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Abstract

The purpose of this paper is to develop an explicit construction of consistent utilities,

using the stochastic flows approach developed in El Karoui & Mrad (2013, 2020). Starting

from a family of utility functions indexed by some parameter α (for example the risk

aversion coefficient or any other parameter), the idea is to randomize α and to construct

non-standard stochastic utility processes. Two approaches are developed. The first one

consists of building directly from the class {Uα, α ∈ R} a global utility U as a sup-

convolution. The second approach which is very different, consists to define from the

class (Xα, Y α)α∈R of monotonic optimal processes, associated with the class {Uα, α ∈ R},
a global pair (X∗, Y ∗) as a mixture. The non standard stochastic utility is then obtained

by composing stochastic flows and is interpreted as the aggregate utility of all considered

agents.

1 Introduction

The aim of this work is to build a large class of consistent utilities using ideas of stochastic

change of variables introduced in El Karoui & Mrad (2013, 2020) in a Itô’s framework where

both securities and dynamic utilities are modeled as continuous Itô’s semimartingales. The

concept of consistent stochastic utilities, also called ”forward dynamic utilities”, has been in-

troduced by Musiela & Zariphopoulou (2003, 2007, 2010, 2011) ; since then this notion appears
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in the literature in varied forms, in the work of Choulli et al. (2007), Henderson & Hobson

(2007), Berrier et al. (2009), Zitkovic (2008) and in El Karoui & Mrad (2013). Intuitively,

a stochastic utility should represent the individual preferences of an agent that are possibly

changing over time. The agent’s preferences are affected over time by the information avail-

able on the market represented by the filtration (Ft, t ≥ 0) defined on the probability space

(Ω,P,F). The agent starts with today’s specification of his utility, U(0, x) = u(x) , and then

builds the process U(t, x) for t > 0 taking into account the information flow given by (Ft, t ≥ 0).

Consequently, the utility, denoted by U(t, x) is a progressive process depending on time and

wealth, t and x, which is as a function of x strictly increasing and concave. In contrast to the

standard literature, there is no pre-specified trading horizon at which the utility is assigned.

Consequently the initial function u(x) is given in place of U(T, x) where T is the time horizon

in the classical problem.

The results of this work can be applied to describe the behavior of a representative agent in an

economy. Indeed, most of general equilibrium macroeconomic models are simplified by assum-

ing that consumers and/or firms could be described as a representative agent. That is agents

may differ and act differently, but at equilibrium the sum of their choices is mathematically

equivalent to the decision of one individual. In the meantime, the existence of an equilibrium is

not always satisfied and equilibrium are often stated and studied in a complete market setting.

One key point for the existence of equilibrium is that agents agree on the same state price

density process. This so called Pareto optimality is considered, to our knowledge for the first

time with dynamic utilities, in Section 3. However, if no equilibrium exists, we would also like

to propose a way of aggregating the preferences of heterogeneous investors in a given economy.

This is developed in Sections 4 and 5.

In Section 2, we introduce the general framework of this work: the notion of progressive

utilities, the consistent utility’s definition and we recall some results, from El Karoui & Mrad

(2013, 2020), that will be used extensively in this paper. In Section 3, we give ourselves a family

of consistent utility processes indexed by a parameter α, {Uα, α ∈ R} and a finite positive

Borel measure m(dα). Denoting by Ũα the dual convex conjugate of Uα, we define the convex

process Ũ s(t, y) =
∫
Ũα(t, y)m(dα) and show, assuming that all Ũα generate the same optimal

state price density process denoted by Y ∗ (Pareto-Optimality principle), that Ũ s is the dual

convex conjugate of a consistent utility U s. We show also, in Theorem 3.1, that U s(t, x) is the

sup-convolution of the concave functions Uα(t, x) (see Barrieu & El Karoui (2005) for similar

result, with only two investors, in the standard framework of exponential utilities). Moreover,

the optimal wealth process associated with U s is a mixture of optimal wealths X∗,α (associated

with consistent utilities Uα) starting from a given initial allocation {xα(x), α} of the global

2



initial wealth x,

X∗(t, x) =

∫
X∗,α(t, xα(x))m(dα), with

∫
xα(x)m(dα) = x, (1.1)

where u is the inverse Fenchel’s transform of Ũ s(0, y). This observation is the starting point for

the rest of the paper. Instead of aggregating utilities (not flexible enough and restrictive) we

propose to aggregate portfolios and state prices and then generate new utilities using a general

result obtained in El Karoui & Mrad (2013, 2020). This idea will be developed in two stages

in the rest of the paper. In Section 4.2, we give ourselves a finite positive Borel measure m(dα)

and a family of deterministic utility functions {uα, α ∈ R}. In a first step, we generate, from

{uα, α ∈ R} (using techniques combining a change of numeraire and a change of probability)

a new family of consistent utilities processes {Uα, α ∈ R} whose optimal processes (strictly

increasing with respect to their initial conditions) are denoted by X∗,α and Y ∗,α, α ∈ R. As

the processes Y ∗,α, α ∈ R are not necessarily the same, we will rather consider another state

density price Y ∗(y) := yY ∗ such that Y ∗X∗,α is a martingale for any α. Thereafter, for a given

family of strictly increasing positive functions xα, α ∈ R, satisfying
∫
xα(x)m(dα) = x for all

x, the next step is then to build a new (monotonic) portfolio X∗, as a mixture of X∗,α, α ∈ R,

i.e.,

X∗(t, x) =

∫
X∗,α(t, xα(x))m(dα), X∗0 (x) =

∫
xα(x)m(dα) = x. (1.2)

From this, after verifying that X∗Y ∗ is a martingale and denoting by X the inverse of X∗ with

respect to its initial condition, we generate a new consistent utility U from any initial condition

u as follows

U(t, x) := Y ∗t

∫ x

0

ux(X (t, z))dz. (1.3)

As it is defined this consistent utility is not a mixture of utility processes Uα, α ∈ R. Its

initial condition u could be any deterministic utility function, not necessarily equal to the sup-

convolution of initial functions (uα)α∈R as it is the case of Section 3. Moreover, {xα(.), α ∈ R}
in (1.2) are not necessarily Pareto-optimal. These last two points give us additional degrees of

freedom and then one can generate a larger class of consistent utilities and one can aggregate

more heterogeneous agents.

In Section 4.3, we show that the time-decreasing (zero volatility) consistent utilities fully char-

acterized by Berrier et al. (2009) and Musiela & Zariphopoulou (2010) are a very particular

case of both constructions proposed in Sections 3 and 4.2. We also give a new proof of the

main results of these papers, based on Mellin’s transform and that exploits the linearity of the

dual equation satisfied by the convex dual of time-decreasing dynamic utility. It is this linearity

which is the key point of the aggregation.
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Finally, in Section 5, to provide a utility class even richer, the class {Uα, α ∈ R} is very general

and similarly as for X∗ a dual process Y ∗ is generated as a mixture of optimal processes Y ∗,α

for a given family of strictly increasing functions yα,

Y ∗(t, y) =

∫
Y ∗,α(t, yα(y))m(dα), Y ∗0 (y) =

∫
yα(y)m(dα) = y. (1.4)

The utility process proposed is then defined by

U(t, x) :=

∫ x

0

Y ∗t (ux(X (t, z)))dz, (1.5)

for any utility function u satisfying some integrability conditions.

2 Preliminaries

Utility function: Throughout this paper, we make the standard assumptions for a utility

function U . A utility U : R→ R∪{−∞} is increasing, continuous on {U > −∞}, differentiable

and strictly concave on the interior of {U > −∞} and such that Ux goes to zero when the wealth

x goes to infinity, i.e.,

Ux(∞) := lim
x→∞

Ux(x) = 0.

As regards the behavior of the (marginal) utility at the other end of the wealth scale we shall

distinguish throughout the paper two cases.

Case 1 (negative wealth not allowed): in this setting we assume that U satisfies the conditions

U(x) = −∞, for x < 0, while U(x) > −∞, for x > 0, and that

Ux(0) := lim
x↘0

Ux(x) =∞. (2.1)

Case 2 (negative wealth allowed): in this case we assume that U(x) > −∞, for all x ∈ R, and

that

Ux(−∞) := lim
x↘−∞

Ux(x) =∞. (2.2)

In the first part of this work, we restrict ourselves only to the first case before considering the

second one in Section 5.

Proper concave and convex functions: In convex analysis and optimization, a proper

convex function is a convex function f taking values in the extended real number line such that

f(x) < +∞ for at least one x and f(x) > −∞ for every x. That is, a convex function is proper

if its effective domain is nonempty and if it never attains −∞. A proper concave function is

any function g such that f = −g is a proper convex function.

4



Some properties of proper functions: Denote by f̃ the Fenchel’s transform of f defined

by f̃(y) = maxx∈Q
(
f(x)− xy

)
.

(i) The convex conjugate f̃ of a lower semi-continuous (lsc) proper concave function f is lsc

proper convex function.

(ii) The infimal convolution (or epi-sum) of two functions f and g is defined as

(f�g)(x) = inf
y∈R
{f(x− y) + g(y)}.

Let f1, . . . , fm be proper, convex and lsc functions on R. Then the infimal convolution is well

defined convex and lsc (but not necessarily proper), and satisfies

F := (f1� . . .�fm) is such that F̃ = f̃1 + . . .+ f̃m.

Progressive utility and its Fenchel’s conjugate We start with the definition of a pro-

gressive utility as progressive random field with concavity property.

Definition 2.1 (Progressive Utility). A progressive utility is a continuous progressive random

field on R, U = {U(t, x); t ≥ 0, x ∈ R} such that,

(i) Utility property: U is strictly concave, strictly increasing, and non negative.

(ii) Regularity property: U is a C2-random field, with continuous first and second

derivatives random fields Ux and Uxx.

(iii) Inada conditions: U goes to 0 when x goes to 0 and the derivative Ux goes to ∞
when x goes to 0, and to 0 when x goes to ∞.

Note, if negative wealth are allowed, the Inada conditions become: U goes to 0 when x goes

to −∞ and the derivative Ux goes to ∞ when x goes to −∞.

Given its importance in convex analysis, we introduce together with any progressive utility U,

its convex conjugate Ũ (also called conjugate progressive utility (CPU)), that is the Fenchel-

Legendre transform of the convex random field −U(.,−).

Definition 2.2 (Progressive conjugate utility). The convex conjugate of the progressive utility

U is the progressive random field Ũ defined on R∗+ by Ũ = {Ũ(t, y); t ≥ 0, y > 0}, where

Ũ(t, y)
def
= maxx>0

(
U(t, x)− x y

)
.

(i) Ũ is twice continuously differentiable, strictly convex, strictly decreasing, with Ũ(., 0+) =

U(.,+∞), Ũ(.,+∞) = U(., 0+), a.s.

(ii) The marginal utility Ux is the inverse of the opposite of the marginal conjugate utility

Ũy, that is Ux(t, .)
−1(y) = −Ũy(t, y), with Inada conditions Ũy(., 0

+) = −∞, Ũy(.,+∞) = 0.

(iii) The bi-dual relation holds true U(t, x) = infy>0,y∈Q+

(
Ũ(t, y) + x y

)
.

Moreover Ũ(t, y) = U
(
t,−Ũ(t, y)

)
+ Ũy(t, y) y, and U(t, x) = Ũ

(
t, Ux(t, x)

)
+ xUx(t, x).
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The notion of progressive utility is very general and should be specified so as to represent

more realistically the dynamic evolution of the individual preferences of an investor in a given

financial market. The market input is described by a vector space of portfolios incorporating

feasibility and trading constraints and high liquidity. We give ourselves, a sub-set X of port-

folios (playing the role of learning class) to which we will calibrate the dynamic utility of an

investor. We associate to this class the set Y of adjoint processes also called state density

processes,

Y := {Y ≥ 0 : Y X is a local martingale for any X ∈X }. (2.3)

Following Musiela & Zariphopoulou (2003, 2004, 2007), a X -consistent dynamic utility is

defined as follows.

Definition 2.3 (X -consistent Utility). A X -consistent stochastic utility process U(t, x) is

a positive random field with the following properties:

Concavity assumption : for t ≥ 0, x 7→ U(t, x) is an increasing concave function, (in short

utility function) .

Consistency : For any test wealth process X ∈X , E(U(t,Xt)) < +∞ and

E(U(t,Xt)|Fs) ≤ U(s,Xs), ∀s ≤ t .a.s.

Existence of optimal wealth: For any initial wealth, there exists an optimal wealth process

X∗ ∈X , such that X∗0 = x, and U(s,X∗s ) = E(U(t,X∗t )|Fs) ∀s ≤ t.

The consistency property is the analog of the dynamic programming principle in the classical

theory of backward expected utility maximization.

It is shown, in El Karoui & Mrad (2013, 2020), that the convex conjugate Ũ of a consistent

utility U is consistent with the family Y of state price density processes in the following sense:

for any Y ∈ Y the process Ũ(t, Yt) is a submartingale and martingale for an optimal choice

Y ∗t (y) = Ux
(
t,X∗t (−Ũy(0, y))

)
. Ũ(t, y) is said to be a Y -consistent stochastic dual utility.

Notation: When the utility random field is defined on [0,+∞], the set X consists only of

positive processes, it will be denoted X +.

2.1 The power consistent stochastic utilities

Power utilities are widely considered in the literature by economists because they allow to carry

out calculations and thus obtain closed formulas for the optimal processes. Moreover, in an

economic equilibrium, as the one described by He & Leland (1993), a utility function can only

be a mixture of power utilities, otherwise the equilibrium can not exist, see El Karoui & Mrad

(2020).
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In this section, we look for X +-consistent power utilities U (α)(t, x) = Z
(α)
t

x1−α

1−α where α

is the risk aversion coefficient and Z(α) is a semimartingale which is calibrated to satisfy the

consistency property. As in the deterministic framework, the conjugate function Ũ (α)(t, y) is

given by Ũ (α)(t, y) = −Z̃(α)
t

y1−
1
α

1− 1
α

with Z̃
(α)
t =

(
Z

(α)
t

) 1
α .

Thanks to the consistency property, there exists an optimal portfolio X
(a),∗
t (x) such that

U (α)(t,X
(α),∗
t (x)) =

1

1− α
Z

(α)
t

(
X

(α),∗
t (x)

)1−α
is a martingale, (2.4)

and s.t. Ux(t,X
(α),∗
t (x)) = Y

(α),∗
t (x−α) is a state price density process with initial condition x−α.

In particular, using the intuitive factorization Z
(α)
t = Z

(α,σ)
t .Z

(α,⊥)
t where Z

(α,⊥)
t is a martingale

s.t. < Z(α,σ), Z(α,⊥) >=< X(α),∗, Z(α,⊥) >= 0, we see that Z
(α,σ)
t (X

(α),∗
t (x))−α = x−αY 0

t , where

Y 0
t is the minimal state price density. The optimal wealth X

(α),∗
t (x) is linear with respect to

its initial condition: X
(α),∗
t (x) = xX

(α),∗
t (1) where X

(α),∗
t (1) also denoted X̄

(α),∗
t is the optimal

portfolio starting from x = 1. Consequently,

(I)


Z

(α)
t = Z

(α,⊥)
t Y 0

t (X̄
(α),∗
t )α, Z̃

(α)
t = X̄

(α),∗
t

(
Ȳ

(α),∗
t

) 1
α

X
(α),∗
t (x) = xX̄

(α),∗
t , Y

(α),∗
t (y) = yZ

(α,⊥)
t Y 0

t

U (α)(t, x) = 1
1−α Ȳ

(α),∗
t X̄

(α),∗
t ( x

X̄
(α),∗
t

)1−α, Ũ (α)(t, y) = − Ȳ
(α),∗
t X̄

(α),∗
t

1− 1
α

(
y

Ȳ
(α),∗
t

)1− 1
α

(2.5)

where we have used the fact that Y (a),∗(y) = yȲ (a),∗.

Remark: Identities X
(α),∗
t (x) = xX̄

(α),∗
t and Y

(α),∗
t (y) = yȲ

(α),∗
t show that these optimal

processes are increasing in x and y with inverse flows X (α)
t (x) = x/X̄

(α),∗
t and Y(α)

t (y) = y/Ȳ
(α),∗
t .

From this point, it is straightforward to check that U (α)(t, x) and Ũ (α)(t, y), taking u(x) = x1−α

1−α ,

have the following representations,

U (α)(t, x) =

∫ x

0

Y
(α),∗
t

(
ux(X (α)

t (z))
)
dz, Ũ (α)(t, y) =

∫ +∞

y

X
(α),∗
t

(
− ũy(Y(α)

t (z))
)
dz. (2.6)

Note, in particular, that Y
(α),∗
t (ux(x)) = U

(α)
x (t,X

(α),∗
t (x)).

The next section comes back into details to this interesting representation of stochastic utility

and its dual convex. We recall also, as established in El Karoui & Mrad (2013, 2020), that

this characterization is not specific to the power-type utilities.

2.2 Main recent results characterizing consistent utilities

In the theory of dynamic utilities, the first characterizations of these random fields were obtained

by Berrier et al. (2009) and Musiela & Zariphopoulou (2010, 2011) in the particular case where

the volatility of the utility is zero and such utilities satisfy standard PDE. Later, a general

characterization is given by El Karoui & Mrad (2013) using stochastic characteristics method
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to solve the utility SPDE, for which classical result not apply. A direct approach, in abstract

form, is developed in El Karoui & Mrad (2020) in which minimal regularity assumptions on

processes are done and general results are obtained by methods of analysis and compounding

maps without stochastic calculus.

In El Karoui & Mrad (2013, 2020), the dual problem has been considered with the same

attention as the primal one. This highlight the role played by the processes Ux(t,X
∗
t ) and

especially this emphasizes the perfect symmetry between the primal problem whose optimum

is X∗ and the dual one whose optimum is Y ∗t (ux(x)) = Ux
(
t,X∗t (x)

)
. In particular, this

naturally leads to the next result (Theorem 2.1) characterizing these utilities from the optimality

condition combined with the monotonicity of X∗ and Y ∗ with respect to their initial conditions.

Furthermore, it is sometimes easier to consider the dual convex Ũ than the utility U , as it is

the case of the decreasing stochastic utilities recalled in Section 4.3.

The following theorem summarizes a series of results established in El Karoui & Mrad (2013,

2020). It gives the necessary and sufficient condition of consistency and existence of an opti-

mum. It also gives sufficient conditions that we meet more often in the context of finance and

economics.

Theorem 2.1. Let (X∗, Y ∗) be a pair of a wealth process X∗ ∈ X + and a state density price

process Y ∗ ∈ Y assumed to be continuous and increasing resp. in x and y from 0 to +∞ s.t.

X∗t (0) = Y ∗t (0) = 0, X∗t (+∞) = Y ∗t (+∞) = +∞ a.s. for any t. Denote by X and Y the

inverse flows of X∗ and Y ∗. Let u be a deterministic utility function and consider the random

field U defined by

U(t, x) =

∫ x

0

Y ∗t
(
ux(X (t, z))

)
dz. (2.7)

Necessary and sufficient condition: U is well defined and is a X +-consistent stochastic

utility with optimal portfolio X∗ and optimal state density price Y ∗ if and only if for any

(x, x′), x < x′, there exists an optional process ψt(x, x
′) taking values in the interval (x, x′),

such that the process
(
X∗t (x′)−X∗t (x)

)
Y ∗t
(
ux(ψt(x, x

′))
)

is a martingale.

Moreover, the dual convex conjugate of U is given by

Ũ(t, y) =

∫ +∞

y

X∗t
(
− ũy(Y(t, z))

)
dz. (2.8)

Remark 2.1. The necessary and sufficient condition is satisfied if one of the following state-

ments holds

(i) {Y ∗t (ux(x))
(
X∗t (x′)−X∗t (x)

)
} is a supermartingale ∀x > 0, x′ > 0.

(ii) X∗(x) is differentiable and {X∗x(t, x)Yt(ux(x))} is a martingale for any x > 0.
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(iii) Strong orthogonality: {X∗t (x)Yt(y)} is a martingale for any x > 0, y > 0.

The sufficient conditions (ii) and (iii) are the most useful.

Note that in this theorem no regularity in time is required. Indeed, these results are valid

in a general framework covering processes with jumps and can even apply in a discrete frame

to learn the utility of an agent. Moreover, the application of these results goes well beyond

the scope of finance and economics because they are based solely on properties of monotonicity

and process orthogonality.

3 Sup-Convolution of X -consistent Utilities

The first aggregation method that I propose is the sup-convolution, based on the principle

of Pareto optimality which is one of the most widely used principles in economics and more

precisely in the theory of economic equilibrium, see for example the original paper Pareto

(1913) and also Censor (1977), Majumdar et al. (1980) and Migdalas et al. (2008). Closer to

our approach see Barrieu & El Karoui (2005) for a case of two agents with exponential utility

functions, but to our knowledge this question has never been addressed for dynamic utilities.

Let X to be any set of wealth processes and we are interested in mixtures of X -consistent

utilities that are still X -consistent. For instance, we want to evaluate the gain of diversification

over the different K business units of a financial firm, modeled by different stochastic utilities

U i(t, x) assumed to be proper concave functions, for example with different risk aversion coef-

ficients. Remark that these utilities are not necessarily of the same type (the case where the

utilities are all of the same type, for example a power or exponential type, is a particular case).

The goal is to find the fair allocation of the wealth x between the different units, in the

following sense: find (x∗1, x
∗
2..., x

∗
K) with

∑K
1 x∗i = x such that

U s(t, x) = sup{
K∑
i=1

U i(t, xi)| ∀i xi ≥ 0, and
K∑
i=1

xi = x} (3.1)

achieves its maximum on (x∗1, x
∗
2..., x

∗
K). We then study the aggregate progressive utility U s 1.

In particular, we are looking for sufficient conditions under which U s is an X -consistent utility.

In convex analysis, the utility U s(t, x) is known as the sup-convolution of the concave functions

U i(t, x). Such utilities are easier to study from the dual point of view since Ũ s(y) =
∑K

1 Ũ i(t, y).

The same problem may be extended to a continuous set of units U θ with a positive finite measure

m(dθ).

Ũ s(t, y) =

∫
Ũ θ(t, y)m(dθ). (3.2)

1Assuming the functions Uθ(t, .) to be proper guarantees that Us(t, .) is well defined by (3.1).
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Mixture of convex dual utilities and sup-convolution Consider a family Ũ θ(t, y) of

convex X -consistent dual utilities (U θ the associated primal functions) and define Ũ s(t, y) =∫
Ũ θ(t, y)m(dθ). Denote by ũ(.) = Ũ s(0, .) and by u its inverse Fenchel’s transform.

Assumption 3.1. Assume that at any time t, the convex functions Ũ θ(t, .) are proper contin-

uously differentiable such that y 7→ Ũ s(t, y) is continuously differentiable with first derivative

Ũ s
y (t, y) =

∫
Ũ θ
y (t, y)m(dθ).

As a consequence, for any state price density process Y ν , Ũ s(t, Y ν
t ) =

∫
Ũ θ(t, Y ν

t )m(dθ)

is a submartingale, as a sum of positive submartingales and the martingale property can be

achieved only for a process Y ∗t such that Ũ θ(t, Y ∗t ) is a martingale, for any θ. In other words,

Y ∗ must be a common optimal dual process.

By the first order optimality condition, X∗t (x) = −Ũ s
y (t, Y ∗t (ux(x))), it follows

X∗t (x) = −
∫
Ũ θ
y

(
t, Y ∗t (ux(x))

)
m(dθ). (3.3)

Denoting by X∗,θ the optimal wealth generated by U θ, since Y ∗ is the optimal state price

density process for all the consistent utilities U θ, we have X∗,θt (x) = −Ũ θ
y (t, Y ∗t (uθx(x))). From

this, it is easy to check that

− Ũ θ
y (t, Y ∗t (ux(x))) = Xθ

t

(
(uθx)

−1(ux(x))
)
, (3.4)

and thus X∗ is the aggregation of optimal wealths X∗,θ,

X∗(t, x) =

∫
X∗,θ(t, xθ(x))m(dθ), for xθ(x) = (uθx)

−1(ux(x)). (3.5)

One of the main result of this paper is the following.

Theorem 3.1. Let {Ũ θ(t, y), θ} be a family of proper convex dual utilities. If Pareto-optimality

holds then necessarily they have the same optimal process Y ∗. Moreover,

(i) The utility process U s with the dual transform Ũ s(t, y) =
∫
Ũ θ(t, y)m(dθ) is given as the

Sup-Convolution of U θ:

U s(t, x) = sup{
∫
U θ(t, xθ(x))m(dθ);

∫
xθ(x)m(dθ) = x}. (3.6)

(ii) The supremum is achieved at the family

{x̂θ(t, x) := (U θ
x)−1

(
t,−(Ũ s

y )−1(t, x)
)
, θ} satisfying

∫
x̂θ(t, x)m(dθ) = x, ∀t. (3.7)

(iii) U s is a X -consistent stochastic utility with optimal wealth

X∗(t, x) =

∫
X∗,θt (x̂θ(0, x))m(dθ). (3.8)

Moreover, for any θ, we have the identity x̂θ(t,X∗t (x)) = X∗,θt (x̂θ(0, x)).

10



This result extends the one established in El Karoui & Mrad (2020), for a mixture of power

utilities with constant relative risk aversion θ.

Proof. (i) and (ii): As it is defined, the random field U s(t, x) is given by

U s(t, x) := inf
y>0
{Ũ s(t, y) + xy} = inf

y>0
{
∫
Ũ θ(t, y)m(dθ) + xy}. (3.9)

In particular for any family of functions xθ(x) :
∫
xθ(x)m(dθ) = x, U s(t, x) can be written as

U s(t, x) = inf
y>0
{
∫ (

Ũ θ(t, y) + yxθ(x)
)
m(dθ)}. (3.10)

Additionally, as Ũ θ is the convex conjugate of U θ, we have

Ũ θ(t, y) + yxθ(x) ≥ U θ(t, xθ(x)).

Plugging this into (3.10), leads to

U s(t, x) ≥
∫
U θ(t, xθ(x))m(dθ) with

∫
xθ(x)m(dθ) = x. (3.11)

Therefore

U s(t, x) ≥ sup
xθ:

∫
xθ(x)m(dθ)=x

∫
U θ(t, xθ(x))m(dθ). (3.12)

To conclude it remains to establish the equality. First from Assumption 3.1, using

(U s
x)−1(t, y) = −Ũ s

y (t, y) and (U θ
x)−1(t, y) = −Ũ θ

y (t, y), (3.13)

it follows that
∫

(U θ
x)−1(U s

x(x))m(dθ) = x so that the family {x̂θ(t, x) := (U θ
x)−1(t, U s

x(t, x)), θ}
satisfies the condition ∫

x̂θ(t, x)m(dθ) = x. (3.14)

Second, using the dual identity

U θ(t, x) = Ũ θ(t, U θ
x(t, x)) + xU θ

x(t, x), (3.15)

it follows that

U θ(t, x̂θ(t, x)) = Ũ θ
(
t, U θ

x

(
t, (U θ

x)−1(t, U s
x(t, x))

))
+ (U θ

x)−1
(
t, U s

x(t, x)
)
U θ
x

(
t, (U θ

x)−1(t, U s
x(t, x))

)
= Ũ θ

(
t, U s

x(t, x)
)

+ U s
x(t, x)(U θ

x)−1(t, U s
x(t, x))

= Ũ θ
(
t, U s

x(t, x)
)

+ U s
x(t, x)x̂θ(t, x). (3.16)

11



Integrating with respect to the parameter θ, yields∫
U θ(t, x̂θ(t, x))m(dθ) =

∫
Ũ θ
(
t, U s

x(t, x)
)
m(dθ) + U s

x(t, x)

∫
x̂θ(t, x)m(dθ)

(3.2) and (3.14)
= Ũ s(t, U s

x(t, x)) + xU s
x(t, x) = U s(t, x). (3.17)

Combining this with (3.12) yields (i) and (ii).

Let now focus on assertion (iii): by assumption Ũ is the convex conjugate of U s, which is

consistent with the family of state density processes Y , and achieves its maximum on Y ∗ also

optimal for all utilities Ũ θ. This leads, by analogy between the dual and primal problem, to

the consistency of U s as explained above. We have now to show the optimality of the process

X∗t :=
∫
X∗,θ(t, x̂θ(x))m(dθ) i.e., the martingale property of U s(t,X∗t ).

At first, by the first order optimality condition, the optimal primal process X∗t (x) is necessarily

equal to −Ũ s
y (t, Y ∗t (U s(0, x))). As Y ∗ = Y ∗,θ, ∀θ, once again by the optimality first order

condition it follows that the individual optimal wealth processes are given by

X∗,θt (x) = −Ũ θ
y

(
t, Y ∗t (U θ

x(0, x))
)
. (3.18)

Consequently,

X∗t (x) = −Ũ s
y

(
t, Y ∗t (U s(0, x))

)
:= −

∫
Ũ θ
y

(
t, Y ∗t (U s(0, x))

)
m(dθ)

=

∫
X∗,θt

(
− Ũ θ

y (0, U s
x(0, x))

)
m(dθ) =

∫
X∗,θt (xθ(x))m(dθ) (3.19)

Now, the dual identity and the optimality of Y ∗ lead to

U s(t,X∗t (x)) = Ũ s
(
t,−Ũ s

y (t,X∗t (x))
)

+ Ũ s
y (t,X∗t (x))X∗t (x))

= Ũ s(t, Y ∗t (−Ũ s
y (0, x))) + Y ∗t (−Ũ s

y (0, x))X∗t (x)) (3.20)

which implies, since it is the sum of two martingales, that (U s(t,X∗t (x)))t is a martingale.

To achieve the proof, let us show the identity x̂θ(t,X∗t (x)) = X∗,θt (x̂θ(0, x)). By definition

x̂θ(t, x) := (U θ
x)−1(t, U s

x(t, x)). Using the identities U s
x(t,X∗t (x)) = Y ∗t (U s

x(0, x)) = U θ
x

(
t,X∗,θ

(
− Ũ θ

y

(
0, U s

x(0, x)
)))

,

x̂θ(0, x) := −Ũ θ
y

(
0, U s

x(0, x)
)
,

(3.21)

it follows

x̂θ(t,X∗t (x)) = −Ũ θ
y

(
t, U s

x(t,X∗(t, x))
)

= −Ũ θ
y

(
t, U θ

x

(
t,X∗,θ(−Ũ θ

y (0, U s
x(0, x)))

))
= X∗,θt

(
− Ũ θ

y (0, U s
x(0, x)

)
= X∗,θt (x̂θ(0, x)). (3.22)
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Example Consider the case of power utilities studied in Section 2.1 where the parameter θ

plays the role of the relative risk aversion α: Uα(t, x) = Z
(α)
t

x1−α

1−α . Taking Z
(α),⊥
t ≡ 1, ∀α, the

state price density Y ∗ = Y 0 is optimal for all U θ. According to the system (I), one easily gets,

in this case, that the convex conjugate Ũ s of the consistent utility U s is given by

Ũ s(t, y) =

∫
− 1

1− 1
α

Y 0
t X

(α)
t

(
y/Y 0

t

)1− 1
αm(dα), (3.23)

with the deterministic initial dual utility

Ũ s(0, y) = ũs(y) =

∫
− 1

1− 1
α

y1− 1
αm(dα). (3.24)

4 Aggregated utilities from aggregating portfolios: the

simplest case.

In the previous section, we aggregated dual utilities Ũα under Pareto-optimality condition.

We therefore obtained new results, in this stochastic utility framework. Nevertheless, Pareto-

optimality constrains the class because it imposes a common dual process. In the same way if

we aggregate the utilities Uα then we should, by analogy, arrive at an equivalent constraint,

i.e., we must have a unique optimal portfolio X∗ = X∗,α, ∀α. To summarize, if we aggregate

the utilities, the portfolio must be constrained and if we aggregate the duals then the state

price is constrained. That limits our classes.

The goal in the sequel is to build an even larger class without any restrictions on wealths

or state prices. Our idea is very simple but effective: the global wealth in an economy can only

be the sum of the wealth of all investors. We then propose to aggregate wealth and state prices

instead of utilities. In other words, we want to have freedom on the way to how we aggregate

both portfolios and state prices.

To be more explicit, we must go beyond the abstract framework considered so far, we will place

ourselves within the framework of an Itô financial market.

4.1 The model setup:

Let W = (W1,W2, ...,Wn)T (.T for the transpose operator) be a n-standard Brownian mo-

tion, defined on the filtered probability space (Ω,F ,P). (Ft)t≥0 is the P-augmented filtration

generated by the Brownian motion W . Let r denotes the market interest rate and η denotes

the market minimal risk premium. We assume that r and η are F -progressively measurable

satisfying the usual integrability condition∫ T

0

(rt + ||ηt||2)dt < +∞ a.s ∀T. (4.1)
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It is standard to assume that any positive wealth process Xκ follows a self-financing strategy

xκ, that is a Itô-semimartingale satisfying the self-financing equation 2

dXκ
t = Xκ

t

[
rtdt+ κt.(dWt + ηtdt)

]
. (4.3)

Throughout this paper, a process Xκ solution of (4.2) is said to be an admissible test wealth

if κt is constrained to be in some linear space Rt ⊂ Rn, we denote by R⊥t its orthogonal. To

fix the notations, the set of admissible wealth processes is denoted X +. We also recall that in

this model setup Y is the set of positive semimartingales Y ν whose dynamics are

dY ν
t

Y ν
t

= −rtdt+ (νt − ηt).dWt, νt ∈ R⊥ :

∫ T

0

||νt||2dt <∞, ∀T. (4.4)

In other words, for any wealth process (Xκ, κ ∈ R), Y νXκ is a local martingale. Since, ν.η = 0

for any ν ∈ R⊥, Y ν is decomposed as the product Y 0E(ν) where E(δ) denotes the exponential

martingale defined by

Et(δ) = exp
(∫ t

0

δs.dWs −
1

2

∫ t

0

||δs||2ds
)
. (4.5)

Definition 4.1. To simplify notations, in what follows, a semimartingale Z is said to satisfy

a SDE(µ, σ) if it is solution of the equation

dZt = µ(t, Zt)dt+ σ(t, Zt)dWt. (4.6)

In this framework, dynamic utility U is modeled as an Itô semimartingale following the dy-

namics

dU(t, x) = β(t, x)dt+ γ(t, x)dWt, (4.7)

and we recall, see El Karoui & Mrad (2013), that regular stochastic utilities are solutions of

the following HJB-SPDE,

dU(t, x) =
[
− xrtUx(t, x) +

1

2Uxx(t, x)
‖Ux(t, x)ηt + γRx (t, x)‖2

]
dt+ γ(t, x).dWt. (4.8)

γ denotes the volatility vector of U and γRx denotes the orthogonal projection onto the space of

admissible portfolio R of its x-derivative denoted γx. Moreover, the optimal policy κ∗ is given

by

xκ∗t (x) = − 1

Uxx(t, x)
(Ux(t, x)ηt + γRx (t, x)). (4.9)

The associated optimal wealth process Xκ∗ is simply denoted X∗. The adjoint optimal process

Y ∗t = Ux(t,X
∗
t ) is solution of the SDE (4.4) with optimal dual policy given by yν∗(t, y) =

γ⊥x
(
t,−Ũy(t, y)

)
.

2In the case where the test wealth processes are not necessarily positive, the self-financing equation for a

self-financing strategy π is

dXπ
t = Xπ

t rtdt+ πt.(dWt + ηtdt). (4.2)
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4.2 Randomized Risk Aversion

The idea developed at the beginning of Section 4 is the starting point for the construction of

a large class of consistent dynamic utilities. The proposed method will be first developed in

details in the context of power utilities. This enables us, before describing the general method,

to explain in a simple case different steps and the role of different parameters that are involved

in the construction. The general case will be presented in Section 5. To get started, we recall a

result giving sufficient conditions under which X +-consistent stochastic utilities are obtained

by combining a power utility function uα(x) = x1−α

1−α with some positive process Z satisfying

dZt
Zt

= µZt dt+ δZt .dWt, (4.10)

where we assume in addition to (4.1), that
∫ T

0
(µZt + ||δZt ||2)dt <∞ a.s. ∀T .

For simplicity, for any random field (Mt(z))t,z the process (Mt(1))t (starting from 1 at t = 0)

is simply denoted by Mt.

In this semimartingale framework, we can give more details on the necessary dynamics of the

process Zα of Section 2.1 and also that of the optimal processes Xα,∗ and Y α,∗. The following

result is established in Mrad (2009).

Proposition 4.1. Let uα be a power utility with risk aversion α that is uα(x) = x1−α

1−α . Assume

that parameters of diffusion µZ , δZ of Z satisfy the following equation

µZt = −(1− α)rt −
1− α

2α
‖ηt + δZ,σt ‖2. (4.11)

Then the stochastic process Uα defined by Uα(t, x) = Ztu
α(x) is a X +-consistent utility with

optimal policy

κ∗,αt (x) =
1

α

(
ηt + δZ,σt

)
. (4.12)

In turn, the optimal wealth Xα,∗ and dual Y α,∗ processes are given by, X∗,αt (x) : = xX̄∗,αt = xe
∫ t
0

(
rs+

1
α

(
ηs+δ

Z,σ
s

)
.ηs

)
dsEt(η+δZ,σ

α
)

Y α,∗
t (y) : = Uα

x (t,X∗t (y−
1
α )) = yȲ δZ,⊥

t = ye−
∫ t
0 rsdsEt(δZ,⊥ − η)

(4.13)

Remark 4.1. (i) X∗,α and Y ∗,α are linear with respect to their initial conditions. This property

will play an important role in the sequel. In particular, it provides an explicit formula for the

corresponding inverse flows.

(ii) Y ∗,α(y) = yȲ δZ,⊥ is the same for all α.

(iii) The volatility δZ can be chosen independently of α and thus ακ∗,α = α′κ∗,α
′
.
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Random risk aversion: At this stage the coefficient α, which is the relative risk aversion,

was supposed constant, it is about the simplest case of the power X +-consistent utilities

considered in Section 2.1. But it is completely conceivable that this risk aversion is in general

random. Indeed we can imagine at date t = 0 that the investor pulls at random the value of

this coefficient. For every value α he associates:

(i) a weight m(α) (m is a finite positive measure s.t
∫
R∗+
m(dα) = 1),

(ii) a proportion xα(x) of its initial wealth (strictly increasing on x, xα(x)→∞ if x→∞ and

xα(0) = 0) that he is going to invest on the financial market by considering the utility process

Uα. He will so realize a wealth X∗,α(xα(x)) associated with this edition and achieved by the

optimal strategy κα,∗.

His final wealth is consequently the sum of the processes X∗,α(xα(x)) weighted by the measure

m, i.e., using the notation X̄∗,αt := X∗,αt (1) X∗t (x) =
∫
R∗+
X∗,αt (xα(x))m(dα) =

∫
R∗+
xα(x)X̄∗,αt m(dα),

X∗0 (x) = x =
∫
R∗+
xα(x)m(dα).

(4.14)

By monotonicity assumption of xα, X∗ is strictly increasing on x and satisfies

dX∗t (x)

X∗t (x)
= rtdt+ κ∗t (X

∗
t (x)).

(
dWt + ηtdt

)
, (4.15)

where the volatility vector κ∗t (X
∗
t (x)) is given, since κ∗,αt (x) = 1

α

(
ηt + δZ,σt

)
, by

κ∗t (X
∗
t (x)) :=

[ ∫
R∗+

X∗,αt (xα(x))

X∗t (x)

1

α
m(dα)

](
ηt + δZ,σt

)
. (4.16)

Denote by X (x) the inverse function of X∗(x) and let u be any utility function of class

C1(]0,+∞[) continuous at x = 0 with u(0) = 0. Furthermore, in addition to (4.1), assume

for the rest of this section the following,

Assumption 4.1. Suppose that α 7→ δZ

α
is uniformly bounded.

First, this assumption ensures that the process X∗Y δZ,⊥
t

3 is a martingale (strong orthogonality

in Theorem 2.1, Remark 2.1). Taking Y ∗t (y) = yȲ δZ,⊥
t ( Ȳ δZ,⊥

t := Y δZ,⊥
t (1)), it follows, according

to Theorem 2.1 that the process U(t, x) defined by

U(t, x) = Ȳ δZ,⊥

t

∫ x

0

ux(X (t, z))dz (4.17)

is a consistent stochastic utility.

The following result summarizes our first construction from aggregating portfolio without

Pareto-optimality.

3Where we recall that Y δ
Z,⊥

is the process defined by
dY δ

Z,⊥
t

Y δ
Z,⊥

t

= −rtdt + (δZ,⊥t − ηt).dWt and δZ,⊥ is the

orthogonal projection of δ onto the space R⊥.
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Theorem 4.1. Let m be a Borel measure and (xα(.))α∈R be a class of increasing functions s.t.

x =
∫
R∗+
xα(x)m(dα). Consider the state price Y ∗ = yY δZ,⊥ and

(
X∗,α

)
α∈R the family of optimal

processes in Proposition 4.1 and define X∗ by

X∗t (x) =

∫
R∗+
X∗,αt (xα(x))m(dα). (4.18)

It is a strictly increasing admissible wealth process solution of (4.15). Under Assumption 4.1,

for any initial utility function u, the progressive utility

U(t, x) = Ȳ δZ,⊥

t

∫ x

0

ux(X (t, z))dz (4.19)

is a non-zero volatility X -consistent stochastic utility with optimal pair (X∗(x), Y ∗). Further-

more, the convex conjugate of U is given by

Ũ(t, y) =

∫ ∞
y

X∗t (−ũy(
z

Ȳ δZ,⊥
t

))dz =

∫ ∞
y

∫
R∗+
xα(−ũy(

z

Ȳ δZ,⊥
t

))X∗,αt m(dα)dz. (4.20)

In that way, we generate a family of non-standard consistent utilities from aggregating

optimal wealth processes X∗,α associated with a family of power consistent utilities. Note that,

this stochastic utilities depend, first on the family of functions xα, α ∈ R∗+, second on the

choice of the measure m, third on the process Z (µZ , δZ) and finally on the initial condition u.

Note also, that the initial utility function u is not necessarily a power one. Moreover, this

stochastic utilities are built from optimal wealth and dual processes associated with simple

utilities indexed by a parameter α.

Example Let u in (4.20) such that its Fenchel’s transform function ũ is given by

− ũy(y) = (ux)
−1(y) =

∫
R∗+
y−

1
αm(dα). (4.21)

Take xα = [(ux)
−1]−

1
α that is xα(ux)(x) = x−

1
α . Take also, r ≡ 0 and δ ≡ 0 (i.e., Y δ⊥ = Y 0 is

the inverse of the market numeraire portfolio corresponding to ν = 0 in (4.4)). Subsequently,

the dual is given by

Ũ(t, y) =

∫
R∗+

1

1− 1
α

(
1− y1− 1

α X̄∗,αt (Y 0
t )

1
α

)
m(dα). (4.22)

It suffices to observe that

X∗,αt (Y 0
t )

1
α = exp(−1− α

2α

∫ t

0

||ηs||2ds), (4.23)

and then to conclude with

Ũ(t, y) =

∫
R∗+

1

1− 1
α

(
1− y1− 1

α e−
1−α
2α

∫ t
0 ||ηs||

2ds
)
m(dα), (4.24)
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which is the convex conjugate of the time-decreasing consistent (forward) utilities characterized

by Berrier et al. (2009) and Musiela & Zariphopoulou (2010, 2011). Certainly this family of

utilities is a special case of the class that we propose in this section, but it should be emphasized

that the nice characterization obtained by the authors cited above is not obvious because the

starting point for their studies is the search for convex solutions of some space-time harmonic

PDE. The following paragraph recalls their results but also offers a simpler new proof (in the

same spirit of this paper) explaining how these time-decreasing utilities are necessarily mixtures

of power utilities.

4.3 Decreasing consistent utilities: new interpretation and a direct

characterization

Herein, we deepen the class of decreasing (in time) consistent utilities. They have a volatility

vector γ identically zero which simplifies considerably the dual SPDE. Indeed, taking γ ≡ 0

and r ≡ 0, it follows from equation (4.8), that U is a solution of the following PDE

dU(t, x) =
1

2

Ux(t, x)2

Uxx(t, x)
||ηt||2dt, (4.25)

whereas the convex conjugate Ũ satisfies

Ũt(t, y)(ω) = −1

2
y2Ũyy(t, y)(ω)||ηt(ω)||2 (4.26)

which implies, by convexity, that t 7→ Ũ(t, y) is a decreasing function. Moreover, it is easy to

recognize that the right hand side of this PDE is the diffusion’s operator LGBt,y (ω) of a geometric

Brownian motion with coefficients ηt(ω) applied to Ũ : Ũt(t, y)(ω) = −LGBt,y Ũ(t, y)(ω). This

observation suggests to look for positive solutions which are space-time harmonic functions of

a geometric Brownian motion. Using the results of Widder (1963, 1975), Berrier et al. (2009)

and Musiela & Zariphopoulou (2010, 2011) show the following result which characterizes all

regular dual convex conjugate of decreasing consistent utilities.

Theorem 4.2. Let U(t, x) be a regular random field of class C1 × C3 on (t, x). Assume that

U satisfies the PDE (4.25). Then U is a consistent stochastic utility if and only if there

exists a constant C ∈ R and a finite Borel measure m, supported on the interval (0,+∞) with

everywhere finite Laplace transform, such that Ũ(t, y) =
∫
R∗+

1
1− 1

α

(
1− y1− 1

α e−
1−α
2α

∫ t
0 ||ηs||

2ds
)
m(dα) + C,

Ũy(0, y) = −
∫
R∗+
y−

1
αm(dα).

(4.27)

Moreover the optimal wealth process is strictly increasing and regular with respect to its initial

condition x.
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At date t = 0 the dual conjugate Ũ(0, y) is the integral of the the convex conjugate 1−y1−
1
α

1− 1
α

of power utilities weighted by the measure m. As in our construction in Section 4.2, the investor

starts from a power utility for which he pull at random the risk aversion; for any realization α

he associates the power utility uα weighted by m(dα). The derivative of the convex conjugate

of his utility at any date t is then the integral of the convex conjugates of power utility where

the deterministic measure m becomes stochastic mt(dα) := e−
1−α
2α

∫ t
0 ||ηs||

2dsm(dα) to ensure that

the process Ũ is the dual of a decreasing consistent utility. From this last point, one can also

see that these utilities are a particular case of Section 3 where we aggregate any dual utilities.

Thus applying Theorem 3.1, we obtain a direct characterization of the decreasing consistent

utility as a sup-convolution.

Theorem 4.3 (New Characterization). According to Theorem 3.1, any decreasing forward

utility U is a Sup-Convolution:

U(t, x) = sup
xα:

∫
xα(x)m(dα)=x

∫
(xα(x))1−α

1− α
e

1−α
2

∫ t
0 ||ηs||

2dsm(dα). (4.28)

Alternative proof of Theorem 4.2, using Mellin’s Transform The fact that the dual

utility of a time-decreasing progressive utility is not at all surprising and quite natural since

the aggregation of several solutions of a linear PDE remains a solution of the same equation.

Herein, we give a new proof of Theorem 4.2, different from that given Berrier et al. (2009)

and Musiela & Zariphopoulou (2010, 2011) where authors use the Widder’s Theorem. The

advantage of this new proof is its simplicity, does not require any technicality and knowledge

in PDE’s theory, it is a nice illustration of aggregations which are the subject of this paper. It

is based on Mellin’s transform and exploits the linearity of the dual equation (4.26).

To do this, we need the the following integrability hypothesis.

Assumption 4.2. The initial condition u is such that there exists a positive finite Borel mea-

sure µ supported on R such that y 7→ ũ(y)yp is integrable with respect to µ for any p ∈ R
(
∫∞

0
ũ(y)ypµ(dy)) < +∞).

A simple example of such functions ũ satisfying this integrability condition, is the class

of ũ that are bounded by a power function, that is there exist p0 ∈ R and c > 0 such that

|ũ(y)| ≤ cy−p0 , y > 0 (these type of functions ũ have been considered in Karatzas & Shreve

(2001)). In this case, one can easily observes that y 7→ ũ(y)yp ≤ yp−p0 is integrable with respect

to any measure ν supported on ]0,∞[ for any p < p0 − 1.

New proof of Theorem 4.2 using Mellin’s Transform. Clearly the dual equation (4.26)

is simpler to study than the primal one (4.25). So we will investigate the problem in terms of
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the dual convex. Indeed, by martingale property of Ũ(t, yY 0
t ), one can easily observe, using

Itô-Ventzel’s formula, that

dŨ(t, yY 0
t ) = −yY 0

t Ũy(t, yY
0
t )ηtdWt, (4.29)

which becomes, denoting by Ṽ (t, y) := Ũ(t, yY 0
t ),

dṼ (t, y) = −yṼy(t, y)ηtdWt. (4.30)

Let now introduce Mellin’s transform which is an integral transform that may be regarded as

the multiplicative version of the bilateral Laplace transform. Mellin’s transform of Ṽ is defined

by

Mt(p) :=

∫ +∞

0

yp−1Ṽ (t, y)µ(dy). (4.31)

Since the process Ũ(t, yY 0
t ) is a martingale, Mt(p) is well defined, finite almost surely. Indeed

E(Mt(p)) ≤
∫ +∞

0

yp−1ũ(y)µ(dy) < +∞. (4.32)

Let us now focus on the dynamics of the process M . For this, remark that Mellin’s transform

M̂ of yṼy(t, y), using integration by part and integrability conditions, is given by

M̂t(p) : =

∫ +∞

0

ypṼy(t, y)µ(dy) = −p
∫ +∞

0

ypṼ (t, y)µ(dy) + C(p)

= −pMt(p) + C(p) (4.33)

with C(p) := limy→0 y
pṼ (t, y) which is null except for at most a single point p0. So without loss

of generality, we assume C(p) = 0 everywhere. This implies that the process Mt(p) is solution

of

dMt(p) = pMt(p)ηt.dWt (4.34)

which has a unique solution given by

Mt(p) = M0(p)E(p

∫ t

0

ηs.dWs), (4.35)

which easily rewrites

Mt(p) = M0(p)(Y 0
t )−pe−p

p+1
2

∫ t
0 ‖ηs‖

2ds. (4.36)

To come back to Ṽ (t, y) = Ũ(t, yY 0
t ), we apply Mellin’s inverse transform: there exists a

constant C1 such that

Ũ(t, yY 0
t ) =

∫ +∞

−∞
y−pMt(p)µ(dp) + C1 (4.37)
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which becomes, using (4.36),

Ũ(t, yY 0
t ) =

∫ +∞

−∞
(yY 0

t )−pe−p
p+1
2

∫ t
0 ‖ηs‖

2dsM0(p)µ(dp) + C1 (4.38)

and finally, by change of variable yY 0
t 7→ y, it follows

Ũ(t, y) =

∫ +∞

−∞
y−pe−

p(1+p)
2

∫ t
0 ‖ηs‖

2dsM0(p)µ(dp) + C1. (4.39)

Moreover, note that the condition Ũt < 0 holds if and only if p > −1. Thus, this leads to

Ũ(t, y) =

∫ +∞

−1

y−pe−
p(1+p)

2

∫ t
0 ‖ηs‖

2dsM0(p)µ(dp) + C1 (4.40)

and by change of variable q = p+ 1

Ũ(t, y) = −
∫ +∞

0

1

1− q
y1−qe−

q(1−q)
2

∫ t
0 ‖ηs‖

2ds(1− q)M0(q − 1)µ(dq) + C1. (4.41)

Denote by ν the finite Borel measure supported on [0,∞[ defined by ν(dp) := M0(p)µ(dp)/p,

we get

Ũ(t, y) =

∫ +∞

0

1

1− q
(
1− y1−qe−

q(1−q)
2

∫ t
0 ‖ηs‖

2ds
)
ν(dq) + C (4.42)

for some constant C. In particular, we have that the initial dual utility ũ is necessarily of the

form

ũ(y) =

∫ +∞

0

1

1− q
(1− y1−q)ν(dq) + C. (4.43)

Which is the characterization of a decreasing consistent utility Theorem 4.2.

Note that the optimal wealth process X∗ is given by the closed formula

X∗(t, x) =

∫ ∞
0

(ux(x)Y 0
t )−pe

−p(1−p)
2

∫ t
0 ‖ηs‖

2dsν(dp) (4.44)

and it is strictly increasing with respect to its initial condition x. Moreover, the optimal

dual process is Y ∗(y) = yY 0 with inverse Y(y) := (Y ∗)−1(y) = y/Y 0. Then, one can easily

verifies that the random field Ũy is obtained by the general form of Theorem 2.1, that is

Ũy(t, y) = −X∗
(
t,−ũy

(
Y(t, y)

))
.

Of course, this result was already established in Berrier et al. (2009) and Musiela & Za-

riphopoulou (2010) but the novelty here, that merits to be integrated into this work, is that we

propose a very simple and direct proof of the result, without using the time change techniques

and Widder’s results. Besides, Musiela & Zariphopoulou (2010, 2011) developed several exam-

ples with different measures m as well as properties of the associated optimal wealth, something

we do not develop here.
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Comments Before continuing our investigations, the following point needs to be highlighted.

In a first reading one might think that the necessary condition (4.43) on the initial function u

and the dependence (4.44) of the optimal wealth on this function is in contradiction with the

rest of the paper where we emphasize that the choice of u does not play a very important role in

our main results. But in fact, this result is entirely consistent with the previous paragraphs and

even a nice application of our results. Indeed, starting from the optimal portfolio X∗ given by

equation (4.44), one can easily construct a new consistent utility having X∗ as optimal process

starting from an initial utility function v and generating a monotonic optimal dual process

Y ν∗(y) (not necessarily equal to yY 0) with inverse Y , as follows:

Ṽy(t, y) = −X∗
(
t,−ṽy(Y(t, y))

)
= −

∫ ∞
0

(
ux
(
− ṽy(Y(t, y))

)
Y 0
t

)−p
e
−p(1−p)

2

∫ t
0 ‖ηs‖

2dsν(dp). (4.45)

Clearly this process is strictly convex non-zero volatility (not decreasing in time). Moreover Ṽ

is the Fenchel transform of a consistent utility V . To be convinced, just apply the results of

Theorem 2.7 in El Karoui & Mrad (2013), to the compound process X∗
(
t,−ṽy(Y(t, y))

)
, using

the fact that Y is a solution of a SPDE since it is the inverse process of Y ∗ solution of a SDE.

Finally, if we want V to be a time-decreasing utility that is if we want its volatility vector is

null, then a simple application of Itô’s formula leads to Y(t, y) = y/Y 0
t , ux(−ṽy(Y(t, y))Y 0

t ) = y

which consistent with Theorem 4.2.

5 Aggregating wealths and state density price processes

In this section, we go even further in our reasoning and consider couples (X∗,α, Y ∗,α) associated

with any dynamic utilities
(
Uα
)
α∈R without any restrictions either on the type or on the

meaning of the parameter α, with the possibility of taking X∗,α not necessarily positive (with a

little more integrability conditions). This does not change our construction in any way because

we do not really use Uα to built a new utility. The important point is that (X∗,α, Y ∗,α) are

monotonic in their initial conditions, if this is the case then the aggregation pair (X∗, Y ∗) are

still monotonic and one can apply Theorem 2.1 to generate a new consistent dynamic utilities.

Thus, this section generalizes the method proposed and provides a larger class of consis-

tent utilities which will allow us to consider a much more heterogeneous agents. The power

and exponential utilities in what follows are also concrete examples to illustrate the proposed

method.
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5.1 Randomized parameter α, the general principle:

The idea developed in Section 4.2 is generalized as follows.

At date t = 0 the investor pulls at random the value of the risk aversion coefficient4. For every

value α he associates:

(i) a weight m(α) (m is a finite positive measure s.t
∫
R∗+
m(dα) = 1),

(ii) a proportion xα(x) of its initial wealth (positive strictly increasing on x) that he is going

to invest on the financial market by considering Uα as utility, he will so realize X∗,α(xα(x)) as

wealth achieved by the optimal policy πα,∗5.

(iii) a function yα(.), α ∈ R∗+ (strictly increasing y, yα(y)→∞ if y →∞ and null for y = 0).

His final (global) wealth is consequently the sum of the processes X∗,α(xα(x)) weighted by the

measure m, i.e.

X∗t (x) =

∫
R∗+
X∗,αt (xα(x))m(dα), X∗0 (x) = x =

∫
R∗+
xα(x)m(dα). (5.1)

By monotonicity of xα and that of X∗,α, X∗ is strictly increasing on x and satisfies

dX∗t (x) = rtX
∗
t (x)dt+ π∗t (X

∗
t (x)).

(
dWt + ηtdt

)
, (5.2)

where the volatility vector κ∗t (X
∗
t (x)) is given by

π∗t (X
∗
t (x)) :=

∫
R∗+
πα,∗t (X∗,αt (xα(x)))m(dα). (5.3)

By analogy, we consider the state price density Y ∗ defined as the sum of the processes Y α,∗

weighted by the measure m, i.e.

Y ∗t (y) =

∫
R∗+
Y ∗,αt (yα(y))m(dα), Y ∗0 (y) = y

def
=

∫
R∗+
uαx(yα(y))m(dα). (5.4)

Consequently, the increasing process Y ∗t solves

dY ∗t (y)

Y ∗t (y)
= −rtdt+

(
ν∗t (Y ∗t (y))− ηt

)
dWt (5.5)

with

ν∗t (Y ∗t (y)) :=

∫
R∗+

Y α,∗
t (yα(y))∫

R∗+
Y α,∗
t (yα(y))m(dα)

να,∗t (Y α,∗
t )m(dα). (5.6)

Subsequently, assuming α 7→ π∗,α and α 7→ ν∗,α are uniformly bounded by some t-integrable

function, it follows that, the optimal policies satisfy∫ T

0

(||π∗s(X∗s (x))||2 + ||ν∗s (Y ∗s (y))||2)ds <∞, a.s. ∀T. (5.7)

4To be more precise, if uα is a power utility α is the relative risk aversion and the absolute risk aversion if

uα is an exponential one.
5πα,∗(x) = xκ∗ when wealth processes are modeled positive.
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Thus, the pair of processes (X∗t (x), Y ∗t (y)) which are increasing with respect to their initial

condition (x, y) are such that their product X∗(x)Y ∗(y) is a true martingale for any (x, y)

(Strong orthogonality in Theorem 2.1, Remark 2.1).

Then, according to Theorem 2.1, the process U defined by

U(t, x) =

∫ x

0

Y ∗(t, ux(X (t, z)))dz (5.8)

is a X -consistent stochastic utility. The associated optimal portfolio is X∗ and the optimal

state price density process is Y ∗, in particular Y ∗t (ux(x)) = Ux(t,X
∗
t (x)).

To summarize, we need the following global Assumption,

Assumption 5.1. (i) Let (X∗,α)α∈R be a family of positive admissible wealth processes solving(
SDE(xr + π∗,αη, π∗,α)

)
α∈R and assume that x 7→ X∗,αt (x) are a.s. strictly increasing for any

t from R to R.

(ii) Let (Y ∗,α)α∈R be a family of state price density processes solving
(
SDE(−yr, y(ν∗,α −

η))
)
α∈R. Assume and y 7→ Y ∗,αt (y) to be a.s. strictly increasing for any t from R+ to R+.

(iii) m is a positive Borel measure and (xα)α∈R and (yα)α∈R are two families of increasing

functions s.t. x =
∫
R∗+
xα(x)m(dα), y =

∫
R∗+
yα(y)m(dα) for any x, y.

Under this Assumption, the following result summarizes our general construction from ag-

gregating both portfolios and state pricess without Pareto-optimality.

Theorem 5.1. Under Assumption 5.1, the following aggregations,
X∗t (x) :=

∫
R∗+
X∗,αt (xα(x))m(dα), X∗0 (x) = x (5.9)

Y ∗t (y) =

∫
R∗+
Y ∗,αt (yα(y))m(dα), Y ∗0 (y) = y, (5.10)

are respectively an admissible wealth process x-increasing, solution of the SDE(xr + π∗η, xπ∗)

and a price density process y-increasing, solution of the SDE(−yr, y(ν∗− η)), where π∗ is given

by (5.3) and ν∗ is given by (5.6).

Moreover, if (5.7) holds and X∗,α(x)Y ∗,α
′
(y) are martingales for any x, y, α and α′, then for

any initial utility function u, the progressive utility U defined by

U(t, x) =

∫ x

0

Y ∗t
(
ux(X (t, z))

)
dz where X (x) = (X∗)−1(x), (5.11)

is X -consistent with optimal processes X∗ and Y ∗.

Remark 5.1. It is important to note that this section generalizes not only the results of Section

4.2 but also that of Section 3 with Sup-convolution and Pareto-optimality, it suffices to impose

the same state price and to choose well the initial allocation functions xα.
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The construction described in this section is very general, nonetheless to provide illustrative

examples, it is essential to give an explicit formula for the inverse flow X . We can always

invert X∗ numerically and simulate U , see Section 4 of Gobet & Mrad (2018), but it is almost

impossible to give a closed formula for X in general except for a few special cases. One of these

special cases is the framework of the Proposition 4.1 and its extension Proposition 5.1 below.

The proposed class of new dynamic utilities is very rich.

5.2 Examples

In the construction proposed in Section 4.2, which we are going to extend here, the volatility δZ

of the process Z (used to define dynamic utility from deterministic one in Proposition 4.1 ) is

independent of the index parameter α, while the investor can decide to assign to each function

uα a process Z(α) whose volatility δ(α) depends on the risk aversion α. Moreover, for simplicity

we have chosen the process Y ∗(y) proportional to Ȳ δ(α),⊥ := Y δ(α),⊥(1), i.e. Y ∗(y) = yȲ δ(α),⊥ , so

it is possible, as explained above, to construct by the same reasoning, as the one used to built

a global wealth X∗, a state price density process Y ∗ using a family of functions {yα, α ∈ R∗+}.
All these observations with the possibility of taking X∗,α not necessarily positive, open the way

for a natural generalization to the example of Section 4.2 even in the context of utility functions

uα that are not of a power type.

To get started, let us detail how it is possible to generate stochastic utilities from any family

of utility functions uα indexed by a parameter α. The idea is the same as that of Proposition

4.1. Let uα an utility function not necessary of power type and let N
(α)
t and Z

(α)
t two positive

processes such that

dN
(α)
t

N
(α)
t

= µ
N,(α)
t dt+ δ

N,(α)
t .dWt,

dZ
(α)
t

Z
(α)
t

= µ
Z,(α)
t dt+ δ

Z,(α)
t .dWt, Z0 = 1. (5.12)

Note that Zα and Nα depend on the choice of α. Next result, proved at first in Mrad

(2009), generalizes Proposition 4.1. In particular, it gives sufficient conditions on the triplet

(uα, N (α), Z(α)) under which the process Uα(t, x) := Z
(α)
t uα(x/N

(α)
t ) is a consistent utility.

Proposition 5.1. Let uα be a utility function.

(i) Assume that N (α) is an admissible positive wealth process, i.e.(δN,(α) ∈ R, µN,(α) = r +

η.δN,(α)) and Z(α) is a martingale such that Z(α)Xκ/N (α), κ ∈ R is a local martingale for

any κ ∈ R. Then the process Uα defined by Uα(t, x) = Z
(α)
t uα(x/N

(α)
t ) is a consistent

stochastic utility with optimal wealth process Xα,∗ = N (α).

(ii) If uα is a power or an exponential utility, then the condition ”Z(α) is martingale, Z(α)Xκ/N (α)

is a local martingale for any κ ∈ R ” can be relaxed:
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a) If uα is a power utility, the relaxed condition is given by Proposition 4.1.

b) If uα is an exponential utility that is uα(x) = 1
α
e−αx, it suffices to take Z(α) and N (α)

such that

µN,(α) = r + σN,(α).η, µZ,(α) =
1

2
‖η − δN,(α) + δZ,(α),σ‖2, δN,(α) ∈ R. (5.13)

In this case, the optimal policy κα,∗ is given by

xκα,∗t (x) = xδ
N,(α)
t +

N
(α)
t

α

(
ηt − δN,(α)

t + δN,(α),σ
)
. (5.14)

Moreover, x 7→ xκα,∗t (x) is a globally Lipchitz function.

In all cases X∗,α(x) is strictly increasing in x.

This result gives sufficient conditions under which Uα, defined above, is a X -consistent

stochastic utility. Note also that this result generalizes the one in Musiela & Zariphopoulou

(2008) in the case of u being an exponential utility.

In the following paragraphs, explicit illustrations are given, based on utilities functions of power

and exponential type. Main tools are the results of Proposition 5.1.

5.2.1 Example 1: Consistent utilities from optimal processes associated with

power utilities functions

In this paragraph, we are interested by applying the previous construction to the case where

utilities uα are of power type. For this, we consider a family {Z(α);α > 0} such that Z(α)

satisfies, for each α, the following dynamics

dZ
(α)
t

Z
(α)
t

= −
(
(1− α)rt +

1− α
2α
‖ηt + δ

Z,(α),σ
t ‖2

)
dt+ δ

(α)
t .dWt, Z(α)0 = 1. (5.15)

Remark that contrary to the frame of Proposition 4.1, see Remark 4.1, the volatility vector

δZ,(α) depends on the parameter α, which generalizes the construction of Section 4.2.

To ensure that X∗Y ∗ is a martingale we make Assumption 4.1 in addition to (4.1), that is

α 7→ δ(α)

α
is uniformly bounded.

According to Proposition 4.1 the process Uα(t, x) = Z
(α)
t

x1−α

1−α , is a X +-consistent dynamic

utility such that the optimal policy κ∗ is given by κ∗t (x) = 1
α

(
ηt + δ

Z,(α),σ
t

)
. Moreover, the

optimal wealth process Xα,∗ and the optimal dual process Y α,∗ associated with this power

utility Uα are given by, X∗,αt (x) = xX̄∗,αt = xe
∫ t
0

(
rs+

1
α

(
ηs+δ

Z,(α),σ
s

)
.ηs

)
dsEt(η+δZ,(α),σ

α
)

Y α,∗
t (y) = yȲ α,∗

t = ye−
∫ t
0 rsdsEt(δZ,(α),⊥ − η).

(5.16)
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From this, we consider the following processes X∗ and Y ∗ given by X∗t (x) =
∫
R∗+
xα(x)X̄∗,αt m(dα), X∗0 (x) = x =

∫
R∗+
xα(x)m(dα)

Y ∗t (y) =
∫
R∗+
yα(y)Ȳ α,∗

t m(dα), Y ∗0 (y) = y =
∫
R∗+
yα(x)m(dα).

(5.17)

By assumptions, X∗ is a wealth process and Y ∗ is a state density process which are strictly

increasing from 0 to ∞, we denote respectively X and Y their inverse with respect to their

initial conditions. Consequently, for any utility function u such that x 7→ Y ∗(t, ux(X (t, z))) is

integrable near to zero the process U defined by

U(t, x) =

∫ x

0

Y ∗(t, ux(X (t, z)))dz, (5.18)

is a consistent utility.

Although this class of utilities processes is simply generated from optimal processes associated

with power utilities (the simplest utilities we can consider) nevertheless it is a richer class then

that defined in Section 4.2 by equation (4.19) because here we have additional degree of freedom

that is the family {yα, α}.

5.2.2 The case xα(x) = xg(α) :

In this example, we are concerned with the particular case where the functions xα(x) are linear

with respect to the initial global wealth x, i.e., xα(x) = xg(α). This implies that the wealth

process X∗ is linear with respect to its initial value x and is given by

X∗t (x) = xX̄∗t , X̄
∗
t := X∗t (1) =

∫
R∗+
g(α)X̄α,∗

t m(dα). (5.19)

In particular, we have the explicit formula for the inverse flow X of X∗, Xt(x) = x/X∗t .

Composing the stochastic flows Y ∗ and X , the derivative Ux of the stochastic utility con-

structed above satisfies

Ux(t, x) = Y ∗t (ux(Xt(x))) =

∫
R∗+
yα

(
ūx
( x
X̄∗t

))
Ȳ α,∗
t m(dα). (5.20)

Integrating yields

U(t, x) =

∫
R∗+

(∫ x

0

yα

(
ux
( z
X̄∗t

))
dz
)
Ȳ α,∗
t m(dα). (5.21)

Moreover, if we take yα(y) = yf(α), then the utility processes U rewrites, after integration with

respect to z,

U(t, x) = X̄∗t

∫
R∗+
f(α)ū

( x

X̄∗t

)
Ȳ α,∗
t m(dα) = X̄∗t Ȳ

∗
t u(

x

X∗t
) (5.22)

27



thus the utility process U is simply the transformation of the utility function u to a consistent

one using the techniques of change of numeraire and probability: the numeraire N is the

optimal portfolio X̄∗ and the change of probability Z is the martingale Ȳ ∗X̄∗, which is in a

perfect concordance with results of Proposition 5.1.

Particular form of the initial utility function u: Let {uα, α > 0} be a family of utilities

functions (not necessarily of power type) and define the utility function u

ux(x) :=

∫
R∗+
uαx(x)m(dα). (5.23)

By definition ux is strictly decreasing with inverse (ux)
−1, take yα(y) := uαx((ux)

−1(y)) and

observe that

y =

∫
R∗+
uαx((ux)

−1(y))m(dα) =

∫
R∗+
yα(y)m(dα). (5.24)

Requirements of Theorem 2.1 being respected, the utility U is given by

U(t, x) =

∫
R∗+

∫ x

0

uαx

( z

X̄∗t

)
dzȲ α,∗

t m(dα). (5.25)

Integrating, yields

U(t, x) = X̄∗t

∫
R∗+
uα
( x

X̄∗t

)
Ȳ α,∗
t m(dα), (5.26)

which can be interpreted as the sum of consistent utilities X̄∗t Ȳ
α,∗
t uα

(
x
X̄∗t

)
which are the trans-

formation of the utilities uα by the same change of numeraire X̄∗ but with different change of

probability defined by the martingale processes X̄∗t Ȳ
α,∗
t .

5.2.3 The case yα(y) = f(α)y

In this example, we are concerned with the case where the initial conditions yα(y) of the state

price density processes Y α are linear with respect to y. We then focus on the dual convex Ũ

of the utility U . The state price density process Y ∗ is then linear with respect to y and its

inverse is given by (Y ∗t )−1(y) = y
Ȳ ∗t

where we recall Ȳ ∗t := Y ∗t (1) =
∫
R∗+
f(α)Y α,∗

t m(dα). The

dual convex conjugate Ũ of U becomes

Ũ(t, y) =

∫ +∞

y

X∗t
(
(Y ∗t )−1((ux)

−1(z))
)
dz

=

∫
R∗+

[ ∫ +∞

y

xα
(
(ux)

−1(
z

Ȳ ∗t
)
)
dz
]
X∗,αt m(dα). (5.27)

28



Particular form of the initial utility function u: Let {uα, α > 0} be a family of utilities

functions (not necessarily of power type) and define the utility function u via the derivative of

its conjugate by

− ũy(y) := (ux)
−1(y) =

∫
R∗+

(uαx)−1(y)m(dα). (5.28)

By definition (ux)
−1 is strictly increasing with inverse ux, take xα(x) := (uαx)−1(ux(x)) and

observe that

x =

∫
R∗+

(uαx)−1(ux(y))m(dα) =

∫
R∗+
xα(x)m(dα). (5.29)

Requirements of Theorem 2.1 being respected, the convex conjugate Ũ of U is given by

Ũ(t, y) =

∫
R∗+

[ ∫ +∞

y

(uαx)−1(
z

Ȳ ∗t
)dz
]
X̄∗,αt m(dα). (5.30)

Denoting by ũ the convex conjugate of u, integrating yields

Ũ(t, y) = Ȳ ∗t

∫
R∗+
ũα(

z

Ȳ ∗t
)X̄∗,αt m(dα) (5.31)

which is interpreted as the sum of the convex conjugate Ȳ ∗t X̄
∗,α
t ũα( z

Ȳ ∗t
) of consistent utilities

X̄∗t Ȳ
α,∗
t uα

(
x
X̄∗t

)
in (5.26), which are the transformation of the utilities uα by the same change

of numeraire X̄∗ but with different change of probability defined by the martingale processes

X̄∗t Ȳ
α,∗
t .

The decreasing consistent utilities are easily obtained by considering

(ux)
−1(x) =

∫
R∗+
x−

1
αm(dα), xα = [(ux)

−1]−
1
α , yα(y) = yf(α) (5.32)

and taking r ≡ 0, δZ,(α) ≡ 0.

5.2.4 Example 2: Consistent utilities from optimal processes associated with

exponential utilities functions

The proof of Theorem 2.1 is based on the key identity Ux(t,X
∗
t (x)) = Y ∗t (ux(x)), on the mono-

tonicity of the optimal processes and on the orthogonality conditions between these processes.

This theorem can be easily extended to the context of utilities defined on whole R which are

consistent with a class of processes X bounded by below (ensuring integrability). As a result,

we can place ourselves in the context of exponential utilities and generate by the same formula

(2.7) a new class of dynamic utilities. This is the purpose of this section.

In this section uα is an exponential utility with risk aversion α that is uα(x) = 1 − 1
α
e−αx.

As negative wealths are allowed, the dynamics (4.2) is replaced by

dXκ
t = Xκ

t rtdt+ κt.(dWt + ηtdt). (5.33)
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According to Proposition 5.1, the numeraire Nα and the process Zα are solutions of the

following dynamics
dN

(α)
t

N
(α)
t

=
(
rt + δ

N,(α)
t .ηt

)
dt+ δ

N,(α)
t .dWt, δ

N,(α)
t ∈ Rt, t ≥ 0, N0 = 1

dZ
(α)
t

Z
(α)
t

=
1

2
‖ηt − δN,(α)

t + δ
Z,(α),σ
t ‖2dt+ δ

Z,(α)
t .dWt, t ≥ 0, Z0 = 1

(5.34)

To ensure that X∗Y ∗ is a martingale we make the following assumption

Assumption 5.1. The minimal risk prime η and the volatility vectors δN,(α), δZ,(α), α ∈ R∗+
are uniformly bounded.

According to Proposition 5.1, the optimal policy xκ∗ is given by

xκα,∗t (x) = xδ
N,(α)
t +

N
(α)
t

α

(
ηt − δN,(α)

t + δZ,(α),σ
)
. (5.35)

In turn, the optimal portfolio X∗,α satisfies

dX∗,αt (x) = rtX
∗,α
t (x)dt+

(
X∗,αt (x)δ

N,(α)
t +

N
(α)
t

α

(
ηt − δN,(α)

t + δZ,(α),σ
))
.
(
dWt + ηtdt

)
. (5.36)

Applying Itô’s formula to the process
X∗t (x)

N
(α)
t

, simple calculations lead to

d
X∗,αt (x)

N
(α)
t

=
1

α

(
ηt − δN,(α)

t + δ
Z,(α),σ
t

)
.
(
dWt +

(
ηt − δN,(α)

t )dt
)
, (5.37)

which is equivalent to

Xα,∗
t (xα(x)) = N

(α)
t

[
xα(x) +

1

α

∫ t

0

(
ηs − δN,(α)

s + δZ,(α),σ
s

)
.
(
dWs +

(
ηs − δN,(α)

s )ds
)]
. (5.38)

Consequently the global wealth process writes

X∗t (x) =

∫
R∗+
X∗,αt (xα(x))m(dα)

=
[ ∫

R∗+
xα(x)N

(α)
t m(dα)

+

∫
R∗+
N

(α)
t

( 1

α

∫ t

0

(
ηs − δN,(α)

s + δZ,(α),σ
s

)
.
(
dWs +

(
ηs − δN,(α)

s )ds
)
m(dα)

]
. (5.39)

To achieve the construction in this exponential framework we will also give an explicit form to

Y ∗. For this, we begin by calculating Y α,∗ before integrating with respect to α and the measure

m. From previous equations, it follows

e
−αX

∗,α
t (x)

N
(α)
t = e−αx−

∫ t
0 (ηs−δN,(α)s +δ

Z,(α),σ
s ).(dWs+(ηs−δN,(α)s )ds). (5.40)
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Multiplying by Z
(α)
t , one can easily obtain

Z
(α)
t e

−αX
∗,α
t (x)

N
(α)
t = e−αxEt(δZ,(α),⊥ − η), (5.41)

which implies

Y α,∗
t (y) := Uα

x (t,X∗,αt ((uαx)−1(y))) =
Z

(α)
t

N
(α)
t

e
−αX

∗,α
t ((uαx )−1(y))

N
(α)
t = yY δZ,(α),⊥

t , (5.42)

where Y δZ,(α),⊥ denote the state price density process given by (4.4) for ν = δZ,(α),⊥ and with

initial value equal to 1. Integrating with respect to α, the process Y ∗(y) is given by

Y ∗t (x) =

∫
R∗+
yα(y)Y δZ,(α),⊥

t m(dα). (5.43)

Case Nα = N : We are now concerned with the particular case where the process Nα does

not depend on α and is equal to N . Using δN,(α) = δN , it is immediate that the global wealth

process X∗ is given by

X∗t (x) = Nt

[
x+

∫
R∗+

1

α

∫ t

0

(
ηs − δNs + δZ,(α),σ

s

)
.
(
dWs +

(
ηs − δNs )ds

)
m(dα)

]
, (5.44)

where we use the identity X∗0 (x) = x =
∫
R∗+
xα(x)m(dα) (see equation (4.14)). Hence, X∗ is

strictly increasing with respect to x with inverse X given by,

Xt(x) =
x

Nt

−Mα
t , (5.45)

where

M
(α)
t =

∫
R∗+

1

α

∫ t

0

(
ηs − δNs + δZ,(α),σ

s

)
.
(
dWs +

(
ηs − δNs )ds

)
m(dα). (5.46)

Let u : R 7→ R be a utility function with good integrability conditions. Composing the stochas-

tic flows Y ∗, ux and X , the derivative Ux of the stochastic utility constructed satisfies

Ux(t, x) = Yt
(
ux(Xt(x))

)
=

∫
R∗+
yα

(
ux
( x
Nt

−M (α)
t

))
Y δZ,(α),⊥

t m(dα). (5.47)

Integrating yields

U(t, x) =

∫
R∗+

[ ∫ x

0

yα

(
ux
( z
Nt

−M (α)
t

))
dz
]
Y δZ,(α),⊥

t m(dα) (5.48)

Observe, in this particular case, that the functions xα do not play any role in the construction

of U .
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X Case where yα(y) = y: the last identity becomes

U(t, x) = Nt

∫
R∗+
u
( z
Nt

−M (α)
t

)
Y δZ,(α),⊥

t m(dα). (5.49)

X Case where yα(y) = e−α(ux)−1(y), we get

U(t, x) = Nt

∫
R∗+

(
1− 1

α
e
−α x

Nt
+αM

(α)
t

)
Y δZ,(α),⊥

t m(dα). (5.50)

5.2.5 Example 3: Consistent utilities from optimal processes associated with dif-

ferent types of utilities functions

In the examples above consistent utilities are generated from a family of utility functions uα

either power type or exponential type. The naturally question arising is if one can mix different

types of utilities. The answer to this question is in fact positive. Indeed the parameter α

plays the role of a simple index that does not necessarily refer to risk aversion coefficient.

Besides, an intuitive explanation for this construction to be valid is the fact that despite the

initial functions uα are of a different types the optimal processes (Xα,∗)α∈R∗+ and (Y α,∗)α∈R∗+
are such that (Xα,∗Y α′,∗)α 6=α′ are martingales (portfolios versus state price density processes).

Assuming uniform integrability assumptions of the diffusion parameters of Zα and Nα, the

strictly increasing processes X∗ and Y ∗ are such that X∗Y ∗ is a martingale, which is sufficient

to apply the general construction result given by Theorem 2.1.

Example Herein, we give an example based on a mixture of power and exponential utilities.

Consider the measure m given by λδα1 + (1 − λ)δα1 , where δα is the Dirac measure. Let also

uα1 of a power type and uα2 of an exponential type and consider the process

M
(α2)
t :=

∫ t

0

(
ηs − δN,(α2)

s + δZ,(α2),σ
s

)
.
(
dWs +

(
ηs − δN,(α2)

s )ds
)
. (5.51)

By Proposition 4.1 and Proposition 5.1, we know that X∗,α1
t (x) = xX∗,α1

t , Xα2,∗
t (x) = N

(α2)
t

[
x+M

(α2)
t

]
Y α1,∗
t (y) = yY δZ,(α1),⊥

t , Y α2,∗
t (y) = yY δZ,(α2),⊥

t

(5.52)

with X∗,α1
t given by (5.16), consequently{

X∗t (x) = x
(
λX∗,α1

t + (1− λ)N
(α2)
t

)
+ (1− λ)M

(α2)
t N

(α2)
t

Y ∗t (y) = y
(
λY δZ,(α1),⊥

t + (1− λ)Y δZ,(α2),⊥
t

)
.

(5.53)

Denoting by Xλ and Y λ the processes{
Xλ :=

(
λX∗,α1

t + (1− λ)N
(α2)
t

)
Y λ :=

(
λY δZ,(α1),⊥ + (1− λ)Y δZ,(α2),⊥

) (5.54)
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and assuming them to be a.s. non null, ensure that X∗(x) and Y ∗(y) are strictly monotonous

with respect to their initial conditions, with inverse flows

Xt(x) =
x−(1−λ)M

(α2)
t N

(α2)
t

Xλ
t

, Yt(y) =
y

Y λ
t

. (5.55)

Let u a utility function defined on R, by Theorem 2.1, the progressive utility U defined by

U(t, x) = Y λ
t

∫ x

0

ux(
z − (1− λ)M

(α2)
t N

(α2)
t

Xλ
t

)dz, (5.56)

is a X -consistent utility.

Conclusion Several contributions to the study of dynamic (forward) utilities are given in

this paper. In Section 3, we characterize, as a sup-convolution, the consistent utilities whose

dual processes are an aggregation of dual convex utilities under the Pareto optimality condition

which imposes a common optimal dual process Y ∗.

But, going beyond the Pareto-optimality, the main contribution of this paper is given in

Sections 4.2 and 5. The key point of the construction is to argue directly in terms of the optimal

wealth and dual process and not in terms of consistent utilities for the simple reason that the

sum of two admissible wealths (state price) is always an admissible wealth while the sum of two

consistent utilities is not a consistent utility, except in the very particular case where optimal

wealths are identical and optimal dual processes are also identical. Note also that the fact that

Xα,∗Y α′,∗, α 6= α′ are martingales, plays a crucial role in the proposed construction. Without

this assumption, the global wealth process X∗ and the global state density price Y ∗ do not

satisfy the necessary martingale condition.

The time-decreasing utilities are only a special case of the family of dynamic utilities built

in Sections 3, 4.2 and 5. The new proof of Theorem 4.2, which we propose is also a nice

contribution, simple, educational and requires no additional results to show that these utilities

are mixtures of power ones.
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