}(\Gamma)) \right) \otimes C^\infty([0, 1]) $$

$$ \frac{\partial W^3}{\partial t} \in \left(L^\infty(0, T; H^{\frac{3}{2}}(\Gamma)) \cap L^2(0, T; H^{\frac{5}{2}}(\Gamma)) \right) \otimes C^\infty([0, 1]) $$

3.2.5 Regularity of V^2 and V^3

With the regularity obtained for W^2 and W^3, their extensions V^2 and V^3 satisfy:

$$ V^2 \in L^\infty(0, T; H^4(U)) \cap L^2(0, T; H^5(U)) $$

$$ \frac{\partial V^2}{\partial t} \in L^\infty(0, T; H^2(U)) \cap L^2(0, T; H^3(U)) $$

$$ V^3 \in L^\infty(0, T; H^3(U)) \cap L^2(0, T; H^4(U)) $$

$$ \frac{\partial V^3}{\partial t} \in L^\infty(0, T; H^1(U)) \cap L^2(0, T; H^2(U)) $$

4 Estimate of the remainder term for Theorem 1.1

We define the different terms of the ansatz as in the previous section and we introduce the approximations W^ε of the velocity w^ε in ω^ε and his approximation V^ε in \mathcal{U} defined as follows:

$$ W^\varepsilon(t, x) = \varepsilon W^1(t, P(x), \frac{\phi(x)}{\varepsilon}) + \varepsilon^2 W^2(t, P(x), \frac{\phi(x)}{\varepsilon}) + \varepsilon^3 W^3(t, P(x), \frac{\phi(x)}{\varepsilon}) $$

and

$$ V^\varepsilon = V^0(t, x) + \varepsilon V^1(t, x) + \varepsilon^2 V^2(t, x) + \varepsilon^3 V^3(t, x) $$

We set:

$$ w^\varepsilon(t, x) = W^\varepsilon(t, x) + \varepsilon^2 w^\varepsilon(t, x) $$

$$ v^\varepsilon(t, x) = V^\varepsilon(t, x) + \varepsilon^2 v^\varepsilon(t, x) $$

$$ q^\varepsilon(t, x) = q^0(t, P(x), \frac{\phi(x)}{\varepsilon}) + \varepsilon q^1(t, P(x), \frac{\phi(x)}{\varepsilon}) + \varepsilon^2 q^\varepsilon(t, x) $$

$$ p^\varepsilon(t, x) = p^0(t, x) + \varepsilon p^1(t, x) + \varepsilon^2 p^\varepsilon(t, x) $$

We will write the equations satisfied by the remainder terms in order to estimate them.
\[
\begin{align*}
\frac{\partial w^r}{\partial t} - \Delta w^r + (w^r \cdot \nabla) W^\varepsilon + \varepsilon^2 (w^r \cdot \nabla) w^r + (W^\varepsilon \cdot \nabla) w^r \\
+ \nabla q^r + \frac{1}{\varepsilon} w^r = R_{\text{porous}}^r \\
\text{in } \mathbb{R}^+ \times \omega^r & \quad (1) \\
\text{div } w^r = g^r \\
\text{in } \mathbb{R}^+ \times \omega^r & \quad (2) \\
\frac{\partial v^r}{\partial t} - \Delta v^r + (v^r \cdot \nabla) v^r + (v^r \cdot \nabla) V^\varepsilon + \varepsilon^2 (v^r \cdot \nabla) v^r \\
+ \nabla p^r = R_{\text{f}tu}^r \\
\text{in } \mathbb{R}^+ \times \mathcal{U} & \quad (3) \quad (4.17) \\
\text{div } v^r = 0 \\
\text{in } \mathbb{R}^+ \times \mathcal{U} & \quad (4) \\
v^r = w^r \\
\text{in } \mathbb{R}^+ \times \Gamma & \quad (5) \\
- \frac{\partial v^r}{\partial n} + p^r n + \frac{\partial w^r}{\partial n} - q^r n = R_{\text{bound}}^r \\
\text{in } \mathbb{R}^+ \times \Gamma & \quad (6)
\end{align*}
\]

where:

\[
R_{\text{porous}}^r = \frac{1}{\varepsilon^2} \left[(G_{\varphi(x)} - G_0 - \varphi(x)G_0') \frac{\partial W^1}{\partial z} - (\nabla_{\varphi(x)} - \nabla \varphi(x)\nabla')q^0 \right] \\
+ \frac{1}{\varepsilon} \left[(G_{\varphi(x)} - G_0) \frac{\partial W^2}{\partial z} + (\Delta_{\varphi(x)} - \Delta \varphi(x) - \nabla_{\varphi(x)} - \nabla \varphi(x)\nabla')q^1 \right] \\
- \frac{\partial W^2}{\partial t} - \varepsilon \frac{\partial W^3}{\partial t} + G_{\varphi(x)} \frac{\partial W^3}{\partial z} + \varepsilon \nabla_{\varphi(x)} W^3 + \Delta_{\varphi(x)} W^2 - W^3 \\
- \frac{1}{\varepsilon^2} (W^\varepsilon \cdot \nabla) W^\varepsilon,
\]
\[g_\varepsilon = -\frac{1}{\varepsilon^2} \text{div} W^\varepsilon \]
\[= -\varepsilon G_{\varphi(x)} W_N^3 - (G_{\varphi(x)} - G_0) W_N^2 - (\text{div} \gamma_{\varphi(x)} - \text{div} \gamma_0) W_T^2 \]
\[- \frac{1}{\varepsilon} \left[\text{div} \gamma_{\varphi(x)} - \text{div} \gamma_0 - \varphi(x) \text{div} \gamma_0 \right] W_T^2 \]

\[R_{fiu}^\varepsilon = - \left(\frac{\partial V^2}{\partial t} - \Delta V^2 + (V^1 \cdot \nabla) V^1 + (V^0 \cdot \nabla) V^2 + (V^2 \cdot \nabla) V^0 \right) \]
\[- \varepsilon \left(\frac{\partial V^3}{\partial t} - \Delta V^3 + (V^0 \cdot \nabla) V^3 + (V^1 \cdot \nabla) V^2 + (V^2 \cdot \nabla) V^1 + (V^3 \cdot \nabla) V^0 \right) \]
\[- \varepsilon^2 \left((V^1 \cdot \nabla) V^3 + (V^2 \cdot \nabla) V^2 + (V^3 \cdot \nabla) V^1 \right) - \varepsilon^3 \left((V^2 \cdot \nabla) V^3 + (V^3 \cdot \nabla) V^2 \right) \]
\[- \varepsilon^4 (V^3 \cdot \nabla) V^3 \]

\[R_{\text{bound}}^\varepsilon = \varepsilon \frac{\partial V^3}{\partial n} \]

Lemma 4.1 We have the following estimates: for \(T < T^\ast \) there exists \(C \) such that
\[
\begin{align*}
\|W^\varepsilon\|_{L^\infty(0,T;W^{1,\infty}(\omega))} & \leq C \\
\|V^\varepsilon\|_{L^\infty(0,T;W^{1,\infty}(\Omega))} & \leq C \\
\|R_{\text{porous}}^\varepsilon\|_{L^2(0,T;L^2(\omega))} & \leq C \\
\|g_\varepsilon\|_{L^\infty(0,T;L^2(\omega))} & \leq C\varepsilon \\
\|R_{fiu}^\varepsilon\|_{L^2(0,T;L^2(\Omega))} & \leq C \\
\|R_{\text{bound}}^\varepsilon\|_{L^2(0,T;L^2(\Gamma))} & \leq C
\end{align*}
\]

Proof: these estimates are direct consequences of the regularity results proved for the different terms of the asymptotic expansion.

In order to estimate the term \((w_t^\varepsilon, \nabla) w_t^\varepsilon\) we need a divergence free condition. Since \(\|g_\varepsilon\|_{L^\infty(0,T;L^2(\omega))} \leq C\varepsilon\), using Theorem 2.1 we have the following lemma:

Lemma 4.2 There exists a constant \(C \) such that for all \(\varepsilon > 0 \) there exists \(\psi_\varepsilon \in H^1_0(\omega_\varepsilon) \) satisfying:
\[
\begin{align*}
\text{div} \psi_\varepsilon & = g_\varepsilon \text{ in } \omega_\varepsilon, \\
\|\psi_\varepsilon\|_{L^2(\omega_\varepsilon)} & \leq C\varepsilon, \\
\|\nabla \psi_\varepsilon\|_{L^2(\omega_\varepsilon)} & \leq C.
\end{align*}
\]
We multiply (1) in (4.17) by $w_\varepsilon^r - \psi_\varepsilon$ and we integrate on ω_ε. We obtain:

$$\frac{1}{2}\frac{d}{dt} \|w_\varepsilon^r\|^2 + \|\nabla w_\varepsilon^r\|^2 + \frac{1}{\varepsilon} \|w_\varepsilon^r\|^2 = I_1 + \ldots + I_{11} \quad (4.19)$$

with

$$I_1 = -\int_{\Gamma} w_\varepsilon^r \left(\frac{\partial w_\varepsilon^r}{\partial n} - q_\varepsilon^r n \right),$$

$$I_2 = -\int_{\omega_\varepsilon} \left((w_\varepsilon^r \cdot \nabla)W_\varepsilon^r + (W_\varepsilon^r \cdot \nabla)w_\varepsilon^r \right) (w_\varepsilon^r - \psi_\varepsilon),$$

$$I_3 = -\varepsilon^2 \int_{\omega_\varepsilon} ((w_\varepsilon^r - \psi_\varepsilon) \cdot \nabla)(w_\varepsilon^r - \psi_\varepsilon)(w_\varepsilon^r - \psi_\varepsilon),$$

$$I_4 = -\varepsilon^2 \int_{\omega_\varepsilon} \left((w_\varepsilon^r \cdot \nabla)\psi_\varepsilon \cdot w_\varepsilon^r + (w_\varepsilon^r \cdot \nabla)w_\varepsilon^r \cdot \psi_\varepsilon + (\psi_\varepsilon \cdot \nabla)w_\varepsilon^r \cdot w_\varepsilon^r \right),$$

$$I_5 = \varepsilon^2 \int_{\omega_\varepsilon} \left((w_\varepsilon^r \cdot \nabla)\psi_\varepsilon \cdot \psi_\varepsilon + (\psi_\varepsilon \cdot \nabla)w_\varepsilon^r \cdot \psi_\varepsilon + (\psi_\varepsilon \cdot \nabla)\psi_\varepsilon \cdot w_\varepsilon^r \right),$$

$$I_6 = -\varepsilon^2 \int_{\omega_\varepsilon} (\psi_\varepsilon \cdot \nabla)\psi_\varepsilon \cdot \psi_\varepsilon,$$

$$I_7 = \frac{1}{\varepsilon} \int_{\omega_\varepsilon} w_\varepsilon^r \psi_\varepsilon, \quad I_8 = \int_{\omega_\varepsilon} R_\varepsilon^r \psi_\varepsilon^r,$$

$$I_9 = -\frac{1}{\varepsilon} \int_{\omega_\varepsilon} \frac{\partial w_\varepsilon^r}{\partial t} \psi_\varepsilon, \quad I_{10} = \int_{\omega_\varepsilon} \nabla w_\varepsilon^r \nabla \psi_\varepsilon,$$

$$I_{11} = -\int_{\omega_\varepsilon} R_\varepsilon^r \psi_\varepsilon.$$

We multiply (3) in (4.17) by v_ε^r and we obtain that:

$$\frac{1}{2}\frac{d}{dt} \|v_\varepsilon^r\|^2 + \|\nabla v_\varepsilon^r\|^2 = J_1 + \ldots + J_4 \quad (4.20)$$

28
where:
\[J_1 = \int_{\Gamma} \left(\frac{\partial u^r}{\partial n} v^r_e - p^r v^r_e \cdot n \right), \]
\[J_2 = -\int_{\Omega} \left((V^e \cdot \nabla)v^r_e \cdot v^r_e + (v^r_e \cdot \nabla)V^e \cdot v^r_e \right), \]
\[J_3 = -\varepsilon^2 \int_{\Omega} (v^r_e \cdot \nabla) v^r_e \cdot v^r_e, \]
\[J_4 = \int_{\Omega} R_{\text{free}}^e v^r_e, \]

We add (4.19) and (4.20). We estimate the right hand side terms in the following way:

\[|I_1 + J_1| = \left| \int_{\Gamma} R_{\text{bound}}^e w^r_e \right| \]
\[\leq \| R_{\text{bound}}^e \|_{L^2(\Gamma)} \| w^r_e \|_{L^2(\Gamma)} \]
\[\leq C \| w^r_e \|_{L^2(\omega_e)} \| \nabla w^r_e \|_{L^2(\omega_e)} + \frac{C}{\sqrt{\varepsilon}} \| w^r_e \|_{L^2(\omega_e)} \]
\[\leq \frac{1}{10^e} \| w^r_e \|_{L^2(\omega_e)}^2 + K + \frac{1}{10^e} \| \nabla w^r_e \|_{L^2(\omega_e)}^2 + \| w^r_e \|_{L^2(\omega_e)}^2 \]

\[|J_2| \leq \| w^r_e \|_{L^2(\omega_e)} \| \nabla W^e \|_{L^\infty(\omega_e)} \left(\| w^r_e \|_{L^2(\omega_e)} + \| \psi^e \|_{L^2(\omega_e)} \right) \]
\[+ \| W^e \|_{L^\infty(\omega_e)} \| \nabla w^r_e \|_{L^2(\omega_e)} \left(\| w^r_e \|_{L^2(\omega_e)} + \| \psi^e \|_{L^2(\omega_e)} \right) \]
\[\leq \frac{1}{10^e} \| \nabla w^r_e \|_{L^2(\omega_e)}^2 + K \| w^r_e \|_{L^2(\omega_e)}^2 + K \]

\[I_3 = -\varepsilon^2 \sum_{i,j} \int_{\omega_e} (w^r_e, i - \psi^e_j) \frac{\partial}{\partial x_i} (w^r_e, j - \psi^e_j) (w^r_e, j - \psi^e_j) \]
\[= -\varepsilon^2 \sum_{ij} \int_{\omega_e} (w^r_e, i - \psi^e_j) \frac{1}{2} \frac{\partial}{\partial x_i} ((w^r_e, j - \psi^e_j)^2) \]
\[= -\frac{1}{2} \varepsilon^2 \sum_{ij} \int_{\Gamma} (w^r_e, i - \psi^e_j) n_i (w^r_e, j - \psi^e_j)^2 \]
\[+ \frac{1}{2} \varepsilon^2 \int_{\omega_e} (w^r_e, j - \psi^e_j)^2 \frac{\partial}{\partial x_i} (w^r_e, i - \psi^e_j) \]
Using that $\psi_e = 0$ on Γ and that $\text{div}(w_e^r - \psi_e) = 0$, we obtain finally that:

$$I_3 = -\frac{1}{2} \epsilon^2 \int_{\omega} |w_e^r|^2 \text{d}x.$$

$$|J_4| \leq \epsilon^2 \|w_e^r\|_{L^6(\omega_T)} \||\nabla \psi_e\|_{L^3(\omega_T)} \|w_e^r\|_{L^3(\omega_T)} + 2 \epsilon \|w_e^r\|_{L^3(\omega_T)} \||\nabla w_e^r\|_{L^2(\omega_T)} \|\psi_e\|_{L^6(\omega_T)}$$

$$\leq C \epsilon \|w_e^r\|_{H^1(\omega_T)} \|w_e^r\|_{L^2(\omega_T)} \leq \frac{1}{2} \epsilon \frac{1}{4} \|w_e^r\|_{H^1(\omega_T)}$$

$$+ C \epsilon^2 \|\nabla w_e^r\|_{L^2(\omega_T)} \|\psi_e\|_{H^1(\omega_T)} \|w_e^r\|_{L^2(\omega_T)} \leq \epsilon \|\nabla w_e^r\|_{L^2(\omega_T)} + K \|w_e^r\|_{L^2(\omega_T)} + K$$

$$|J_5| \leq \epsilon^2 \||\nabla \psi_e\|_{L^2(\omega_T)} \|w_e^r\|_{L^6(\omega_T)} \|\psi_e\|_{L^3(\omega_T)} + \epsilon^2 \|w_e^r\|_{L^6(\omega_T)} \|\psi_e\|_{L^3(\omega_T)} \||\nabla \psi_e\|_{L^2(\omega_T)}$$

$$\leq 2 \epsilon^2 \|w_e^r\|_{H^1(\omega_T)} \|w_e^r\|_{L^2(\omega_T)} \leq \epsilon \|w_e^r\|_{L^2(\omega_T)}$$

$$\leq C \epsilon \|\nabla w_e^r\|_{L^2(\omega_T)} + \|w_e^r\|_{L^2(\omega_T)}$$

$$|J_6| \leq \epsilon^2 \||\nabla \psi_e\|_{L^2(\omega_T)} \|\psi_e\|_{L^3(\omega_T)} \|\psi_e\|_{L^6(\omega_T)}$$

$$\leq \epsilon^2 \|\psi_e\|_{H^1(\omega_T)} \leq K$$

$$|J_7| \leq \frac{1}{\epsilon} \|w_e^r\|_{L^2(\omega_T)} \|\psi_e\|_{L^2(\omega_T)}$$

$$\leq \frac{1}{10 \epsilon} \|w_e^r\|_{L^2(\omega_T)}^2 + \frac{C}{\epsilon} \|\psi_e\|_{L^2(\omega_T)}^2$$

$$\leq \frac{1}{10 \epsilon} \|w_e^r\|_{L^2(\omega_T)}^2 + K$$

$$|J_8| \leq \epsilon \|R_{\text{porous}}\|_{L^2(\omega_T)}^2 + \frac{1}{10 \epsilon} \|w_e^r\|_{L^2(\omega_T)}^2$$

$$\leq \frac{1}{10 \epsilon} \|w_e^r\|_{L^2(\omega_T)}^2 + K$$
We integrate I_0 in time from 0 to T and we obtain that
\[
\int_0^T I_0 = \int_{\omega_\varepsilon} w_\varepsilon^r(T) \psi_\varepsilon(T) - \int_{\omega} w_\varepsilon^r(0) \psi_\varepsilon(0) + \int_0^T \int_{\omega_\varepsilon} w_\varepsilon^r \frac{\partial \psi_\varepsilon}{\partial t} \leq \frac{1}{9} \| w_\varepsilon^r(T) \|_{L^2(\omega_\varepsilon)} + W \| \psi_\varepsilon(T) \|_{L^2(\omega_\varepsilon)}^2 + K + \int_0^T \| w_\varepsilon^r \|_{L^2(\omega_\varepsilon)}^2 \\
+ \int_0^T \| \frac{\partial \psi_\varepsilon}{\partial t} \|_{L^2(\omega_\varepsilon)}^2.
\]

\[|J_{10}| \leq \frac{1}{10} \| \nabla w_\varepsilon^r \|_{L^2(\omega_\varepsilon)}^2 + C \| \psi_\varepsilon \|_{H^1(\omega_\varepsilon)}^2 \leq \frac{1}{10} \| \nabla w_\varepsilon^r \|_{L^2(\omega_\varepsilon)}^2 + K \]

\[|J_{11}| \leq \| R_{\text{porous}} \|_{L^2(\omega_\varepsilon)} \| \psi_\varepsilon \|_{L^2(\omega_\varepsilon)} \leq K \]

We estimate the right hand side terms of (4.20) in the following way:
\[|J_2| \leq \| V^\varepsilon \|_{L^6(\mathcal{U})} \| \nabla v^\varepsilon \|_{L^2(\mathcal{U})} \| v^\varepsilon \|_{L^3(\mathcal{U})} + \| V^\varepsilon \|_{L^2(\mathcal{U})} \| v^\varepsilon \|_{L^4(\mathcal{U})} \]

\[\leq \| V^\varepsilon \|_{H^1(\mathcal{U})} \| v^\varepsilon \|_{H^1(\mathcal{U})} \| v^\varepsilon \|_{L^2(\mathcal{U})} \]

\[\leq \| V^\varepsilon \|_{H^1(\mathcal{U})} \left(\| v^\varepsilon \|_{L^2(\mathcal{U})}^2 + \| \nabla v^\varepsilon \|_{L^2(\mathcal{U})} \| v^\varepsilon \|_{L^2(\mathcal{U})} \right) \]

\[\leq \frac{1}{10} \| \nabla v^\varepsilon \|_{L^2(\mathcal{U})}^2 + C \| v^\varepsilon \|_{L^2(\mathcal{U})}^2 \]

For J_3 we perform the same calculation as for I_3 and since $v^\varepsilon = w^r$ on Γ, we obtain that:
\[J_3 = \varepsilon \int_{\Gamma} v^\varepsilon \cdot n |v^\varepsilon|^2 d\sigma = -I_3, \]

\[|J_4| \leq \| R_{\text{ref}} \|_{L^2(\mathcal{U})}^2 + \| v^\varepsilon \|_{L^2(\mathcal{U})}^2 \]

\[\leq \| v^\varepsilon \|_{L^2(\mathcal{U})}^2 + K \]

Hence adding all the previous inequality we obtain that there exists a function $K \in L^1(0, T; \mathbb{R})$ for all $T < T^*$, there exists $\alpha_1 > 0$ and $\alpha_2 > 0$ such that:
\[\frac{d}{dt} \left(\| w^r \|_{L^2(\omega_\varepsilon)}^2 + \| v^\varepsilon \|_{L^2(\mathcal{U})}^2 \right) + \alpha_1 \left(\| \nabla w^r \|_{L^2(\omega_\varepsilon)}^2 + \| \nabla v^\varepsilon \|_{L^2(\mathcal{U})}^2 \right) + \frac{\alpha_2}{\varepsilon} \| w^r \|_{L^2(\omega_\varepsilon)}^2 \leq K(t) \left(1 + \| v^\varepsilon \|_{L^2(\mathcal{U})}^2 \right). \]
(4.21)

We conclude the proof with a classical Gronwall Lemma.
5 Proof of Theorem 1.2

We consider V^0, p^0, V^1 and p^1 defined in Theorem 1.1, and we introduce $V^2 : [0, T^*] \times \mathcal{U} \rightarrow \mathbb{R}^3$ such that:

\[
\begin{cases}
V^2 = -\kappa \left(\frac{\partial V^1}{\partial n} \right)_T & \text{on } [0, T^*] \times \Gamma \\
V^2 = 0 & \text{on } [0, T^*] \times \partial \Omega \\
\text{div} V^2 = 0 & \text{on } [0, T^*] \times \mathcal{U}
\end{cases}
\]

(5.1)

and since V^1 satisfies regularity conditions given in Proposition 3.5 we can assume that:

\[
\begin{cases}
V^2 \in L^\infty(0, T; H^1(\mathcal{U})) \cap L^2(0, T; H^5(\mathcal{U})) \\
\frac{\partial V^2}{\partial t} \in L^\infty(0, T; H^2(\mathcal{U})) \cap L^2(0, T; H^3(\mathcal{U}))
\end{cases}
\]

We recall that we consider v^ε solution of the following problem:

\[
\begin{cases}
\frac{\partial v^\varepsilon}{\partial t} - \Delta v^\varepsilon + (v^\varepsilon \cdot \nabla) v^\varepsilon + \nabla p^\varepsilon = f & \text{in } [0, T^*] \times \mathcal{U} \\
v^\varepsilon = 0 & \text{in } [0, T^*] \times \partial \Omega \\
v^\varepsilon \cdot n = 0 & \text{in } [0, T^*] \times \Gamma \\
v^\varepsilon = -\kappa \varepsilon \left(\frac{\partial v^\varepsilon}{\partial n} \right)_T & \text{in } [0, T^*] \times \Gamma \\
v^\varepsilon(0, x) = v^\varepsilon_0(x) & \text{in } \mathcal{U}
\end{cases}
\]

(5.2)

We write the asymptotic expansion of v^ε and p^ε:

\[
v^\varepsilon = V^0 + \varepsilon V^1 + \varepsilon^2 V^2 + \varepsilon^2 v^r_{\varepsilon} \\
p^\varepsilon = p^0 + \varepsilon p^1 + \varepsilon^2 p^r_{\varepsilon}
\]

The equation satisfied by the remainder term is the following:

\[
\frac{\partial v^r_{\varepsilon}}{\partial t} - \Delta v^r_{\varepsilon} + \varepsilon^2 (v^r_{\varepsilon} \cdot \nabla) V^\varepsilon + (V^\varepsilon \cdot \nabla) v^r_{\varepsilon} + \nabla p^r_{\varepsilon} = g^\varepsilon \text{ in } \mathcal{U}
\]

\[
\text{div } v^r_{\varepsilon} = 0 \text{ in } \mathcal{U}
\]

\[
v^r_{\varepsilon} = -\kappa \varepsilon \left(\frac{\partial v^r_{\varepsilon}}{\partial n} \right)_T - \kappa \varepsilon \left(\frac{\partial V^2}{\partial n} \right)_T \text{ on } \Gamma
\]

(5.3)

\[
v^r_{\varepsilon} \cdot n = 0 \text{ on } \Gamma
\]

\[
v^r_{\varepsilon} = 0 \text{ on } \partial \Omega
\]
where
\[g^\varepsilon = -\frac{\partial V^2}{\partial t} + \Delta V^2 - (V^0 \cdot \nabla) V^2 - (V^1 \cdot \nabla) V^1 - (V^2 \cdot \nabla) V^0 - \epsilon (V^1 \cdot \nabla) V^2 - \epsilon (V^2 \cdot \nabla) V^1 - \epsilon^2 (V^2 \cdot \nabla) V^2 \]

We remark that
\[g^\varepsilon \in L^\infty(0, T; L^2(\mathcal{U})) \text{ for all } T < T^*. \]

We multiply Equation (5.3) by \(v^\varepsilon \). Since
\[
\int_\mathcal{U} (v^\varepsilon \cdot \nabla) v^\varepsilon = -\frac{1}{2} \int_\Gamma (v^\varepsilon \cdot n) |v^\varepsilon|^2 = 0
\]
\[
\int_\mathcal{U} \nabla p^\varepsilon \cdot v^\varepsilon = - \int_\mathcal{U} p^\varepsilon \text{div} v^\varepsilon = 0
\]
\[
- \int_\Gamma \frac{\partial v^\varepsilon}{\partial n} \cdot v^\varepsilon = \frac{1}{\varepsilon} \int_\Gamma |v^\varepsilon|^2 + \int_\Gamma \left(\frac{\partial V^2}{\partial n} \right)^T \cdot v^\varepsilon
\]

and with the estimates on \(g^\varepsilon \) and \(V^2 \), we obtain that for all \(T < T^* \) there exists \(C \) such that :
\[
\frac{1}{2} \frac{d}{dt} \| v^\varepsilon \|^2_{L^2(\mathcal{U})} + \| \nabla v^\varepsilon \|^2_{L^2(\mathcal{U})} + \frac{1}{\varepsilon} \int_\Gamma |v^\varepsilon|^2 \leq \frac{1}{2} \| \nabla v^\varepsilon \|^2_{L^2(\mathcal{U})} + C \| v^\varepsilon \|^2_{L^2(\mathcal{U})} + \frac{1}{2\varepsilon} \int_\Gamma |v^\varepsilon|^2 + \frac{\varepsilon}{2} \| \frac{\partial V^2}{\partial n} \|_{L^2(\Gamma)}
\]

that is for all \(T < T^* \) there exists a constant \(K \) such that :
\[
\frac{d}{dt} \| v^\varepsilon \|^2_{L^2(\mathcal{U})} + \| \nabla v^\varepsilon \|^2_{L^2(\mathcal{U})} + \frac{1}{4\varepsilon} \int_\Gamma |v^\varepsilon|^2 \leq K + K \| v^\varepsilon \|^2_{L^2(\mathcal{U})}
\]

and we conclude the proof with a classical Gronwall Lemma.

6 Appendix

This appendix is devoted to the calculation of the differential operators in the geometry of thin layers.

6.1 Local parametrization of \(\Gamma \)

We consider a local parametrization of \(\Gamma \) : let \(U \) (resp. \(V \)) be an open subset of \(\mathbb{R}^2 \) (resp. \(\mathbb{R}^3 \)) and let \(X : U \rightarrow V \) be a local regular parametrization of \(V \cap \Gamma \).

We denote \(\nu = n \circ X \)

For \((u_1, u_2) \in U \), we denote \(g(0) \) the matrix of the first fundamental form on \(\Gamma \) with entries :
\[
g_{ij}(0)(u_1, u_2) = \left(\frac{\partial X}{\partial u_i} \cdot \frac{\partial X}{\partial u_j} \right)(u_1, u_2).
\]

We denote \(g^{ij}(0) \) the coefficients of the matrix \(g(0)^{-1} \).

The matrix \(b \) of the second fundamental form is the matrix with entries \(b_{ij} \) given by :
\[
b_{ij}(u_1, u_2) = \left(\frac{\partial \nu}{\partial u_i} \cdot \frac{\partial X}{\partial u_j} \right)(u_1, u_2).
\]

We know that \(g(0) \) and \(b \) are symmetric.
The map $n : \Gamma \rightarrow S^2$ is regular and its derivate $dn(\sigma)$ is a linear map from $T_0\Gamma$ into $T_{n(\sigma)}S^2$. Since $T_0\Gamma = T_{n(\sigma)}S^2$, we can consider that $dn(\sigma)$ is an endomorphism of $T_0\Gamma$.

We denote d the matrix of $dn(\sigma)$ in the basis $(\frac{\partial X}{\partial u_1}, \frac{\partial X}{\partial u_2})$, and we denote d_{ij} its entries.

We have:

$$\frac{\partial \nu}{\partial u_j} = dn(\sigma)(\frac{\partial X}{\partial u_j}) = \sum_i d_{ij} \frac{\partial X}{\partial u_i}$$

hence, taking the scalar product with $\frac{\partial X}{\partial u_k}$ we have $b_{kj} = \sum_i d_{ij}g_{ki}(0)$ that is $b = g(0)d$.

6.2 Calculus on Γ

If $\tilde{\sigma} : \Gamma \rightarrow \mathbb{R}$, is regular, we set $\tilde{\sigma} = \nu \circ X$. We define the integral on Γ and the differential operators on Γ with the map X:

$$\int_{\Gamma \setminus Y} \tilde{\sigma}(\sigma) d\sigma = \int_{U} \tilde{\sigma}(u_1, u_2) \sqrt{\det g(0)(u_1, u_2)} du_1 du_2$$

and

$$\nabla_{\Gamma} \tilde{\sigma}(\sigma) = \left(\sum_{i,j \in \{1, 2\}} g^{ij}(0) \frac{\partial \tilde{\nu}}{\partial u_j} \frac{\partial X}{\partial u_i} \right) (X^{-1}(\sigma)).$$

In addition

$$\Delta_{\Gamma} \tilde{\sigma}(\sigma) = \frac{1}{\sqrt{\det g(0)}} \sum_{i,j} \frac{\partial}{\partial u_i} \left(g^{ij}(0) \frac{\partial \tilde{\sigma}}{\partial u_j} \sqrt{\det g(0)} \right) (X^{-1}(\sigma)).$$

Furthermore, if $\tilde{Z} : \Gamma \rightarrow T\Gamma$ is a tangent vector field, we decompose Z in the basis $(\frac{\partial X}{\partial u_1}, \frac{\partial X}{\partial u_2})$:

$$Z = \gamma_1 \frac{\partial X}{\partial u_1} + \gamma_2 \frac{\partial X}{\partial u_2}$$

and we have:

$$\text{div}_{\Gamma} \tilde{Z}(\sigma) = \left(\frac{1}{\sqrt{\det g(0)}} \sum_{i=1}^{2} \frac{\partial}{\partial u_i} \left(\gamma_i \sqrt{\det g(0)} \right) \right) (X^{-1}(\sigma)).$$

Remark 6.1 One can verify that these definitions do not depend on the map X (see [11], ...)

6.3 Local parametrization of ω_m.

We define Y by:

$$Y : U \times [0, \eta_0] \rightarrow \mathbb{R}^3$$

$$(u_1, u_2, u_3) \mapsto X(u_1, u_2) + u_3 \nu(u_1, u_2)$$

We denote $\tilde{g}(u_1, u_2, u_3)$ the (3,3) matrix of the scalar product in the new coordinates, with entries:

$$\tilde{g}_{ij} = \left(\frac{\partial Y}{\partial u_i} \cdot \frac{\partial Y}{\partial u_j} \right).$$

We remark that $\frac{\partial Y}{\partial u_3}(u_1, u_2, u_3) = \nu(u_1, u_2)$ and for $i \in \{1, 2\}$, $\frac{\partial Y}{\partial u_i} = \frac{\partial X}{\partial u_i}(u_1, u_2) + u_3 \frac{\partial \nu}{\partial u_i}(u_1, u_2)$.

Since $\nu(u_1, u_2)$ is normal to Γ at the point $X(u_1, u_2)$,

$$\left(\nu(u_1, u_2) \cdot \frac{\partial X}{\partial u_i}(u_1, u_2) \right) = 0.$$
Furthermore, since for all \((u_1, u_2), \|\nu(u_1, u_2)\| = 1,\)
\[
\left(\frac{\partial \nu}{\partial u_i}(u_1, u_2) \cdot \nu(u_1, u_2) \right) = 0.
\]

Thus the matrix \(g\) is on the form :
\[
\dot{g}(u_1, u_2, s) = \begin{pmatrix}
g(s)(u_1, u_2) & 0 \\
0 & 0 \\
0 & 1
\end{pmatrix}
\]
where \(g(s)(u_1, u_2)\) is the \((2,2)\) matrix with entries \(g_{ij}(s)(u_1, u_2)\) defined by :
\[
g_{ij}(s)(u_1, u_2) = \left(\frac{\partial X}{\partial u_i} + s \frac{\partial \nu}{\partial u_i} \cdot \frac{\partial X}{\partial u_j} + s \frac{\partial \nu}{\partial u_j} \right)(u_1, u_2).
\]
We denote \(g^{ij}(s)\) the entries of the matrix \([g(s)]^{-1}\).

We remark that :
\[
g_{ij}(s) = g_{ij}(0) + 2s b_{ij} + s^2 \left(\frac{\partial \nu}{\partial u_i} \cdot \sum_k d_{kj} \frac{\partial X}{\partial u_k} \right)
\]
\[
= g^{ij}(0) + 2s b_{ij} + s^2 \sum_k b_{ik} d_{kj}
\]
Thus
\[
g(s) = g(0) + 2s b + s^2 bd.
\]

Remark 6.2 For \(s \in]0, \eta_b[\), the map \(X_s\) defined by \(X_s(u_1, u_2) = Y(u_1, u_2, s)\) is a local parametrization of \(\Gamma_s\), and \(g(s)(u_1, u_2)\) is the matrix of the first fundamental form of \(\Gamma_s\).

6.4 Integration in the new coordinates

For \(\sigma \in \Gamma \cap V\), if \(\sigma = X(u_1, u_2)\), we define \(\gamma_s(\sigma)\) by :
\[
\gamma_s(\sigma) = \left[(\det g^{-1}(0) g(s))(u_1, u_2) \right]^{\frac{1}{2}}.
\]

Proposition 6.1 \(\gamma_s\) does not depend on the parametrization of \(\Gamma\) since we have :
\[
\gamma_s(\sigma) = \det(Id + sdn)(\sigma).
\]

Proof : we have :
\[
g^{-1}(0) g(s) = Id + 2s g^{-1}(0) b + s^2 g^{-1}(0) bd
\]
and since \(d = g^{-1}(0) b\), we obtain that
\[
g^{-1}(0) g(s) = Id + 2s d + s^2 d^2 = (Id + s d)^2.
\]

Proposition 6.2 If \(\omega : \omega_{\gamma_0} \longrightarrow \mathbb{R}\), denoting \(\tilde{\omega} = \nu \circ \Psi\), we have :
\[
\int_{\omega_{\gamma_0}} \omega = \int_{0}^{\gamma_{\gamma_0}} \int_{\Gamma} \tilde{\nu}(\sigma, s) \gamma_s(\sigma) d\sigma ds.
\]
\textbf{Proof}: using an atlas covering Γ and a partition of the unity we may consider u with support in $Y(U \times [0, \kappa_0])$. Then we have:

$$
\int_{\omega_0} v = \int_{U \times [0, \kappa_0]} v \circ Y \sqrt{\det g} \\
= \int_0^{\kappa_0} \int_U \tilde{v}(X(u_1, u_2), s) \sqrt{\det g_s(u_1, u_2)} du_1 du_2 ds \\
= \int_0^{\kappa_0} \int_U \tilde{v}(X(u_1, u_2), s) \gamma_s(X(u_1, u_2)) \sqrt{\det g_0(u_1, u_2)} du_1 du_2 ds \\
= \int_0^{\kappa_0} \int_{\Gamma} \tilde{v}(s, \gamma_s(s)) d\sigma ds.
$$

\section{Gradient in the new coordinates}

For $s \in [0, \kappa_0]$ and for $\tilde{w} : \Gamma \rightarrow \mathbb{R}$ we define $\nabla_{\Gamma, \tilde{w}}$ by:

$$
\nabla_{\Gamma, \tilde{w}}(\sigma) = \left(Id + sdn(\sigma) \right)^{-1} \nabla_{\Gamma_0, \tilde{w}}(\sigma).
$$

We have the following lemma:

\textbf{Lemma 6.1} Let $v : \omega_0 \rightarrow \mathbb{R}$. We denote $\bar{v} = v \circ \Psi$. For $x \in \omega_0$ we have

$$
\nabla v(x) = \frac{\partial \bar{v}}{\partial z}(P(x), \varphi(x)) n(P(x)) + \left(\nabla_{\Gamma_0, \bar{v}} \right)(P(x), \varphi(x)).
$$

\textbf{Proof}: we set $\bar{v} = v \circ Y$.

In the coordinates (u_1, u_2, u_3) we have:

$$
\nabla v(x) = \left(\sum_{i=1}^{3} \left(\sum_{j} \hat{g}^{ij} \frac{\partial \bar{v}}{\partial u_j} \right) \frac{\partial Y}{\partial u_i} \right) (Y^{-1}(x)) \quad (6.4)
$$

where \hat{g}^{ij} are the entries of \hat{g}^{-1}. We remark that for $i = 3$,

$$
\left(\sum_{j} \hat{g}^{3j} \frac{\partial \bar{v}}{\partial u_j} \right) = \frac{\partial \bar{v}}{\partial u_3}.
$$

Furthermore, $\frac{\partial Y}{\partial u_3}(u_1, u_2, u_3) = \nu(u_1, u_2)$.

In addition, for $i \in \{1, 2\}$, $\hat{g}^{i3} = \hat{g}^{3i} = 0$ hence

$$
\sum_{j=1}^{3} \hat{g}^{ij} \frac{\partial \bar{v}}{\partial u_j} = \sum_{j=1}^{2} \hat{g}^{ij}(s) \frac{\partial \bar{v}}{\partial u_j}.
$$

Now we remark that

$$
\nabla_{\Gamma_0, \bar{v}} = \sum_{i=1}^{2} \left(\sum_{j=1}^{2} \hat{g}^{ij}(s) \frac{\partial \bar{v}}{\partial u_j} \right) \frac{\partial Y}{\partial u_i}.
$$

36
Proof: we know that $g^{-1}(0)g(s) = (Id + sd)^2$ thus denoting $\alpha = Id + sd$, and α_{ij} (resp. α_{ij}) the entries of the matrix α (resp. α^{-1}), we have:

$$g^{-1}(s) = \alpha^{-2}g^{-1}(0)$$

so

$$g^{ij}(s) = g^{ji}(s) = \sum_{k,l} \alpha^{ik}\alpha^{kl}g^{ij}(0).$$

Thus

$$\sum_{i=1}^{2}\left(\sum_{j=1}^{2} g^{ij}(s) \frac{\partial \varphi}{\partial u_j}\right) \frac{\partial Y}{\partial u_i} = \sum_{i,j} \frac{\partial \varphi}{\partial u_j} g^{ij}(s) \left(\sum_{p} \alpha_{pi} \frac{\partial X}{\partial u_p}\right)$$

$$= \sum_{i,j,k,l,p} \frac{\partial \varphi}{\partial u_j} \alpha^{ik}\alpha^{kl}g^{ij}(0)\alpha_{pi} \frac{\partial X}{\partial u_p}$$

and since $\sum_{i} \alpha^{ik}\alpha_{pi} = \delta_{kp}$ we have:

$$\sum_{i=1}^{2}\left(\sum_{j=1}^{2} g^{ij}(s) \frac{\partial \varphi}{\partial u_j}\right) \frac{\partial Y}{\partial u_i} = \sum_{j,l,p} \frac{\partial \varphi}{\partial u_j} \alpha^{kl}g^{ij}(0)\alpha_{kp} \frac{\partial X}{\partial u_p}$$

$$= \left(Id + s\,dn(\sigma)\right)^{-1} \left(\sum_{j,l} \frac{\partial \varphi}{\partial u_j} g^{ij}(0) \frac{\partial X}{\partial u_i}\right)$$

$$= \left(Id + s\,dn(\sigma)\right)^{-1} \nabla \varphi$$

$$= \nabla_{\gamma} \varphi.$$

6.6 Divergence in the new coordinates

For $W : \Gamma \rightarrow \Gamma$ a tangent vector field, and for $s \in [0,\kappa n_0]$ we define $\text{div}_{\gamma} W$ by:

$$\text{div}_{\gamma} W = \frac{1}{\gamma_s} \text{div}_{\Gamma} \left(\gamma_s(Id + sdn)^{-1}W\right).$$

Furthermore we denote $G_s(\sigma) = \left(\frac{1}{\gamma_s} \frac{\partial \gamma_s}{\partial s}\right)(\sigma)$.

Lemma 6.2 If $Z : \omega_{\eta_0} \rightarrow \mathbb{R}^3$, we denote $\tilde{Z} = Z \circ \Psi$. We define the normal and the tangential parts of Z by:

$$\tilde{Z}_N(\sigma, z) = \tilde{Z}(\sigma, z) \cdot n(\sigma),$$

$$\tilde{Z}_T(\sigma, z) = \tilde{Z}(\sigma, z) - \tilde{Z}_N(\sigma, z)n(\sigma).$$

Then we have:

$$\text{div} Z(x) = \frac{\partial \tilde{Z}_N(P(x), \varphi(x)) + G_{\varphi}(P(x))\tilde{Z}_N(P(x), \varphi(x)) + \left(\text{div}_{\gamma(\varphi)} \tilde{Z}_T\right)(P(x), \varphi(x))}.$$
Proof: by duality we will obtain the expression of the divergence operator in the new coordinates:

\[
\int_{\omega_\eta} v \, \text{div} \, Z = - \int_{\omega_\eta} Z \cdot \nabla v \\
\quad = - \int_0^{\kappa \eta} \int_{\Gamma} \tilde{Z} \cdot \nabla \tilde{v} \gamma_s \\
\quad = - \int_0^{\kappa \eta} \int_{\Gamma} \left(\tilde{Z}_N \frac{\partial \tilde{v}}{\partial z} + (\tilde{Z}_T \cdot \nabla_{\Gamma_s} \tilde{v}) \right) \gamma_s \\
\quad = - \int_0^{\kappa \eta} \int_{\Gamma} \tilde{Z}_N \frac{\partial \tilde{v}}{\partial z} \gamma_s - \int_0^{\kappa \eta} \int_{\Gamma} \left(\gamma_s (Id + sdn)^{-1} \tilde{Z}_T \cdot \nabla_{\Gamma_0} \tilde{v} \right)
\]

since \(Id + sdn \) is a symmetric operator of \(T_\circ \Gamma \).

Integrating by part we obtain that:

\[
\int_{\omega_\eta} v \, \text{div} \, Z = \int_0^{\kappa \eta} \int_{\Gamma} \left(\frac{1}{\gamma_s} \frac{\partial}{\partial z} (\tilde{Z}_N \gamma_s) + \frac{1}{\gamma_s} \text{div}_\Gamma (\gamma_s (Id + sdn)^{-1} \tilde{Z}_T) \right) \tilde{v} \, \gamma_s
\]

which concludes the proof of the lemma.

6.7 Laplace operator in the new coordinates

Let \(u : \omega_\eta \longrightarrow \mathbb{R} \). We denote \(\tilde{u} = u \circ \Psi \).

Since \(\Delta = \text{div} \, \nabla \) we obtain that:

\[
\Delta u(x) = \frac{\partial^2 \tilde{u}}{\partial z^2} (P(x), \varphi(x)) + G_{\varphi(x)} (P(x), \varphi(x)) + \left(\Delta_{\varphi(x)} \tilde{u} \right) (P(x), \varphi(x))
\]

with \(\Delta_{\varphi} \tilde{u} = \text{div}_{\Gamma_s} (\nabla_{\Gamma_s} \tilde{u}) \).

Example: if \(\Gamma \) is the unit sphere of \(\mathbb{R}^3 \), we take the classical parametrization of \(S^2 \):

\[
X : (\theta, \varphi) \mapsto (\cos \theta \cos \varphi, \cos \theta \sin \varphi, \sin \theta).
\]

We denote \(e_\varphi = (-\sin \varphi, \cos \varphi, 0) \) and \(e_\theta = (-\sin \theta \cos \varphi, -\sin \theta \sin \varphi, \cos \theta) \).

Let \(\tilde{v} : S^2 \longrightarrow \mathbb{R} \). We introduce \(\nabla_{\Gamma_s} \tilde{v} = \tilde{v} \circ X \). Then:

\[
\nabla_{\Gamma_s} \tilde{v} = \left(\frac{1}{1-s} \frac{\partial \tilde{v}}{\partial \theta} \right) e_\theta + \left(\frac{1}{(1-s) \cos \theta} \frac{\partial \tilde{v}}{\partial \varphi} \right) e_\varphi,
\]

\[
\Delta_{\Gamma_s} \tilde{v} = \frac{1}{(1-s)^2 \cos^2 \theta} \left(\cos \theta \frac{\partial}{\partial \theta} \left(\cos \theta \frac{\partial \tilde{v}}{\partial \theta} \right) + \frac{\partial^2 \tilde{v}}{\partial \varphi^2} \right).
\]

If \(Z : \Gamma \longrightarrow TT \), we decompose \(Z = Z_\theta e_\theta + Z_\varphi e_\varphi \) and we have:

\[
\text{div}_{\Gamma_s} Z = \frac{1}{(1-s) \cos \theta} \left(\frac{\partial}{\partial \theta} (Z_\theta \cos \theta) + \frac{\partial Z_\varphi}{\partial \varphi} \right).
\]

Acknowledgements

The author wishes to thank P. Fabrie and C. H. Bruneau for many stimulating discussions.
References

