
HAL Id: hal-01728848
https://hal.science/hal-01728848

Submitted on 4 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhanced discrete event model for system identification
with the aim of fault detection

Marcos Vincente Moreira, Jean-Jacques Lesage

To cite this version:
Marcos Vincente Moreira, Jean-Jacques Lesage. Enhanced discrete event model for system identifi-
cation with the aim of fault detection. 14th IFAC/IEEE Workshop on Discrete Event Systems, May
2018, Sorrento, Italy. pp. 172-178. �hal-01728848�

https://hal.science/hal-01728848
https://hal.archives-ouvertes.fr

Enhanced discrete event model for system
identification with the aim of fault

detection ?

Marcos V. Moreira ∗ Jean-Jacques Lesage ∗∗

∗ COPPE, Programa de Engenharia Elétrica, Universidade Federal do
Rio de Janeiro, 21949-900, Rio de Janeiro, R.J., Brazil. (e-mail:

moreira.mv@poli.ufrj.br)
∗∗ LURPA, ENS Cachan, Univ. Paris-Sud, Université Paris-Saclay,

94235 Cachan, France (e-mail:
jean-jacques.lesage@ens-paris-saclay.fr)

Abstract: In this paper, we present a new model for discrete-event system identification that
is suitable for fault detection, called Deterministic Automaton with Outputs and Conditional
Transitions (DAOCT). The model is computed from observed fault-free paths, and represents the
fault-free system behavior. In practice, a trade-off between size and accuracy of the identified
automaton has to be found. In order to obtain compact models, loops are introduced in the
model, which implies that sequences that are not observed can be generated by the model leading
to an exceeding language. This exceeding language is associated with possible non-detectable
faults, and must be reduced in order to use the model for fault detection. We show, in this
paper, that the exceeding language generated by the DAOCT is smaller than the exceeding
language generated by other models proposed in the literature, reducing, therefore, the number
of possible non-detectable faults. We also show that if the identified DAOCT does not have
cyclic paths, then the exceeding language is empty, and the model represents all and only all
observed fault-free sequences generated by the system. A practical example is used to illustrate
the results of the paper.

Keywords: Discrete-event systems, System identification, Fault detection, Finite automata,
Black-box identification.

1. INTRODUCTION

Fault detection and isolation has received considerable
attention from the scientific community over the last years.
In Sampath et al. (1995), a discrete-event approach for
fault diagnosis is introduced, and since then, several works
have been proposed for fault detection and isolation, and
also for the verification of diagnosability of the system,
i.e., the capability of identifying the occurrence of a fault
event within a bounded number of occurrences of events
(Debouk et al., 2000; Qiu and Kumar, 2006; Moreira et al.,
2011; Zaytoon and Lafortune, 2013; Cabral et al., 2015a,b;
Cabral and Moreira, 2017). In all these works, it is assumed
that the complete system behavior is known, i.e., the
system behavior before and after the occurrence of fault
events.

Although methods for fault detection based on the com-
plete system behavior can be successfully applied to small
systems, they are difficult to be implemented on large
and complex systems for the following reasons: (i) in
general, large automated systems are composed of several
components, whose models and interactions between these
models, are difficult or even impossible to be obtained;
(ii) the modeling process requires engineers that know

? This work has been partially supported by the Brazilian Research
Council, CNPq, under grants 200536/2017-6 and 309084/2014-8.

the complete plant behavior, and are also familiar with
discrete-event modeling techniques; (iii) the post-fault
behavior of the system is difficult to be predicted due
its size and complexity; and (iv) only faults that have
been predicted can be detected by the diagnoser computed
considering the complete behavior of the system. In order
to overcome these problems, fault detection techniques
based on an identified fault-free model of the system have
been recently proposed (Klein et al., 2005; Roth et al.,
2009, 2011). In these works, the two main ideas are: (i)
to automate the process of obtaining the fault-free model
of the system by using identification; and (ii) when a
fault has been detected through a discrepancy between the
system behavior and the model, to use a technique based
on residuals for fault localization.

In Klein et al. (2005), a monolithic model for fault de-
tection, that is capable of representing the behavior of
a closed-loop system, is proposed. This model is non-
deterministic with state outputs, and has been called
Non-Deterministic Autonomous Automaton with Output
(NDAAO). The NDAAO is obtained from observed se-
quences of binary signals exchanged between the plant
and the controller (sensor signals emitted by the plant
and actuator commands generated by the controller), as
shown in Figure 1. In Klein et al. (2005), it is shown that
the identified NDAAO generates all observed sequences

Controller

Plant

SensorsActuators

Observed
signals

commands to actuators
(controller outputs)

signals from sensors
(controller inputs)

Fig. 1. Closed-loop discrete-event system

of signals used in the identification process. Furthermore,
a trade-off between size and accuracy of the identified
model can be found thanks to an adequate adjustment of
the parametric algorithm used for identification. Indeed,
for reducing the size of the model, equivalent states are
merged, what introduces loops in the NDAAO, generating
sequences that have not been observed. This exceeding
language can increase the number of non-detectable faults
of the system, and may prevent the fault detection scheme
to be implemented. In order to deal with this trade-off,
in Klein et al. (2005), a free parameter k, that is used to
compute the NDAAO, is introduced, and it is shown that
the NDAAO is k + 1-complete in the sense of Moor et al.
(1998), i.e., a sequence of signals of length smaller than
or equal to k+ 1 belongs to the identified NDAAO if, and
only if, it is observed in the system.

In Roth et al. (2009) and Roth et al. (2011), the fault
detection strategy proposed in Klein et al. (2005) is
extended to systems with a high degree of concurrency. As
in Klein et al. (2005), the NDAAO is used, and the same
trade-off between model size and accuracy is observed in
these works.

In this paper, we present a new model for discrete-event
system identification that is more efficient for fault detec-
tion than the method proposed in Klein et al. (2005) and
Roth et al. (2009, 2011), called Deterministic Automaton
with Outputs and Conditional Transitions (DAOCT). The
exceeding language generated by the DAOCT is reduced in
comparison with the exceeding language generated by the
NDAAO, due to a path estimation function that is added
to the model, reducing the number of non-detectable
faults. We also show that if the identified DAOCT does not
have cyclic paths, then there is no exceeding language. As
in Klein et al. (2005), we assume that the binary input and
output signals of the controller are measured, generating
the observed fault-free paths of the system. Using this
information, the DAOCT is computed. The DAOCT also
satisfies the property of k + 1-completeness, if sequences
of observed signals are considered, or, equivalently, k-
completeness if sequences of events are considered.

This paper is organized as follows. In Section 2, we
present some preliminary concepts and the basic ideas
of fault detection based on the fault-free behavior of
the system. In Section 3, we formulate the problem of
system identification with the aim of fault detection, and
in Section 4, we introduce the DAOCT model for system
identification. In Section 5, we present a practical example
to illustrate the results of the paper. Finally, in Section 6,
the conclusions are drawn.

2. PRELIMINARIES

2.1 Notation and Definitions

Let G = (X,Σ, f, x0, Xm) denote a deterministic automa-
ton (Cassandras and Lafortune, 2008), where X is the set
of states, Σ is the finite set of events, f : X × Σ? → X is
the transition function, where Σ? is the Kleene-closure of
Σ, x0 is the initial state of the system, and Xm is the set
of marked states.

The language generated by G is defined as L(G) = {s ∈
Σ? : f(x0, s)!}, where ! denotes is defined. The prefix-
closure of a language L is defined as L = {s ∈ Σ? : (∃t ∈
Σ?)(st ∈ L)}. Notice that the language generated by G is
prefix-closed by definition.

The function of feasible events Γ : X → 2Σ, is defined as
Γ(x) = {σ ∈ Σ : f(x, σ)!}.
The set of all subsequences of a sequence s ∈ Σ? is defined
as Sub(s) = {w ∈ Σ? : (∃t, w, v ∈ Σ?)(s = twv)}.
A path p of an automaton G is a sequence of states and
events that can be executed by the system, i.e., a path
p = (x1, σ1, x2, σ2, . . . , σl−1, xl) is feasible in G if, and only
if, xi ∈ X, for i = 1, 2, . . . , l, σi ∈ Σ, for i = 1, 2, . . . , l− 1,
and f(xi, σi) = xi+1, i = 1, . . . , l− 1. The length of a path
is defined as the number of vertices in the path, and is
denoted here as ‖p‖. Thus, ‖p‖ = l. A path is said to be
cyclic if xl = x1.

Let P be a set of paths, and define function ψ : P → Σ?,
that extracts from a path p ∈ P , the sequence of events
associated with p. Thus, if p = (x1, σ1, x2, σ2, . . . , σl−1, xl),
then ψ(p) = σ1σ2 . . . σl−1.

The length of a sequence of events s ∈ Σ? is denoted as
|s|.
The set of non-negative integers is denoted by N, and the
set formed only with 0 and 1 is denoted by N1 = {0, 1}.
The difference between two sets A and B is denoted by
A \B.

2.2 Fault detection based on the system fault-free behavior

In order to deal with the problem of fault detection of
large automated systems, whose complete behavior can be
very difficult or even impossible to be obtained, mainly the
post-fault behavior, some works in the literature propose
the identification of the fault-free behavior of the system.
The identified model simulates the observed fault-free
behavior of the system, i.e., the language generated by
the identified model contains all observed sequences of the
system, and is used in the fault detection system. The fault
detection system compares the sequences of events or the
status of the signals of sensors and actuators, and declares
the occurrence of a fault when there is a discrepancy
between the observed behavior and the predicted behavior
described by the identified model.

In this paper, we propose a fault detection scheme based
on the identified fault-free behavior of the system. It is
important to remark that since the fault detection scheme
is based only on the fault-free behavior, it is capable

of identifying the occurrence of any fault in the system,
and not only predicted faults. The drawback of adopting
this strategy is that fault isolation is not carried out by
the fault detection scheme. This task can be performed
offline, after the fault has been detected, by analyzing the
history of sequences of events executed by the system and
the status of sensors and actuators. Fault isolation is not
addressed in this work.

3. DISCRETE-EVENT SYSTEM IDENTIFICATION
WITH THE AIM OF FAULT DETECTION

Let us consider the closed-loop system depicted in Figure
1, and assume that the controller has mi binary input
signals, ih, for h = 1, . . . ,mi, and mo binary output
signals, oh, for h = 1, . . . ,mo. Let vector

u(t1) = [i1(t1) . . . imi
(t1) o1(t1) . . . omo

(t1)]
T
,

denote the observation of the controller signals at time
instant t1. Thus, vector u(t1) represents the status of the
system at a given time instant t1. As the system evolves,
the status of the system may change due to changes in
sensor readings or actuator commands. Let us consider
that there is a change in at least one of the variables of u.
Then, at the time instant immediately after this change,
t2, a new vector u(t2) is observed. Since, in this paper,
we consider only untimed system models, we may define
the instantaneous changes in the values of the controller
signals as the system events, σ, and represent the status
of the system u(tj), by uj . Thus, the transition from
one vector of controller signals u1 to another vector u2,
is represented by the transition (u1, σ, u2). If a sequence
of l vectors of controller signals, and the corresponding
changes in these signals, is observed, we have an observed
path of the system p = (u1, σ1, u2, σ2, . . . , σl−1, ul).

The objective of system identification is to find a model
that is capable of describing the observed behavior of
the system. Let us consider that the observed paths of
the system are denoted as pi = (ui,1, σi,1, ui,2, σi,2, . . . ,
σi,li−1ui,li), for i = 1, . . . , r, where r is the number of
observed paths, and li is the number of vertices of each
path pi. Let us also assume that all paths start at the same
vertex, i.e., all I/O vectors ui,1, for i = 1, . . . , r, are equal.
Thus, associated with each path pi there is a sequence of
events si = σi,1σi,2 . . . σi,li−1 and a sequence of output
vectors ωi = ui,1ui,2 . . . ui,li . This leads to the following
definition of the language observed by the system:

LObs :=

r⋃
i=1

{si}. (1)

It is important to remark that we assume in this paper that
none of the paths pi has an associated sequence of events
si that is a prefix of the sequence of events sj of another
path pj , where i 6= j. If this occur, then path pi does not
provide any new information, and can be discarded for
system identification.

Since the objective of system identification is to find a
model that simulates the observed behavior described by
LObs, then the language generated by the identified model,
LIden, must satisfy LObs ⊆ LIden. This relation between
LObs and LIden is depicted in the diagram of Figure 2.

LOrig LIden

LObs
LOrigNI LExc

Fig. 2. Relation between the languages LOrig, LIden, LExc,
and LOrigNI .

In a finite time, only part of the sequences of events that
the system can generate can be observed, which means
that LObs ⊂ LOrig, where LOrig denotes the never known
language generated by the system. The relation between
the observed language and the original language generated
by the system is also described in the diagram of Figure
2.

As it can be seen in Figure 2, two other languages can
be defined: (i) LExc = LIden \ LOrig; and (ii) LOrigNI =
LOrig \ LIdent. LExc represents the sequences of events
that can be generated by the identified automaton but do
not belong to the original behavior of the system. Since
the fault detection strategy is based on the observation
of events and comparison with the sequences generated
by the model, if a sequence of events that is not in the
original fault-free system is observed and is in the language
of the identified model, then the fault is not detected.
Thus, LExc represents faulty sequences that cannot be
detected by the fault detection system. On the other
hand, LOrigNI is associated with the sequences that are
in the original fault-free system, but are not identified
because the paths associated with these sequences have
not been observed. The sequences of events of LOrigNI

are associated with false alarms generated by the fault
detection system. Clearly, both languages must be reduced
in order to obtain an efficient fault detection scheme.

In Klein et al. (2005), it is shown that if the system is ob-
served for a sufficiently long time, then there exists a num-
ber n0 ∈ N such that the difference L≤n0

Orig\L≤n0

Obs ≈ ∅, where

L≤n0

Orig and L≤n0

Obs denote the sets formed with all sequences
of events of length smaller than or equal to n0 of LOrig and
LObs, respectively. Thus, since LObs ⊆ LIden, the subset
of LOrigNI formed with all sequences of events of length

smaller than or equal to n0, L≤n0

OrigNI , is also approximately

the empty set. Let us assume that L≤n0

OrigNI = ∅. Then, all
sequences of events of length smaller than or equal to n0

that does not belong to the identified model are faulty
sequences, and the fault detection system will not raise
false alarms. This assumption is formalized as follows.

A1. All paths of length n0 + 1 of the original system are
observed, and, consequently, L≤n0

OrigNI = ∅.
Assumption A1 being made, the main problem remaining
for fault detection and isolation is to reduce the exceeding
language. In Klein et al. (2005), the parametric identi-
fication algorithm allows to obtain a model satisfying an
important property called k+1-completeness that guaran-
tees that a sequence of I/O signals uj , for j = 1, . . . , k+ 1,

where k is the free parameter used for system identifica-
tion, belongs to the identified NDAAO if, and only if, it
belongs to an observed path pi, i = 1, . . . , r. By increasing
the value of the free parameter k, the exceeding language
generated by the NDAAO, LExc, reduces, but the size of
the model grows. Thus, there is a trade-off to be found
between complexity and accuracy of the identified model.
Some guidelines to choose appropriately k are given in
Klein et al. (2005).

In this paper, an equivalent definition of k-completeness,
based on sequences of events instead of sequences of
observed vectors, is presented. In order to do so, let us
first define the set of all observed paths P := {pi : i ∈ R},
where R = {1, 2, . . . , r}, and the language formed by all
observed subsequences of events of length n, as follows:

Ln
S,Obs := {s ∈ Σ? : (|s| = n)[∃i ∈ R, s ∈ Sub(ψ(pi))]},

where ψ : P → Σ?. Then, a model is said to be k-complete
if for all n ≤ k, Ln

S,Obs = Ln
S,Ident, where Ln

S,Ident is the
set formed by all subsequences of events of the identified
model of length n.

In the next section, we propose an enhanced model for
the identification of DES with the aim of fault detection.
The model satisfies the k-completeness property, and its
exceeding language can be considerably reduced in com-
parison with the NDAAO for the same value of k. There-
fore, with the model proposed in this paper, we can obtain
accurate and compact models that describe the fault-free
system behavior, and that are suitable for fault detection.

4. DETERMINISTIC AUTOMATON WITH OUTPUTS
AND CONDITIONAL TRANSITIONS

We introduce in this paper a modified automaton model
that is suitable for fault detection. The modified automa-
ton is deterministic, with a state output function, and
the transitions must satisfy a condition to be transposed
associated with the observed paths used to construct the
model. This automaton is called Deterministic Automaton
with Outputs and Conditional Transitions (DAOCT), and
is formally defined as follows.

Definition 1. A Deterministic Automaton with Outputs
and Conditional Transitions (DAOCT) is the nine-tuple:

DAOCT = (X,Σ,Ω, f, λ,R, θ, x0, Xf),

where X is the set of states, Σ is the set of events,
Ω ⊂ Nmi+mo

1 is the set of I/O vectors, f : X × Σ? → X
is the deterministic transition function, λ : X → Ω, is the
state output function, R = {1, 2, . . . , r} is the set of path
indices, θ : X × Σ → 2R is the path estimation function,
x0 is the initial state, and Xf ⊆ X is the set of final states.

The sets of events and I/O vectors associated with each
observed path pi, i = 1, . . . , r, are denoted in this paper,
respectively, as Σi and Ωi. Thus, the set of events and the
set of I/O vectors of the identified model are, respectively,
Σ = ∪ri=1Σi and Ω = ∪ri=1Ωi.

The DAOCT is obtained from the observed paths pi,
i = 1, . . . , r, by following the steps of Algorithm 1. As in
Klein et al. (2005), a free parameter k is used to construct
the identified model. Thus, before we present Algorithm
1, let us compute from path pi, a path pki such that the

vertices of pki are sequences of I/O vectors of length at
most equal to k as follows:

pki = (yi,1, σi,1, yi,2, σi,2, . . . , σi,li−1
, yi,li), (2)

where

yi,j =

{
(ui,j−k+1, . . . , ui,j), if k ≤ j ≤ li
(ui,1, . . . , ui,j), if j < k

. (3)

Notice that the sequence of events of pki is equal to the
sequence of events of path pi. Thus, the unique difference
between pi and pki is that each vertex of pki is now
associated with a sequence of vectors instead of a unique
I/O vector.

Lemma 1. Each vertex yi,j of path pki stores the last (k−1)
events executed in path pki , if j ≥ k, and the last (j − 1)
events, if j < k.

Proof. According to Equation 3, each vertex yi,j of path pki
stores the last k I/O vectors generated in path pki , if j ≥ k,
and the last j I/O vectors if j < k. Consequently, the last
(k − 1) signal changes executed in path pki are stored in
vertex yi,j , if j ≥ k, and the last (j−1) signal changes are
stored in yi,j , if j < k. Since the events σi,j are associated
with the signal changes from vector ui,j to ui,j+1, then the
proof is concluded. 2

In the following example we illustrate the computation of
paths pki from observed paths pi, i = 1, 2, . . . , r.

Example 1. Let us consider a system with three binary
controller signals, and let us consider the observation of
three paths pi, i = 1, . . . , 3, given as:

p1 =

([
1
0
0

]
, a,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, d,

[
0
0
1

]
, e,

[
1
0
0

])
,

p2 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, c,

[
0
0
0

]
, i,

[
1
0
0

]
, j,

[
0
1
1

]
, l,

[
1
0
0

])
,

p3 =

([
1
0
0

]
, g,

[
0
0
0

]
, h,

[
1
1
0

]
, b,

[
0
1
1

]
, i,

[
1
1
1

]
,m,

[
0
0
0

]
, d,

[
0
0
1

]
, n,

[
1
1
0

])
,

where each event is associated with the rising or the falling
edge of the controller signals. For instance, a =↑2, denotes
the rising edge of the second controller signal, and b =↓1.↑3,
denotes the falling edge of the first controller signal and
the rising edge of the third controller signal.

According to Equations (2) and (3), and choosing the free
parameter k = 2, we obtain the following modified path
p2

1:

p2
1 =

([
1
0
0

]
, a,

[
1 1
0 1
0 0

]
, b,

[
1 0
1 1
0 1

]
, c,

[
0 0
1 0
1 0

]
, d,

[
0 0
0 0
0 1

]
, e,

[
0 1
0 0
1 0

])
.

The other paths p2
2 and p2

3 are omitted here due to the lack
of space. 2

In order to present the algorithm for the computation of
the identified DAOCT, it is also necessary to define the
labeling function λ̃ : X → Ωk, where Ωk is formed by
all sequences of symbols of Ω of length smaller than or
equal to k. Function λ̃ associates to each state x ∈ X, a
sequence of symbols ωk ∈ Ωk. Let λ̃l(x) denote the last

output vector of λ̃(x).

Algorithm 1. Identification algorithm

Input: Modified observed paths pki , for i = 1, . . . , r

Output: DAOCT = (X,Σ,Ω, f, λ,R, θ, x0, Xf)

1: Create an initial state x0, and define λ(x0) = λ̃(x0) =
y1,1

2: X = {x0}, Xf = ∅
3: for i = 1 to r
4: for j = 1 to li − 1
5: Find the state x ∈ X such that λ̃(x) = yi,j
6: if λ̃(x) 6= yi,j+1 for all x ∈ X then

7: Create state x′ and define λ̃(x′) = yi,j+1

8: X = X ∪ {x′}
9: λ(x′) = λ̃l(x

′)
10: else
11: Find x′ ∈ X such that λ̃(x′) = yi,j+1

12: end if
13: f(x, σi,j) = x′

14: Add i to θ(x, σi,j)
15: if j = li − 1
16: Xf = Xf ∪ {x′}
17: end if
18: end for
19: end for

Each transition x′ = f(x, σ) of automaton DAOCT has a
corresponding set θ(x, σ) of indices that is associated with
the paths pi that contains transition (x, σ, x′). Function
θ is used in the DAOCT evolution rule to provide a
path estimator, such that if the paths associated with a
transition are not coherent with the paths of the observed
sequence of events, then the transition is not enabled. This
fact is clearly presented in the definition of the language
generated by the DAOCT. In order to present the language
generated by the DAOCT, it is first necessary to extend
the domain of function θ to consider the execution of se-
quences of events, obtaining the extended path estimation
function θs : X × Σ? → 2R. θs can be defined recursively
as:

θs(x, ε) = R,

θs(x, sσ) =

 θs(x, s) ∩ θ(x′, σ), where x′ = f(x, s),
if f(x, sσ)!

undefined, otherwise.

(4)

The language generated by the DAOCT is given by

L(DAOCT) := {s ∈ Σ? : f(x0, s)! ∧ θs(x0, s) 6= ∅}. (5)

Notice that a sequence of events s is only feasible in
the DAOCT, if f(x0, s) is defined, and there is at least
one path in the path estimate after the occurrence of s,
represented by condition θs(x0, s) 6= ∅.
It is also possible to define the language formed by all
subsequences of events of length n generated by the
DAOCT as follows:

Ln
S(DAOCT) := {s ∈ Σ? : (|s| = n)[∃xi ∈ X, f(xi, s)! ∧

θs(xi, s) 6= ∅]}. (6)

x0 x1 x2 x3 x4

x5

e,{1} n,{3} h, {2, 3}

l,{2}
j,{2}
g,{2, 3}
i,{2}

i,{3}

m,{3}

a,{1} b,{1, 2, 3} c,{1, 2} d,{1, 3}

Fig. 3. DAOCT computed considering k = 1.

x0 x1 x2 x3 x4 x5

a,{1} b,{1} c,{1, 2} d,{1} e, {1}

x6 x7 x11 x12 x13

x10x9x8

g,{2, 3}

h,{2, 3}

b,{2, 3} i,{3}

m,{3}

d,{3} n,{3}

i,{2}
j,{2} l,{2}

Fig. 4. DAOCT computed considering k = 2.

Example 2. Let us now compute the DAOCT obtained
according to Algorithm 1 considering the observed paths
pi, i = 1, 2, 3, presented in Example 1. In Figures 3 and
4, we present the DAOCT obtained by choosing k = 1
and k = 2, respectively. The final states are represented
by double circles. Notice that each transition is labeled
with an event from Σ, and a set associated with the paths
pki where each transition is defined, i.e., each transition
(x, σ, x′), where x′ = f(x, σ), of the DAOCT is labeled
with σ and θ(x, σ). In addition, notice that, for k = 2, the
corresponding DAOCT is acyclic. 2

The following theorem shows that the observed fault-
free language LObs is a subset of the language generated
by the DAOCT, L(DAOCT), i.e., the identified DAOCT
simulates the observed fault-free language of the system.

Theorem 1. LObs ⊆ L(DAOCT).

Proof. Let s = σi,1σi,2 . . . σi,li−1 be a sequence of events of
an observed path pki = (yi,1, σi,1, yi,2, σi,2, . . . , σi,li−1

, yi,li).
According to Algorithm 1, there is a path in the DAOCT
(x1, σi,1, x2, σi,2, . . . , σi,li−1

, xli), associated with pki , where
xi is not necessarily distinct from xj , for i 6= j, i, j =
1, 2, . . . , li, and i ∈ θ(xj , σi,j), for j = 1, . . . , li − 1. Thus,
any prefix of s belongs to the language generated by
DAOCT, which implies that LObs ⊆ L(DAOCT). 2

In the sequel, we prove that the identified model is k-
complete.

Theorem 2. For a given value of k, the identified DAOCT
is k-complete, i.e., Ln

S(DAOCT) = Ln
S,Obs, for all n ≤ k.

Proof. Since, according to Theorem 1, L(DAOCT) ⊇
LObs, then Ln

S(DAOCT) ⊇ Ln
S,Obs, for all n ≤ k. Let

us now prove that Ln
S(DAOCT) ⊆ Ln

S,Obs. Let p =

(xq, σq, xq+1, σq+1, . . . , σq+n, xq+n+1) be a feasible path of
the DAOCT of length n + 1, i.e., θs(xq, σq . . . σq+n) 6= ∅.
According to Algorithm 1, any transition of p is associated
with a transition in at least one path pki , i = 1, . . . , r. Let
us consider the last transition of p, (xq+n, σq+n, xq+n+1),

and assume that (λ̃(xq+n), σq+n, λ̃(xq+n+1)) is the transi-

tion in path pkx, where x ∈ {1, 2, . . . , r}, associated with

transition (xq+n, σq+n, xq+n+1). Let λ̃(xq+n) = yx,q+n.
According to Lemma 1, all suffixes of length 1, . . . , k − 1
of the sequences that reach yx,q+n must also belong to
pkx. Consequently, σqσq+1 . . . σq+n ∈ Ln

S,Obs, for all n ≤ k,

which implies that Ln
S(DAOCT) ⊆ Ln

S,Obs, for n ≤ k. 2

It is important to remark that LExc = L(DAOCT)\LOrig

can be different from the empty set, which means that the
fault detection system may be not capable of identifying
all system faults. However, this exceeding language is
smaller than the exceeding language L(NDAAO) \ LOrig,
i.e., the exceeding language that is obtained using the
model proposed in Klein et al. (2005). Thus, the enhanced
model proposed in this paper reduces the number of non-
detectable faults in comparison with the NDAAO. In the
next theorem we show that if the DAOCT does not have
cyclic paths, then LExc = ∅.
Theorem 3. If the identified DAOCT does not have cyclic
paths for a given value of k, then LExc = ∅.
Proof. Notice, according to Algorithm 1, that each transi-
tion of the DAOCT is associated with at least one observed
path pi, i = 1, . . . , r. Moreover, since all events of path
pi, i = 1, . . . , r are observable, then, associated with each
path pi, there is a number ni < li such that pi can be
distinguished from all other paths after the observation of
ni events. Consequently, since the DAOCT does not have
cyclic paths, then, after the occurrence of the observed
sequence of events si = ψ(pi), we have that θ(x0, si) = {i}.
In addition, since the DAOCT is acyclic, the intersection
of the path estimates of two transitions leaving the same
state of the DAOCT must be empty, which implies that
all paths pi are uniquely determined before reaching its
corresponding final state. Thus, if a sequence s ∈ Σ? \
LObs is observed, then two possibilities may happen: (i)
f(x0, s) is not defined; or (ii) f(x0, s) is defined, but
θs(x0, s) = ∅. Thus, s 6∈ L(DAOCT), which implies that
L(DAOCT) ⊆ LObs, and, therefore, LExc = ∅. 2

Let us introduce the language generated by the DAOCT
formed with all traces of length smaller than or equal to a
given value n as follows:

L≤n(DAOCT) :=

(
n⋃

i=0

Li
S(DAOCT)

)
∩ L(DAOCT).

According to Theorem 3, if k is chosen such that the
DAOCT does not have cyclic paths, then, LExc =
L(DAOCT) \ LOrig = ∅, and there is no non-detectable
faults. In addition, if Assumption A1 also holds, the ob-
served language L≤n0

Obs is equal to the original system lan-

guage L≤n0

Orig, and there is no false alarms for all observed
traces of length smaller than or equal to n0. Thus, under
both assumptions, L≤n0(DAOCT) = L≤n0

Orig.

Let us now define the subset of the exceeding language
LExc formed with all sequences of length smaller than
or equal to n as L≤nExc = L≤n(DAOCT) \ L≤nOrig. If we
consider that n ≤ n0, then, according to Assumption A1,
L≤nExc can be rewritten as L≤nExc = L≤n(DAOCT)\L≤nObs. In
the following example we compare the exceeding language
L≤nExc, for different values of n ≤ n0, generated by the

Fig. 5. Comparison between the cardinality of the ex-
ceeding language generated by the DAOCT (o) and
NDAAO (∗) models, computed considering k = 1, for
different values of n.

DAOCT model proposed in this paper with the NDAAO
model presented in Klein et al. (2005).

Example 3. In Figure 5, we compare the cardinality of the
exceeding language L≤nExc, generated by the DAOCT model
(o) of Example 2, with the exceeding language generated
by the NDAAO model (∗), for k = 1. Notice that the
exceeding language is greatly reduced using the DAOCT
model in comparison with the NDAAO model. Moreover,
in this case, both models have the same number of states
(6 states). This shows that the DAOCT model is more
appropriate for fault detection then the NDAAO model
proposed in Klein et al. (2005).

It is important to remark that, since, as shown in Example
2, the DAOCT model does not have cyclic paths for
k = 2, then, in accordance with Theorem 3, the exceeding
language generated by the DAOCT model for k = 2 is
empty for all values of n.

5. PRACTICAL EXAMPLE

A sorting unit is depicted in Figure 6 (Estrada-Vargas
et al., 2015). The objective of this system is to sort parcels,
that are randomly delivered to Conveyor 1, according to
their size. Sensors k1 and k2 inform the presence of a
parcel and its corresponding size. If the parcel is a small
one then k1 = 1 and k2 = 0, and if the parcel is a
big one, k1 = k2 = 1. Cylinder A send big parcels to
Conveyor 3, and small parcels to Conveyor 2. When a
parcel is positioned in front of Cylinder B or C, it is sent
to Conveyor 2 or 3, respectively. Notice that concurrent
behavior is possible in this system, since a new parcel may
arrive at the system while another one is being processed.

The controller of the system has 4 outputs and 9 inputs.
Thus, the vector of controller signals uj has, in this case,
13 entries. In order to identify the fault-free behavior of
the system, six paths pi, i = 1, . . . , 6, have been observed,
and we have computed the DAOCT and the NDAAO
models for k = 2, k = 3, and k = 7. In Figure 7, we
compare the cardinality of the exceeding language L≤nExc

Fig. 6. Sorting unit system

Fig. 7. Exceeding language generated by the DAOCT (o)
and NDAAO (∗) models, computed considering k = 2,
k = 3 and k = 7, for the sorting unit.

for different values n. As it can be seen from Figure 7,
the exceeding language of the DAOCT model is greatly
reduced in comparison with the exceeding language for
the NDAAO model for all values of k. The number of
states of the DAOCT is 60, 70, and 97, for k = 2, k = 3,
and k = 7, respectively, while the number of states of
the NDAAO is 49, 61, and 92, for k = 2, k = 3, and
k = 7, respectively. Although the NDAAO leads to more
compact models than the DAOCT for the same value of
k, the exceeding language is much larger. Notice that the
number of states of the NDAAO for k = 3 is close to the
number of states of the DAOCT for k = 2. However, the
exceeding language generated by the NDAAO obtained
considering k = 3 is greater than twice the exceeding
language of the DAOCT obtained considering k = 2, for
n = 25. These results show that using the DAOCT model,
more accurate and compact models can be obtained than
using the NDAAO model. It is also important to remark
that, in this example, the identified DAOCT does not
have cyclic paths for k ≥ 19. Thus, only for k ≥ 19,
the exceeding language L≤nExc associated with the DAOCT
model is empty for all values of n.

6. CONCLUSIONS

We present in this paper a new model for the identification
of the fault-free system behavior. Since the exceeding

language of the model is reduced in comparison with
other models proposed in the literature, it is more suitable
for fault detection. We are currently investigating a fault
detection strategy based on the identified model.

REFERENCES

Cabral, F.G. and Moreira, M.V. (2017). Synchronous
codiagnosability of modular discrete-event systems. In
IFAC World Congress, 7025–7030. Toulouse, France.

Cabral, F.G., Moreira, M.V., Diene, O., and Basilio, J.C.
(2015a). A Petri net diagnoser for discrete event systems
modeled by finite state automata. IEEE Transactions
on Automatic Control, 59–71.

Cabral, F.G., Moreira, M.V., and Diene, O. (2015b). On-
line fault diagnosis of modular discrete-event systems. In
Decision and Control (CDC), 2015 IEEE 54th Annual
Conference on, 4450–4455. IEEE.

Cassandras, C. and Lafortune, S. (2008). Introduction to
Discrete Event System. Springer-Verlag New York, Inc.,
Secaucus, NJ.

Debouk, R., Lafortune, S., and Teneketzis, D. (2000).
Coordinated decentralized protocols for failure diagnosis
of discrete event systems. Discrete Event Dynamic
Systems: Theory and Applications, 10(1), 33–86.

Estrada-Vargas, A.P., López-Mellado, E., and Lesage, J.J.
(2015). A black-box identification method for auto-
mated discrete event systems. IEEE Transactions on
Automation Science and Engineering, 14(3), 1321–1336.

Klein, S., Litz, L., and Lesage, J.J. (2005). Fault detec-
tion of discrete event systems using an identification
approach. In 16th IFAC World Congress, 92–97. Prague,
Czech Republic.

Moor, T., Raisch, J., and Young, S. (1998). Supervisory
control of hybrid systems via l-complete approxima-
tions. In Proceedings of the IEEE Workshop on Discrete-
Event Systems, 426–431. Cagliari, Italy.

Moreira, M.V., Jesus, T.C., and Basilio, J.C. (2011). Poly-
nomial time verification of decentralized diagnosability
of discrete event systems. IEEE Transactions on Auto-
matic Control, 1679–1684.

Qiu, W. and Kumar, R. (2006). Decentralized failure
diagnosis of discrete event systems. IEEE Transactions
on Systems, Man, and Cybernetics Part A:Systems and
Humans, 36(2), 384–395.

Roth, M., Lesage, J.J., and Litz, L. (2009). An FDI
method for manufacturing systems based on an iden-
tified model. In 13th IFAC Symposium on Informa-
tion Control Problems in Manufacturing (INCOM2009),
1406–1411. Moscow, Russia.

Roth, M., Lesage, J.J., and Litz, L. (2011). The concept of
residuals for fault localization in discrete event systems.
Control Engineering Practice, 19(9), 978–988.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamo-
hideen, K., and Teneketzis, D. (1995). Diagnosability
of discrete-event systems. IEEE Trans. on Automatic
Control, 40(9), 1555–1575.

Zaytoon, J. and Lafortune, S. (2013). Overview of fault
diagnosis methods for discrete event systems. Annual
Reviews in Control, 308–320.

