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Three-dimensional stability of a vortex pair

Paul Billant

LadHyX, CNRS-UMR7646, Ecole PolytechniqueF-91128PalaiseauCedex,France
and Meteo-France CNRM Toulouse 42 AvenueCoriolis, F-31057 Toulouse France
Pierre Brancher and Jean-Marc Chomaz

LadHyX,CNRS-UMR7646, Ecole PolytechniqueF-91128PalaiseauCedex,France

This paper investigatesthe three-dimensionalstability of the Lamb—Chaplyginvortex pair.
Short-wavelengthnstabilities, both symmetricand antisymmetric,are found. The antisymmetric
mode possesséise largest growth rate and is indeed the one reported in a regpatimentastudy
[J. Fluid Mech. 360, 85 (1998)]. The growth rates,wave numbersof maximumamplification,and
spatial eigenmodesof these short-wavelengthinstabilities are in good agreementwith the
predictionsfrom elliptic instability theory. A long-wavelengtlsymmetricinstability similar to the
Crow instability of a pair of vortexfilamentsis alsorecoveredOscillatorybulginginstabilities,both
symmetric and antisymmetric,are identified albeit their growth rates are lower than for the
short-wavelengthinstabilities. Their behaviorand eigenmodegesemblethose of the oscillatory

bulging instability occurringin the mixing layer.

I. INTRODUCTION

A vortex pair consistsof two counter-rotatingvortices
propagatingsteadily, one vortex being translatedunderthe
velocity field of the other. The three-dimensionadtability of
suchflow is of interestfor the understandingof coherent
structuredynamicsand within the aeronauticakontext. In-
deed, vortex pairs form at the trailing edgesof airplane
wings and may perturb airplanesthat follow behind. Such
hazardimits maximumtake-offandlandingcadence# air-
ports.

Many theoreticalstability studieshave beendevotedto
the vortex pair or to relatedconfigurations beginningwith
the investigationof Crow! of a pair of counter-rotatingor-
tex filaments.Crow hasdiscovereda long-wavelengthnsta-
bility consistingof a sinusoidalsymmetric(with respectto
the middle plane betweenthe vortices deformationof the
vortices.In addition, he found both symmetricand antisym-
metric  short-wavelength instabilities. These short-
wavelengthinstabilitieswere shownto be spuriousby Wid-
nall, Bliss, and Tsa? becauseat such small scale,a finite-
corevortex canno longerbe modeledby a vortex filament.
However,this led Widnall et al.? to realizethatanothertype
of short-wavelengthnstability could exist, initiating a large
body of work3~7 In thesefundamentaktudies,only a single
vortexwasconsideredthe influenceof the otherbeingmod-
eledby the presencef a strainunderwhich the streamlines
becomeelliptical. Thesestudies,eitherasymptoticfor small
strair*® or numerical'’ haveshownthe existenceof short-
wavelengthbendinginstabilitieswith increasingcomplexra-
dial structureas the axial wave numberis increased.The
physical mechanismis a resonantinteraction betweenthe
strain and Kelvin waveswith azimuthalwave numbersm
=1 andm= — 1 whenbothwaveshavethe samefrequency.
Such a mechanismis identical to the one underlying the

elliptic instability of unbounded vortices discovered ldtet?
The only difference between unbounded and confined vorti-
ces is that the continuous instability wave number band is
discretized by the finite size of the core into an infinite num-
ber of separate instability curves.

In the case of the vortex pair, it is only recently that
careful experiments have been able to reveal the occurrence
of the short-wavelength instability ' In particular,
Leweke and Williamsoff have shown that the antisymmet-
ric configuration is selected. Since no stability analysis of
finite-core vortex pair exists, the experimental results have
been compared to theoretical studies of idealized single el-
liptical vortices with uniform vorticity. However, the stream-
lines in a vortex pair are not exactly elliptical and the vor-
ticity is not uniform so that it is unclear to which extent
guantitative comparisons are relevant. Furthermore, because
only one vortex is studied, these theoretical investigations
are unable to explain the selection between antisymmetric
and symmetric modes. A similar situation prevails regarding
the long-wavelength Crow instability; the quantitative results
for the pair of vortex filaments are the only basis to which
experimental results are comparéd}!® although this
asymptotic formulation is restricted to long axial wavelength
disturbances and well-separated vortices.

This bears testimony for the need of a stability analysis
of a realistic vortex pair configuration. In this paper, we shall
present the three-dimensional stability analysis of the Lamb—
Chaplygin vortex pait®~° This steady flow, which is pre-
sented in Sec. Il A, is an exact solution of the Euler equa-
tions. In Secs. 11 B and Il C, we give the linearized equations
and outline the numerical method. In Sec. lll, the results of
the computations are discussed.



/—\ Space and time have been nondimensionalized by the dipole
A radiusR and the time scal®/U. Then, the Reynolds num-
ber Re is defined as Rd3R/v, wherev is the kinematic
viscosity. The viscous diffusion of the basic state is omitted
as classically done in viscous stability analySighis rea-
U sonably describes the dynamics of a real flow if the growth
v rate of three-dimensional instabilities is large compared to
the viscous damping of the basic flow. Two Reynolds num-
z bers will be investigated; Rex0* which is close to the in-
viscid limit and Re=400 which corresponds to the Reynolds
number of the experimental investigation of Leweke and
Williamson'? (using the present definition of the Reynolds
number).
As the basic state is uniform along tkeaxis, the fol-
In what follows, we use either Cartesian coordinatedOoWing normal mode decomposition is imposed on the per-
(x,y,2), with z along the dipole axis or cylindrical coordi- turbation
nates ¢, 6,z) with x=r cosd andy=r siné.

;

9

FIG. 1. Streamlines of the Lamb—Chaplygin vortex pair.

II. FORMULATION

[U;;pl(x,y,z,t)=[u; @;p](x,y,t) e*Z+c.c., (5)
A. Lamb—Chaplygin’s vortex pair

The Lamb—Chaplygin dipol22is chosen as a basic wherek, is the axial wave number and c.c. denotes the com-
plex conjugate.

state. This exact solution of the incompressible Euler equa-
tions describe a pair of counter-rotating vortices. The explicit

stream functionj, and axial vorticityw,o= A ¢, of this so-

lution expressed in a comoving frame of reference are C. Numerical procedure

ry In order to study the three-dimensional stability of the
Po(r,0)=— m‘h(ﬂlﬁ siné, vortex pair, we shall not explicitly determine the matrix op-
2 r<Rr, 1) erator deriving from(3)—(4) and compute all its eigenvalues
Wy0=— ﬂl/fm as done, for instance, by Pierrehumbert and Widtfalh-
R? stead, we shall only calculate the eigenvalue with the largest

real part by numerically integratin@®)—(4) with a perturba-

o, 0)=—Ur 1_R_2 sing tion of the form(5). The perturbation velocitu(x,y,t=0),
o r2 "t r>R, 2) defined in(5), is initialized with a divergence-free white
w,0=0, noise. Then, by integrating the linear equati¢8s-(4) for a

) ) ) ) ) sufficiently long time, the most unstable eigenmode emerges
whereU is the propagating velocity of the dipolR its ra-  afier a transient and becomes entirely dominant whereas the

dius, Jo and J, are the Bessel functions of zero and first g5 ynstable eigenmodes become negligibé Therefore,
order, andu,=3.8317 is the first zero af,. The associated \yhent— the velocityu(x,y,t) tends to a solution of the

horizontal velocity is given byo= —V X (yo&,), wheree;is  orm A(x,y)exp(t), whereo= o, +io;, o, being the tem-
the unit vector in the axial direction. . _ poral growth rate and; the frequency of the most unstable
The streamlines of the Lamb—Chaplygin vortex pair ar€gjgenmode. It is thus very easy to retrieve the eigenvalue

shown in Fig. 1. Such basic flow has provided a good theoz g gpatial structurd(x,y) of the most unstable mode for
retical model for dipoles generated by various means in Iaboany K, .

ratory studie$®~?? In the present context, it is noteworthy To integrate numerically)—(4) for a givenk,, a pseu-

that the Lamb—Chaplygin vortex pair shows a strong reseMgogpectral scheme has been implemented in Cartesian coor-
blance to the vortex pair produced by a flap mechanism ijinates with periodic boundary conditions. The code was
the r.e.c,tent experimental |nve.st.|gat|on of short-wavelength iNgriginally written by Vincent and MeneguZZiand adapted
stabilities by Leweke and Williamsof. to linear stability analyses by Branché&rThis code has been
successfully validated in the case of%fe’ and Stuart's
vortice$® instabilities. The main steps of the numerical
method are outlined below.

The two-dimensional basic staték)—(2) are subjected Variables on the right-hand side () are expressed in
to infinitesimal three-dimensional perturbations governed byFourier space by application of the two-dimensional Fourier
the nondimensional linearized equations for the perturbatiomansform, for example,
velocity U, vorticity @=V XU and pressur@,

i . 1 itk by 0= [ [ ucyve G ddy @
EJF“’ZOeZXU"'wXUOZ_V(p+u°'u)+%Au’ 3)

B. Linearized equations

~ wherek, andk, are the horizontal components of the total
V.u=0. (4)  wave numbek= (kK ,k,). The two-dimensional Fourier



transformsare computedusing the FFT routine from the ~ TABLE I. Accuracy check of the computed growth rate fgr=4 and Re
CrayScientificLibrary SciLib. In spectralspaceihegovern- =10*. The superscript indicates the number of collocation points.

ing Egs. (3)—(4) become S 9 18
u k2 R 0.035 1.220 668 1.220 668
i =P(K)[UX w,0& F UpX ] — Re (7 0.018 1.221 477
3256 X256.
The tensor P(k) with Cartesian components;;=;; b512§512‘

—kik; /k? designates the projection operator on the space of

dlvergence -free fields. We recall thiat is fixed for a given

simulation. The products inside the square bracket@)imre  indefinitely which allows the growth rate to be determined as

evaluated in the physical space. Time integration is perprecisely as desired. The advantage of such method over
formed with the second-order finite-difference Adams—numerical eigenvalue problems lies in its ease of implemen-

Bashforth numerical scheme. The dissipative terms are intdation if one disposes of a three-dimensional pseudospectral
grated exactly. The 2/3 rule is used for dealiasing. In allcode. In practice, to adapt such a code to the present study,
simulations, the periodic square box of slze 9 is made up  the velocity field has been separated into a basic flow and a
of 256x256 collocation points equally spaced on a Cartesiaperturbation field, the nonlinear terms have been switched
mesh withéx= dy=0.035. The time increment is chosen to off, the wave number in the axial direction has been fixed

be 6t=0.0019 such that the Courant conditiér/5t=18.4 and the three-dimensional FFT routines replaced by two-

>U ax IS fulfilled, whereU ,,,=2.5 is the maximum basic dimensional ones. One disadvantage of this straightforward

velocity. but efficient procedure is that only the most unstable mode is
In the case of nonoscillatory instabilities, the growth rateaccessible. The other less unstable modes could nevertheless
o, is retrieved by the formula be obtained via successive orthogonalizatiorS. Another
limitation is that such method is relatively CPU time-
Iim ldinE (8  consuming.
L2 dt’ The accuracy of the computations has been tested by

doubling either the resolution or the box size. Table | shows
where E=u2+u’+UZ is the energy perturbation, the over- a typical case fok,=4 and Re=10%. There is a relative
bar denotlng spatlal integration over the square computayariation of 0.07% of the growth rate when the mesh size is
tional domain. To reach an asymptote in this formula anchalved and of 0.0002% when the box size is doubled. Such
achieve an accuracy far, of at least three significant fig- tests have been regularly carried out in order to control the
ures, an integration time of 19 time units is necessary. Inespective influences of the grid discretization and the peri-
most cases, however, this integration time yields an accuraaydic boundary conditions.
of four to five significant figuregwhen the leading eigen-
value is well separated from the otherfhe spatial structure |||. RESULTS
of the corresponding eigenmode is simply obtained from the
velocity field of the last time step. In the case of oscillatory
instabilities, the times whera In(E)/dt reaches an extremum
are detected to evaluate the peribdand consequently the

The normal modes separate into two classes with distinct
symmetries in they direction: antisymmetric modes whose
velocity u and vorticity e fields verify the following sym-

pulsation of the wave, i.e., the imaginary part of the eigen Metries:
value o;=2#/T. Accordingly, (8) is replaced by [Uy, Uy, U J(X,Y) =[ — Uy, Uy, —UJ(X,—Y),
10
||m—| E(t+T) (9) [wx,wy,wz](X,y):[wx,—wy,wz](x,—y), ( )
a1 L E()

and symmetric modes with the inverse symmetries

Practically, once an eigenmode has been determined for [uy,uy,u,](X,y) =[Uy,—Uy,U,](X,—Y),
certain parameter values (Rg,khe parameter space can be
explored by continuation to accelerate the convergence to- Lox, 0y, 0z](XY) =[ = oy, 0y, = 0z](X, 7).
wards the most unstable normal mode. Specifically, instea@his separation among normal modes arises because the ba-
of using a white noise, a simulation can be initialized by thesic state(1)—(2) has the symmetrie€l1). More physically,
eigenmode calculated at a previous simulation for slightlyantisymmetric and symmetric modes correspond to antisym-
different parameters (Rg)kThis initialization mainly serves metric and symmetric distortions of the two vortices of the
to save CPU time but it also allows an instability branch topair. In order to retrieve the most unstable modes belonging
be followed slightly into a domain of the parameter spaceo each of these two classes, the symmetfieh and (11)
where it is no longer the most unstable. have been successively imposed to the perturbation in two

The present numerical method mimics the temporal evoseparate sets of numerical simulations. Note that when no
lution of a perturbation in a real experiment except that thesymmetry is imposed on the perturbation, the most unstable
imposed perturbation has a single axial wave nunkh@nd  mode appears to be antisymmetric for most axial wave num-
the basic state is not allowed to diffuse. Because the nonlinbersk,. We first describe the antisymmetric modes, the sym-
ear terms are absent {B), the exponential growth can occur metric modes being presented in the next section.

(11)



1.2}

0.8t
gy 0.67

gi of

t=T/2 t=T/2

0 2 4 6 8 10

FIG. 2. Nondimensional growth raie, (a) and frequency; (b) of anti-
symmetric modes as a function of non-dimensional axial wave nuiper
for Re=1d (circle) and Re=40Qsquare). Only nonzero frequenciesare
shown. In(a), the large ellipse indicates the experimental measurement of
Leweke and WilliamsoriRef. 12)for Re=400.

A. Antisymmetric modes FIG. 3. Contours of axial vorticity of standing oscillatory antisymmetric

. . . modes(band B in Fig. 2) in the horizontal plane at three phases of the
Figure 2(a)shows the nondimensional growth ratg of oscillation cyclet=0, T/4, T/2 at k,=1.4 (a) and k,=2.25 (b) for Re

antisymmetric modes as a function of the nondimensionak10". Only a domain of size 83 is shown while the computational do-

axial wave numbek, for Re=1d and Re=400. We recall mainis 9<9. Shaded areas are regions of negative values. The dashed circle
. . . . ~ . indicates the boundary=1 of the dipole. The dashed line represents the
that the correspondlng dimensional e|genvad>uand axial middle plane between the two vortices of the pair. The basic flow is from

wave numberf(z are given by&-: oU/R and Rzz k,/R. In left to right at infinity. Note that the small distortions seen on some contours
the following discussion, we focus on the stability curves” (@ atth/4 disappear if a 512%12 resolution is used, but the growth
obtained for the Reynolds number R&0*. The case Re rate remains unchanged.
=400 is similar except that the growth rate is lowered by
viscous effects. These latter results will allow a comparison
with experimental results. Three instability bands labeled Bwave nhumberm=0 in the vortex cores anth=2 at the
E1l, and E2 with respective maxima at the wave numbergeriphery[Fig. 3(a)]. Thus, this instability will be character-
k,=1.4,k,=4.75, andk,= 8.5 can be seen. In the first band, ized by a standing oscillatory-out-of-phase bulging of each
the instability is oscillatory with a frequency; shown in  vortex core. Such instability bears a striking resemblance to
Fig. 2(b). The axial vorticityw, fields of the eigenmode cor- the “core dynamic instability” found by Schoppa, Hussain,
responding to these three maxima are displayed in Figs. 3 and Metcalfé" in Stuart mixing layer and which manifests
and 4(a)-4(b), respectively. In each case, the axial vorticity also by a standing oscillation of vortex core sizee also
componentw, is symmetric iny as implied by the symmetry Ref. 32). Moreover, there is a close similarity between the
(10). The perturbation vorticity is zero outside the circle axial vorticity eigenmode in each vortex of the pékig.
=R because the basic floyl)—(2) is potential there. 3(a)]and the one presented by Schomtaal. [Fig. 10(c)of
Since the first band of instability is oscillatory, the modal 31]. For the higher wave numbers né&ar 2.25, an interest-
structure varies during the oscillation period. Three oscillaing feature of this oscillatory instability is that the growth
tion phases are shown in Fig(@. The oscillation cycle con- rateo, continuously reincreases after a minim{igig. 2(a)].
sists mainly of an appearance/disappearance of the two peFhere is a corresponding jump of the frequeney [Fig.
turbation vortex cores located in the center of each vortex o(b)]. This indicates the presence of a second type of oscil-
the pair. The perturbation is dominated by an azimuthalatory instability. The related axial vorticity eigenmode at



are represented by an ellipse. However, if the wavelength is
expressed in term of the vortex separation, Leweke and

Williamsont? report thath =0.77b, while here we haveu
=1.45b This disagreement results from the difference in
core concentration between the Lamb—Chaplygin vortex pair
wherea/b=0.39 and the experimental vortex pair for which
a/b=0.2. The fact that the experimental and numerical
wavelengths agree when expressed in term of the vortex core
size and not in term of the vortex separation indicates that
the elliptic instability scales indeed on the vortex core size.

FIG. 4. Contours of axial vorticity of short-wavelength antisymmetric The modal axial vort|C|ty[F|g. 4(b)] correspondlng to

modes in the horizontal plane in the baadl atk,=4.75(a)and in the band the _third gI’OWth rate m?Ximurﬁband E2 in F!g. 2(a)] is ]
E2 atk,=8.5 (b). Same legend as in Fig. 3. again made ofm|=1 azimuthal modes but with one addi-

tional radial node line in each vortex of the basic state. This
mode has a slightly lower growth rate than the previous one
@nd in addition is more dampened by viscous effects for

three phases of the oscillation cycle is shown in Fig. 3(b). A

in Fig. 3(a), the perturbation in each vortex of the pair isRe=400[Fig. 2()]. _
again mostly made ofn=0 and|m|=2 azimuthal modes Leweke and Williamsolf suggests that this short-

but now exhibits a more complex radial structure; one radiafvavelength antisymmetric instabilitye( and E2), which
node line is added in the axial vorticity perturbatifffig. th(_ay _cgll “cogperatwe eII|pt|c_ instability,” is related to the
3(b)]. However, this second mode of bulging instability is &lliptic instability. We shall give further evidences support-
masked at higher wave number by a more unstable nonosci?9 this view. The first indication is the close resemblance of
latory instability (E1). the eigenmode inside each vortex of the gd&iig. 4(a)]to

The eigenmode related to this nonoscillatory instabilitythose obtained for an unbounded elliptical vortex by
[band E1 in Fig. 2a)]is displayed in Fig. ). The pertur- Pierrehumbert, Baily,” and Waleffe!® As predicted by the
bation consists of a dipole nested inside each vortex core @illiptic instability theory, the perturbation in each vortex is
the basic state. This corresponds to a dominant azimuthdited relative to the ellipsgFigs. 4(a)-4(b)]. The line joining
wave numbefm|=1 within each vortex core. If this pertur- the vorticity extrema is approximately aligned with the
bation were superposed to the basic state, it would be sediretching direction which is at 45° arg45° with respect to
that such an instability distorts the inner part of each vortexhex axis for the upper and lower vortex, respectivilithe
of the pair; the upper vortex core is shifted up and to the lefincrease of the radial complexity of the perturbation as the
while the lower one is shifted up and to the right. The outerwave number increases is also reminiscent of the elliptic in-
parts of the core are moving in the opposite directions. Thetability of a confined vortexsee for instance Fig. 2 of
numerically computed eigenfunction of Fig(ad resembles Miyazaki, Imai, and Fukumoto. More quantitative compari-
closely to the experimental short-wavelength perturbatiorsons can be made from the growth rates predicted either by
field measured by Leweke and Williams@Rig. 10(b) of elliptic instability theory for an unbounded vortex® or for
Ref. 12]on a vortex pair generated by a flap mechanisma confined vortex embedded in a strain figld/ In the first
This agreement can be further reinforced by comparing thease, the maximum growth rate, is independent of the
experimentally measured wavelength and growth rate taxial wave number and proportional to the strain ratky
those of the most amplified disturbance determined in ther,=9/16e=0.562% for asymptotically small strain rates
present investigation. Leweke and Williamsbhave fitted  (small by comparison with the vorticityln the second case,
their vortex pair to two Lamb—Oseen vortices separated of ghe confinement through appropriate boundary conditions is
distanceb and with azimuthal velocity,=I'/27r(1—exp  found to discretize the wave number band and select eigen-
—(r/a)?), wherel is the total circulation of each vortex and modes with increasing internal radial nodes as the wave
a the vortex core size. In terms of these parameters, thaumber is increased. However, the maximum rate of growth
experimental dimensional wavelength and growth rate giveReems to be almost not affected by the confinement. For a
in Ref. 12 are =(4*+0.4)a and o, = (0.94+0.12)['/27rb?. slightly elliptic Rankine vortexstraight circular vortex with
In the present case, the dimensional Lamb—Chaplygin vortegonstant vorticity), Tsai and Widn&ffound o, = 0.5708 for
pair can be also extremely well fitted to two Lamb—Oseerthe mode with one internal radial node amg=0.569% for
vortices with parameterd’=27UR, b=0.96R and a the one with two nodes. These results have been shown to
=0.37R Thus, the numerically calculated most amplified hold quite satisfactorily even for finite strain in the numerical
wave number and growth ratie,=4.5 ando, =1.11, for the  study of Robinson and Saffmanf the Moore—Saffman vor-
Reynolds number Re400 used in the experiment become in tex (elliptic uniform patch of vorticity embedded within a
terms of these parametets=3.77aand o, =1.02[727b2. strain field). The independence of the maximum growth rate
The agreement with the experimental wavelength and growthvith respect to the internal radial structure of the eigenmode
rate is very good. This agreement can be also appreciatad also a feature observed in Kirchhoff’s elliptic vorfetel-
from Fig. 2a), where the experimental measurements conliptic uniform patch of vorticity without strain field To
verted to our units, i.ek,=4.24+0.4 ando,=1.02+0.13, compare these results with the present instability, we esti-



mate the strain rate by expanding the basic stream functiotihe vortices of the pair, the semimajor axis is the dipole
(1) near one vortex center {= u,/wq,0.= w/2) of the pair  radiusc=1 and the semiminor axis is half a radids-0.5
(um=1.8412 is the value at which the Bessel functlgnis  giving a,= y/0.5. In order to take into account the effect of

maximum in the intervalO,u4]), the vorticity distribution, we use the results of Widnedlal 2
5 for a vortex with distributed vorticityw,=(r*2—a3)?,
Yo==|(v—e)x2+ (v+e)|y— ﬂ) } which approximately represents the vorticity inside the vor-
2 M1 tices of the Lamb—Chaplygin dipole. In this case, the most
3 amplified wave numbers should He,;=3.9/a; and Kk,
+0 x3,(y— % , ) (12) =T7lay. Using the previous estimate for the radiag=a,
1

=./0.5, this yields the predictionk,;~5.5 andk,,~9.9.
where 2= woy(rc,0.)=2m1d1(m)/Jo(1)=—11.12 is These wave numbers are close to those calculated in the
the axial vorticity at the vortex center and present studyk,;=4.75 andk,,=8.5 for Re=10).
The present results can be also tested against elliptic
J1(pm) instability theory for unbounded vortices. However, as a con-
:“1m sequence of the absence of outer boundary conditions, there
is no particular axial wave number more amplified than the
is the local strain rate. Hence we have the following estimatethers. Thus, similar predictions to those given above can not
for the growth rate of the first two modes,~1.30 accord- be obtained within the frame of elliptic instability theory.
ing to Tsai and Widnafior o, ~1.28 if we use the relation Nonetheless, it is possible to make a self-consistency check
given by unbounded elliptic instability theory. These valuesbetween the spatial structure of the eigenmodes shown in
are reasonably close to the valoig=1.26 for the first maxi- Figs. 4(a)-4(b) and the wave numbers at which they are
mum ando, =1.21 for the second one for RA0* in Fig.  observed. To this end, we shall use the results of Wafeffe
2(a). which are valid for finite strain. As in Tsai and Widnalihe
We now compare qualitatively the spatial structure ofradial dependence of the axial vorticityJds(«r*), but now
the eigenmodefFigs. 4(a)-4(b)] to those predicted by Tsai r* is defined from elliptico-polar coordinatesx
and Widnalf for a Rankine vortex in a weak strain field. In =r*E cosé, y=r* sing, whereE=c/d is the aspect ratio of
the latter case, the axial vorticity has a radial dependence ahe elliptical streamlines. In the vortex cores of the pair, the
the form J,(«r*) inside the vortical core, where= 3k,  aspect ratio i€= (v + €)/(v— €)~1.55 from(12). The co-
andr* is the radius measured from the vortex center. Tsagfficient « is related to the latter aspect ratio by
and Widnalf have shown that the first two bands of instabil- =k,E tana where « is the angle between the wave vector
ity with one and two internal radial nodes have a maximumand the rotation axis. The dependencexofvith E at maxi-
growth rate for the wave numberts,;=2.5/a and k,, mum growth rate is not provided by Waleff®however this
=4.35/g , respectively, whera, is the vortex radius. Physi- information can be found in Bail{,a~0.37. We measure
cally, these wave numbers are those for which Kelvin wavesiext that the first radial node is Bt ~0.34 in Fig. 4(ajand
m=*+1 are steady and can diverge with strain. We thereforat r*~0.21 in Fig. 4(b). This yields the predictioris,;
deduce that, fok,=k,;, the axial vorticity should have one =pu,/(r*Etana)~5.3 and k,,~8.6 which are in good
node in 0<r*<a, at the radiusr* = u/(k,;1/3)=0.88a agreement with the location of maxima in Fig. 2(a).
from the center of each vortex of the pair. This compares
well with Fig. 4(a)where the axial vorticity reveals one node
close to the boundary of each vortex. Similarly, fky
=k,,, the axial vorticity will have two internal radial nodes The growth rate of symmetric modes is shown in Fig. 5
at r*=pu,/(k,,3)=0.51a and r* = u,/(k,,\/3)=0.933 for Re=10¢ and Re=400. Again, we shall discuss mainly
(u,=7.0156 is the second zero df). Indeed, the eigen- the results for Re10%, the growth rate curves for Ret00
mode in Fig. 4b) exhibits two internal nodes at spatial loca- being similar. There are four instability bands labe(®dB,
tions not far from these predictions. E1 andE2. Also shown is the long-wavelength symmetric
The wave numbers at which maximum amplification instability mode as predicted by Crow’s theory for a pair of
should occur according to Tsai and WidAaflan be also vortex filaments propagating at the same speed and separated
compared to those obtained herein. The main difficulty isby a distancéo=0.96, which is the distance between vortex
that the previous relation fdk,; andk,, are defined for a centers in the Lamb-Chaplygin vortex pair. This Biot—
circular vortex with uniform vorticity, while the vortices of Savart cutoff theory requires also the effective core sige
the Lamb—Chaplygin dipole are elliptical with distributed of the vortices. The concept of effective core size which has
vorticity. The effects of these two departures from the theorybeen introduced by Widnall, Bliss, and Zafay* (see also a
can be however quantitatively taken into account. With re-more recent derivation by Klein and Krim, states that, for
gard to the ellipticity, Robinson and Saffnfahave shown long-wavelength disturbances, a vortex of core radiwgth
that when a vortex is fully elliptical, Tsai and Widrfalle-  a particular distribution of vorticity can be converted to an
sults continue to be valid if the radius is taken as the equivalent vortex of core radius, with uniform vorticity.
geometric meaa, = (cd)¥? of the semimajoc and semimi-  Knowing this latter radius, the cutoff distanéeis then de-
nord axes of the ellipsgNote that this result can be justified duced from the relatiod= (a./2)e"%.1**34As mentioned in
from the work of Waleffé® in the small ellipticity limit) For  the previous section, the Lamb—Chaplygin vortex pair is well
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B. Symmetric modes
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04
0.2t
0 . . . FIG. 6. Contours of axial vorticity in the horizontal plane of the Crow
0 2 4 6 8 10 long-wavelength mode &t=1 for Re=10. Same legend as in Fig. 3. Note
k. that the small distortions seen on some contours disappear if & BlI2
— , resolution is used, but the growth rate changes by only 0.2%.
ab® '
| |
| : tort the internal vortex structure in contrast with the short-
3r ! ; wavelength antisymmetric instabilities described in the pre-
| ! vious section. Such a scenario is consistent with the one
9 g} ! ! described by Crowin his Fig. 8.
! ! The second branchB( of instability in Fig. 5a) is os-
I | | cillatory with a frequencyr; shown in Fig. 5(b). The growth
1 y q Yi g g
: : rate o, presents no maximum supposedly because this insta-
0 L L , ) bility branch is hidden by more unstable brancleandE1
0 2 4 6 8 10 at low and high wave numbers. The axial vorticity at one

k. phase of the oscillation cycle is shown in Fig. 7. Apart from
FIG. 5. Nondimensional growth rate, (a) and frequency; (b) of sym- the fact that the symmetry iy is reversed, this mode is
metric modes as a function of non-dimensional axial wave nurkpéor ~ Similar to the antisymmetric oscillatory bulging instability
Re=10 (circle) and Re=400(square). Only nonzero frequencies are  mode described in the previous sectjéiig. 3(a)]. However,
i:g:/;/g. The dashed line shows Crow’s prediction for a pair of vortex fila-tha present symmetric mode is not observed to exist in the
' same wave number range as its antisymmetric counterpart.
These differences probably result from the influence of the
approximated by two Lamb—Oseen vortices with nondimen{perturbation of each vortex on the other which are different
sional core sizea=0.37. Since the effective core size of a in the antisymmetric and symmetric configurations. In par-
Lamb—Oseen vortex is known to l@g=1.36a this yields ticular, in the case of the symmetric mode, the two vortices
a,=0.5. Alternatively,a, can be also estimated from the of the pair bulge in phase and are likely to hinder each other.
results known for a vortex with the vorticity distributiamn, ~ Note that a symmetric mode with a more complex radial
=(r*2—a?)2. For such vortex, Widnatt al? have obtained ~structure similar to the antisymmetric mode of Figbghas
thata,=0.7a,. Therefore, takingy as the geometric mean nhot been observed; the symmetric bulging eigenmode keeps
between the semimajor and semiminor axes of the ellipséhe same structure over all wave numbers for which the os-
i.e.,aq= /0.5, the same estimate for the effective core radiugillatory instability is the most dangerous.
is obtaineda,=0.5. At low wave numberss,<0.7, Crow’s The third and fourth instability branches labeledl and
theory agrees reasonably well with our numerical result§2 in Fig. 5a) are centered on the wave numbégs-5.25
[Fig. 5(a)]. The slight difference is probably due to the factand k,=8.75 which are close to the wave numbeéls
that the vortices in the Lamb—Chaplygin dipole are not well
separated. At larger wave numbers, the long-wavelength
Crow theory is no longer valid and departs widely from the
numerically calculated stability curve.
In Fig. 6, we show a contour plot of the axial vorticity
w, of the eigenmode fok,=1 at which maximum amplifi-
cation is achieved in the first instability ba@d Note thatw,
is odd iny as implied by(11). If the perturbation axial vor-
ticity were superposed to the axial vorticity of the basic state,
it would be seen that this instability brings closer the two
vortices of the pair and shifts them to the left, i.e., in the
direction of propagation of the vortex pair. Conversely, if the
sign of the perturbr_:ltlon is revers¢te., half a wavelength FIG. 7. Contours of axial vorticity of standing oscillatory symmetric mode
away), the two vortices move away from each other and arg, te horizontal plane at one phase of the oscillation cycle,at2.5 for
shifted to the right. Note that these perturbations do not disRe=1d. Same legend as in Fig. 3.




of instability. A third type of instability is the long-
wavelength Crow instability which is symmetric and has no
antisymmetric counterpart. Of all these instabilities, the an-
tisymmetric elliptic instability is the most unstable with a
growth rate and a wavelength in very good agreement with
recent experimental observatiotfs.

On the practical side, we have shown that the elliptic
instability theory of a single confined or unbounded vortex
satisfactorily accounts for the short-wavelength instabilities
of a real vortex pair. Crow’s thechfor the long-wavelength
symmetric instability works reasonably only at low wave
FIG. 8.‘C0ntours of axial vorticity of short-wavelength symmetric modes in number. A deficiency of the present study is that the effects
the horizontal plane for the bartll atk,=5.25(a) and for the band2 at . . .
k,=8.75(b) for Re=1d. Same legend as in Fig. 3. of the d|stan<_:e between the two V(_)rtlc_es haye not been in-

vestigated since such distance is fixed in the Lamb-—

Chaplygin vortex pair. There exists a vortex pair family of
=4.75 andk,=8.5 of maximum amplification of the short- solutions with vortices separated of an arbitrary distaficé.
wavelength antisymmetric modes for R&0* [Fig. 2(a)]. However, the vortices have a uniform vorticity unlike real
However, the associated maximum growth rates are loweyortex pairs? and the Lamb—Chaplygin dipole. Recently,
(6,=1.06 ando,=1.099 for Re=10%) than those of the Sipp, Coppens, and Jacgtfinhave presented a stability
short-wavelength antisymmetric modes, £1.26 and o, analysis of vortex pairs with variable vortex separation, the
=1.21, respectively). The axial vorticity corresponding tobasic state being obtained numerically.
the E1 andE2 most amplified symmetric modes are dis-  On the theoretical side, an unexpected oscillatory bulg-
played in Figs. 81)-8(b). These modes are very similar to ing instability, similar to the one operating on Stuart
their antisymmetric counterparts shown in Fig. 4 except thavortices?™ has been found. The evolution scenario of the
the symmetry byy— —y is reversedin the terminology of €igenmodes’ internal structure with additional radial nodes
Leweke and Williamsor? these instabilities would be there- as the axial wave number increases is strikingly reminiscent
fore called “anti-cooperative). Like for the bulging insta- ©f the elliptic instability one. In each vortex of the pair, the
bility, the occurrence of both symmetric and antisymmetricbulging eigenmode is dominated ly=0 and|m|=2 azi-
short-wavelength modes supports the idea that the elliptigiuthal modes. Therefore, just like the elliptic instability de-
instability occurs almost independently on each vortex of thdives from a resonant interaction between the sttaihose
pair. Yet, there exists a weak interaction between the pertuintrinsic azimuthal wave number isn|=2) (Refs. 2—4,10)
bation of each vortex that causes the growth rate to be lowetnd Kelvin waves with azimuthal wave numbar= +1, m
for the symmetric modes than for the antisymmetric dfes. = —1 when they have the same frequency, this bulging in-
In the first elliptic antisymmetric mod¢Fig. 4(a)], the stability could result from a resonant interaction of Kelvin
x-velocity which is induced by the perturbation field of the waves with azimuthal wave number=0 and|m|=2 with
lower vortex on the upper vortex is in the same direction aghe strain?*®3!Indeed, the instability mechanism discovered
the x-velocity induced by the perturbation of the upper vor-by Widnall etal.? Moore and Saffman, and Tsai and
tex itself. By contrast, this induced velocity is opposite to theWidnall* is general and not restricted tm=+1 Kelvin
one locally induced in the symmetric mofféig. 8(a)]. There waves although this latter case has been studied in detail.
is therefore a kind of “collaboration” between perturbations Robinson and Saffmariscuss some of these possible other
of each vortex in the case of the antisymmetric modelypes of resonance. To further examine the plausibility of

whereas these perturbations do not cooperate in the symmékis hypothesis, we have calculated the frequengyfor
ric mode. Kelvin wavesm=0 andm=2 on a Rankine vortex by solv-

ing numerically the dispersion relatidgiven for instance in
Ref. 18). Figure 9 shows the frequency of the first four radial
modes for both azimuthal wave numbers. It can be seen that
The three-dimensional stability of the Lamb—Chaplyginthere exist axial wave numbers for which Kelvin waves
vortex pair appears to be quite rich. Because of the intrinsie=0 andm=2 have the same frequency. Interestingly, the
symmetry of the basic state with respect to the middle planéwo first crossing pointgéindicated by circles in Fig.)9are at
between the two vortices, eigenmodes split into two indepenk,a, = 1.24 andck,a, = 2.06, that is to say, at axial wave num-
dent classes, antisymmetric and symmetric modes. The mobers lower than those for whicm=*=1 waves resonate
unstable eigenmodes of each of these two classes have be@gna, =2.5 andk,a, =4.35). Moreover then=0 andm=2
numerically determined as a function of the axial wave numwaves cross at nonzero frequencies. Therefore, if an instabil-
ber at the Reynolds numbers R&0*, approaching the in- ity originates from these resonance points, it will be ob-
viscid limit and Re=400, typical of experimental investiga- served for axial wave number lower than those for which the
tions. Elliptic and oscillatory bulging instabilities have been elliptic instability occurs and would have an oscillatory be-
clearly identified, both with an antisymmetric and symmetrichavior. This agrees qualitatively with the observed bulging
configurations. The antisymmetric mode is, however, alwayénstability. It remains however to determine whether or not
more unstable than its symmetric counterpart for both typeshe effect of strain is destabilizing near these crossing points.

IV. CONCLUSIONS
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FIG. 9. Frequencys; of Kelvin waves with azimuthal wave numben
=0 (solid lines)and m=2 (dashed linesas a function of the axial wave
numberk,a, . ) anda, are the rotation rate and radius of the vortex.
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