Observations from Parallelising Three Maximum Common (Connected) Subgraph Algorithms

Abstract : We discuss our experiences adapting three recent algorithms for maximum common (connected) subgraph problems to exploit multi-core parallelism. These algorithms do not easily lend themselves to parallel search, as the search trees are extremely irregular, making balanced work distribution hard, and runtimes are very sensitive to value-ordering heuristic behaviour. Nonetheless, our results show that each algorithm can be parallelised successfully, with the threaded algorithms we create being clearly better than the sequential ones. We then look in more detail at the results, and discuss how speedups should be measured for this kind of algorithm. Because of the difficulty in quantifying an average speedup when so-called anomalous speedups (superlinear and sublinear) are common, we propose a new measure called aggregate speedup.
Type de document :
Communication dans un congrès
15th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR), 2018, Delft, Netherlands
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01728184
Contributeur : Christine Solnon <>
Soumis le : samedi 10 mars 2018 - 09:00:13
Dernière modification le : jeudi 19 avril 2018 - 14:38:04
Document(s) archivé(s) le : lundi 11 juin 2018 - 12:16:36

Fichier

cpaior18.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01728184, version 1

Citation

Ruth Hoffmann, Ciaran Mccreesh, Samba Ndojh Ndiaye, Patrick Prosser, Craig Reilly, et al.. Observations from Parallelising Three Maximum Common (Connected) Subgraph Algorithms. 15th International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR), 2018, Delft, Netherlands. 〈hal-01728184〉

Partager

Métriques

Consultations de la notice

56

Téléchargements de fichiers

23