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Three-dimensional stability of a vortex pair
Paul Billant
LadHyX, CNRS-UMR 7646, É cole Polytechnique, F-91128 Palaiseau Cedex, France
and Météo-France CNRM Toulouse, 42 Avenue Coriolis, F-31057 Toulouse, France

Pierre Brancher and Jean-Marc Chomaz
LadHyX, CNRS-UMR 7646, É cole Polytechnique, F-91128 Palaiseau Cedex, France

This paper investigates the three-dimensional stability of the Lamb–Chaplygin vortex pair. 
Short-wavelength instabilities, both symmetric and antisymmetric, are found. The antisymmetric 
mode possesses the largest growth rate and is indeed the one reported in a recent experimental study
@J. Fluid Mech. 360, 85  ~1998!#. The growth rates, wave numbers of maximum amplification, and 
spatial eigenmodes of these short-wavelength instabilities are in good agreement with the 
predictions from elliptic instability theory. A long-wavelength symmetric instability similar to the 
Crow instability of a pair of vortex filaments is also recovered. Oscillatory bulging instabilities, both 
symmetric and antisymmetric, are identified albeit their growth rates are lower than for the 
short-wavelength instabilities. Their behavior and eigenmodes resemble those of the oscillatory 
bulging instability occurring in the mixing layer. 
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I. INTRODUCTION

A vortex pair consists of two counter-rotating vortices 
propagating steadily, one vortex being translated under the 
velocity field of the other. The three-dimensional stability of 
such flow is of interest for the understanding of coherent 
structure dynamics and within the aeronautical context. In-
deed, vortex pairs form at the trailing edges of airplane 
wings and may perturb airplanes that follow behind. Such 
hazard limits maximum take-off and landing cadences in air-
ports.

Many theoretical stability studies have been devoted to 
the vortex pair or to related configurations, beginning with 
the investigation of Crow1 of a pair of counter-rotating vor-
tex filaments. Crow has discovered a long-wavelength insta-
bility  consisting of a sinusoidal symmetric ~with respect to 
the middle plane between the vortices! deformation of the 
vortices. In addition, he found both symmetric and antisym-
metric short-wavelength instabilities. These short-
wavelength instabilities were shown to be spurious by Wid-
nall, Bliss, and Tsai2 because at such small scale, a finite-
core vortex can no longer be modeled by a vortex filament. 
However, this led Widnall et al.2 to realize that another type 
of short-wavelength instability could exist, initiating a large 
body of work.3–7 In these fundamental studies, only a single 
vortex was considered, the influence of the other being mod-
eled by the presence of a strain under which the streamlines 
become elliptical. These studies, either asymptotic for small 
strain3,4,6 or numerical5,7 have shown the existence of short-
wavelength bending instabilities with increasing complex ra-
dial structure as the axial wave number is increased. The 
physical mechanism is a resonant interaction between the 
strain and Kelvin waves with azimuthal wave numbers m
51 and m521 when both waves have the same frequency. 
Such a mechanism is identical to the one underlying the
elliptic instability of unbounded vortices discovered later.8–10

The only difference between unbounded and confined vo
ces is that the continuous instability wave number band
discretized by the finite size of the core into an infinite nu
ber of separate instability curves.

In the case of the vortex pair, it is only recently th
careful experiments have been able to reveal the occurre
of the short-wavelength instability.11–13 In particular,
Leweke and Williamson12 have shown that the antisymme
ric configuration is selected. Since no stability analysis
finite-core vortex pair exists, the experimental results ha
been compared to theoretical studies of idealized single
liptical vortices with uniform vorticity. However, the stream
lines in a vortex pair are not exactly elliptical and the vo
ticity is not uniform so that it is unclear to which exten
quantitative comparisons are relevant. Furthermore, bec
only one vortex is studied, these theoretical investigatio
are unable to explain the selection between antisymme
and symmetric modes. A similar situation prevails regard
the long-wavelength Crow instability; the quantitative resu
for the pair of vortex filaments are the only basis to whi
experimental results are compared,11,14,15 although this
asymptotic formulation is restricted to long axial waveleng
disturbances and well-separated vortices.

This bears testimony for the need of a stability analy
of a realistic vortex pair configuration. In this paper, we sh
present the three-dimensional stability analysis of the Lam
Chaplygin vortex pair.16–19 This steady flow, which is pre-
sented in Sec. II A, is an exact solution of the Euler eq
tions. In Secs. II B and II C, we give the linearized equatio
and outline the numerical method. In Sec. III, the results
the computations are discussed.
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II. FORMULATION

In what follows, we use either Cartesian coordina
(x,y,z), with z along the dipole axis or cylindrical coord
nates (r ,u,z) with x5r cosu andy5r sinu.

A. Lamb–Chaplygin’s vortex pair

The Lamb–Chaplygin dipole16–19 is chosen as a basi
state. This exact solution of the incompressible Euler eq
tions describe a pair of counter-rotating vortices. The expl
stream functionc0 and axial vorticityvz05Dc0 of this so-
lution expressed in a comoving frame of reference are

c0~r ,u!52
2UR

m1J0~m1!
J1S m1

r

RD sinu,

vz052
m1

2

R2
c0 , 6 r<R, ~1!

c0~r,u!52Ur S 12
R2

r 2 D sinu,

vz050,
J r .R, ~2!

whereU is the propagating velocity of the dipole,R its ra-
dius, J0 and J1 are the Bessel functions of zero and fir
order, andm153.8317 is the first zero ofJ1 . The associated
horizontal velocity is given byu052“3(c0ez), whereez is
the unit vector in the axial direction.

The streamlines of the Lamb–Chaplygin vortex pair a
shown in Fig. 1. Such basic flow has provided a good th
retical model for dipoles generated by various means in la
ratory studies.20–22 In the present context, it is noteworth
that the Lamb–Chaplygin vortex pair shows a strong res
blance to the vortex pair produced by a flap mechanism
the recent experimental investigation of short-wavelength
stabilities by Leweke and Williamson.12

B. Linearized equations

The two-dimensional basic states~1!–~2! are subjected
to infinitesimal three-dimensional perturbations governed
the nondimensional linearized equations for the perturba
velocity ũ, vorticity ṽ5“3ũ and pressurep̃,

]ũ

]t
1vz0ez3ũ1ṽ3u052“~ p̃1u0•ũ!1

1

Re
Dũ, ~3!

“–ũ50. ~4!

FIG. 1. Streamlines of the Lamb–Chaplygin vortex pair.
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Space and time have been nondimensionalized by the di
radiusR and the time scaleR/U. Then, the Reynolds num
ber Re is defined as Re5UR/v, wherev is the kinematic
viscosity. The viscous diffusion of the basic state is omitt
as classically done in viscous stability analysis.23 This rea-
sonably describes the dynamics of a real flow if the grow
rate of three-dimensional instabilities is large compared
the viscous damping of the basic flow. Two Reynolds nu
bers will be investigated; Re5104 which is close to the in-
viscid limit and Re5400 which corresponds to the Reynold
number of the experimental investigation of Leweke a
Williamson12 ~using the present definition of the Reynold
number!.

As the basic state is uniform along thez axis, the fol-
lowing normal mode decomposition is imposed on the p
turbation

@ ũ;ṽ; p̃#~x,y,z,t !5@u;v;p#~x,y,t !eikzz1c.c., ~5!

wherekz is the axial wave number and c.c. denotes the co
plex conjugate.

C. Numerical procedure

In order to study the three-dimensional stability of t
vortex pair, we shall not explicitly determine the matrix o
erator deriving from~3!–~4! and compute all its eigenvalue
as done, for instance, by Pierrehumbert and Widnall.24 In-
stead, we shall only calculate the eigenvalue with the larg
real part by numerically integrating~3!–~4! with a perturba-
tion of the form~5!. The perturbation velocityu(x,y,t50),
defined in ~5!, is initialized with a divergence-free whit
noise. Then, by integrating the linear equations~3!–~4! for a
sufficiently long time, the most unstable eigenmode emer
after a transient and becomes entirely dominant whereas
less unstable eigenmodes become negligible.25,26 Therefore,
when t→` the velocityu(x,y,t) tends to a solution of the
form, A(x,y)exp(st), wheres5s r1 is i , s r being the tem-
poral growth rate ands i the frequency of the most unstab
eigenmode. It is thus very easy to retrieve the eigenvalus
and spatial structureA(x,y) of the most unstable mode fo
any kz .

To integrate numerically~3!–~4! for a givenkz , a pseu-
dospectral scheme has been implemented in Cartesian c
dinates with periodic boundary conditions. The code w
originally written by Vincent and Meneguzzi27 and adapted
to linear stability analyses by Brancher.28 This code has been
successfully validated in the case of jet29,30 and Stuart’s
vortices28 instabilities. The main steps of the numeric
method are outlined below.

Variables on the right-hand side of~5! are expressed in
Fourier space by application of the two-dimensional Four
transform, for example,

û~kx ,ky ,t !5E E u~x,y,t !e2 i (kxx1kyy)dxdy, ~6!

wherekx and ky are the horizontal components of the tot
wave numberk5 (kx ,ky ,kz). The two-dimensional Fourie
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]t
5P~k!@u3vz0ez1̂u03v#2

k2

Re
û. ~7!

The tensor P(k) with Cartesian componentsPi j [d i j

2kikj /k2 designates the projection operator on the spac
divergence-free fields. We recall thatkz is fixed for a given
simulation. The products inside the square brackets in~7! are
evaluated in the physical space. Time integration is p
formed with the second-order finite-difference Adam
Bashforth numerical scheme. The dissipative terms are i
grated exactly. The 2/3 rule is used for dealiasing. In
simulations, the periodic square box of sizeL59 is made up
of 2563256 collocation points equally spaced on a Cartes
mesh withdx5dy50.035. The time increment is chosen
be dt50.0019 such that the Courant conditiondx/dt518.4
.Umax is fulfilled, whereUmax52.5 is the maximum basic
velocity.

In the case of nonoscillatory instabilities, the growth ra
s r is retrieved by the formula

s r5 lim
t→`

1

2

d ln E

dt
, ~8!

whereE5ūx
21ūy

21ūz
2 is the energy perturbation, the ove

bar denoting spatial integration over the square comp
tional domain. To reach an asymptote in this formula a
achieve an accuracy fors r of at least three significant fig
ures, an integration time of 19 time units is necessary
most cases, however, this integration time yields an accu
of four to five significant figures~when the leading eigen
value is well separated from the others!. The spatial structure
of the corresponding eigenmode is simply obtained from
velocity field of the last time step. In the case of oscillato
instabilities, the times whered ln(E)/dt reaches an extremum
are detected to evaluate the periodT and consequently the
pulsation of the wave, i.e., the imaginary part of the eig
values i52p/T. Accordingly, ~8! is replaced by

s r5 lim
t→`

1

2T
lnS E~ t1T!

E~ t ! D . ~9!

Practically, once an eigenmode has been determined
certain parameter values (Re,kz), the parameter space can b
explored by continuation to accelerate the convergence
wards the most unstable normal mode. Specifically, inst
of using a white noise, a simulation can be initialized by t
eigenmode calculated at a previous simulation for sligh
different parameters (Re,kz). This initialization mainly serves
to save CPU time but it also allows an instability branch
be followed slightly into a domain of the parameter spa
where it is no longer the most unstable.

The present numerical method mimics the temporal e
lution of a perturbation in a real experiment except that
imposed perturbation has a single axial wave numberkz and
the basic state is not allowed to diffuse. Because the non
ear terms are absent in~3!, the exponential growth can occu

transforms are computed using the FFT routine from the 
Cray Scientific Library SciLib. In spectral space, the govern-
ing Eqs. ~3!–~4! become
of
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indefinitely which allows the growth rate to be determined
precisely as desired. The advantage of such method
numerical eigenvalue problems lies in its ease of implem
tation if one disposes of a three-dimensional pseudospe
code. In practice, to adapt such a code to the present st
the velocity field has been separated into a basic flow an
perturbation field, the nonlinear terms have been switc
off, the wave number in the axial direction has been fix
and the three-dimensional FFT routines replaced by tw
dimensional ones. One disadvantage of this straightforw
but efficient procedure is that only the most unstable mod
accessible. The other less unstable modes could neverth
be obtained via successive orthogonalizations.25,26 Another
limitation is that such method is relatively CPU time
consuming.

The accuracy of the computations has been tested
doubling either the resolution or the box size. Table I sho
a typical case forkz54 and Re5104. There is a relative
variation of 0.07% of the growth rate when the mesh size
halved and of 0.0002% when the box size is doubled. S
tests have been regularly carried out in order to control
respective influences of the grid discretization and the p
odic boundary conditions.

III. RESULTS

The normal modes separate into two classes with dist
symmetries in they direction: antisymmetric modes whos
velocity u and vorticity v fields verify the following sym-
metries:

@ux ,uy ,uz#~x,y!5@2ux ,uy ,2uz#~x,2y!,
~10!

@vx ,vy ,vz#~x,y!5@vx ,2vy ,vz#~x,2y!,

and symmetric modes with the inverse symmetries

@ux ,uy ,uz#~x,y!5@ux ,2uy ,uz#~x,2y!,
~11!

@vx ,vy ,vz#~x,y!5@2vx ,vy ,2vz#~x,2y!.

This separation among normal modes arises because th
sic state~1!–~2! has the symmetries~11!. More physically,
antisymmetric and symmetric modes correspond to antis
metric and symmetric distortions of the two vortices of t
pair. In order to retrieve the most unstable modes belong
to each of these two classes, the symmetries~10! and ~11!
have been successively imposed to the perturbation in
separate sets of numerical simulations. Note that when
symmetry is imposed on the perturbation, the most unsta
mode appears to be antisymmetric for most axial wave nu
berskz . We first describe the antisymmetric modes, the sy
metric modes being presented in the next section.

TABLE I. Accuracy check of the computed growth rate forkz54 and Re
5104. The superscript indicates the number of collocation points.

dx\L 9 18

0.035 1.220 663a 1.220 666b

0.018 1.221 477b

a2563256.
b5123512.
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A. Antisymmetric modes

Figure 2~a!shows the nondimensional growth rates r of
antisymmetric modes as a function of the nondimensio
axial wave numberkz for Re5104 and Re5400. We recal
that the corresponding dimensional eigenvalueŝ and axial
wave numberk̂z are given byŝ5sU/R and k̂z5kz /R. In
the following discussion, we focus on the stability curv
obtained for the Reynolds number Re5104. The case Re
5400 is similar except that the growth rate is lowered
viscous effects. These latter results will allow a comparis
with experimental results. Three instability bands labeled
E1, and E2 with respective maxima at the wave numb
kz51.4, kz54.75, andkz58.5 can be seen. In the first ban
the instability is oscillatory with a frequencys i shown in
Fig. 2~b!. The axial vorticityvz fields of the eigenmode cor
responding to these three maxima are displayed in Figs.~a!
and 4~a!–4~b!, respectively. In each case, the axial vortic
componentvz is symmetric iny as implied by the symmetry
~10!. The perturbation vorticity is zero outside the circler
5R because the basic flow~1!–~2! is potential there.

Since the first band of instability is oscillatory, the mod
structure varies during the oscillation period. Three osci
tion phases are shown in Fig. 3~a!. The oscillation cycle con
sists mainly of an appearance/disappearance of the two
turbation vortex cores located in the center of each vorte
the pair. The perturbation is dominated by an azimut

FIG. 2. Nondimensional growth rates r ~a! and frequencys i ~b! of anti-
symmetric modes as a function of non-dimensional axial wave numbekz

for Re5104 ~circle! and Re5400~square!. Only nonzero frequenciess i are
shown. In~a!, the large ellipse indicates the experimental measuremen
Leweke and Williamson~Ref. 12!for Re5400.
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wave numberm50 in the vortex cores andm52 at the
periphery@Fig. 3~a!#. Thus, this instability will be characte
ized by a standing oscillatoryp-out-of-phase bulging of each
vortex core. Such instability bears a striking resemblance
the ‘‘core dynamic instability’’ found by Schoppa, Hussai
and Metcalfe31 in Stuart mixing layer and which manifest
also by a standing oscillation of vortex core size~see also
Ref. 32!. Moreover, there is a close similarity between
axial vorticity eigenmode in each vortex of the pair@Fig.
3~a!# and the one presented by Schoppaet al. @Fig. 10~c!of
31#. For the higher wave numbers nearkz52.25, an interest-
ing feature of this oscillatory instability is that the grow
rates r continuously reincreases after a minimum@Fig. 2~a!#.
There is a corresponding jump of the frequencys i @Fig.
2~b!#. This indicates the presence of a second type of os
latory instability. The related axial vorticity eigenmode

of

FIG. 3. Contours of axial vorticity of standing oscillatory antisymmetr
modes~band B in Fig. 2! in the horizontal plane at three phases of t
oscillation cycle t50, T/4, T/2 at kz51.4 ~a! and kz52.25 ~b! for Re
5104. Only a domain of size 333 is shown while the computational do
main is 939. Shaded areas are regions of negative values. The dashed
indicates the boundaryr 51 of the dipole. The dashed line represents t
middle plane between the two vortices of the pair. The basic flow is fr
left to right at infinity. Note that the small distortions seen on some conto
in ~a! at t5T/4 disappear if a 5123512 resolution is used, but the growt
rate remains unchanged.
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three phases of the oscillation cycle is shown in Fig. 3~b!.
in Fig. 3~a!, the perturbation in each vortex of the pair
again mostly made ofm50 and umu52 azimuthal modes
but now exhibits a more complex radial structure; one rad
node line is added in the axial vorticity perturbation@Fig.
3~b!#. However, this second mode of bulging instability
masked at higher wave number by a more unstable nono
latory instability ~E1!.

The eigenmode related to this nonoscillatory instabi
@band E1 in Fig. 2~a!# is displayed in Fig. 4~a!. The pertur-
bation consists of a dipole nested inside each vortex cor
the basic state. This corresponds to a dominant azimu
wave numberumu51 within each vortex core. If this pertur
bation were superposed to the basic state, it would be s
that such an instability distorts the inner part of each vor
of the pair; the upper vortex core is shifted up and to the
while the lower one is shifted up and to the right. The ou
parts of the core are moving in the opposite directions. T
numerically computed eigenfunction of Fig. 4~a! resembles
closely to the experimental short-wavelength perturbat
field measured by Leweke and Williamson@Fig. 10~b! of
Ref. 12# on a vortex pair generated by a flap mechanis
This agreement can be further reinforced by comparing
experimentally measured wavelength and growth rate
those of the most amplified disturbance determined in
present investigation. Leweke and Williamson12 have fitted
their vortex pair to two Lamb–Oseen vortices separated
distanceb and with azimuthal velocityuu5G/2pr (12exp
2(r/a)2), whereG is the total circulation of each vortex an
a the vortex core size. In terms of these parameters,
experimental dimensional wavelength and growth rate gi
in Ref. 12 arel̂5(460.4)a and ŝ r5(0.9460.12)G/2pb2.
In the present case, the dimensional Lamb–Chaplygin vo
pair can be also extremely well fitted to two Lamb–Ose
vortices with parametersG52pUR, b50.96R and a
50.37R. Thus, the numerically calculated most amplifi
wave number and growth rate,kz54.5 ands r51.11, for the
Reynolds number Re5400 used in the experiment become
terms of these parameters,l̂53.77a and ŝ r51.02G/2pb2.
The agreement with the experimental wavelength and gro
rate is very good. This agreement can be also appreci
from Fig. 2~a!, where the experimental measurements c
verted to our units, i.e.,kz54.2460.4 ands r51.0260.13,

FIG. 4. Contours of axial vorticity of short-wavelength antisymmet
modes in the horizontal plane in the bandE1 atkz54.75~a! and in the band
E2 at kz58.5 ~b!. Same legend as in Fig. 3.
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are represented by an ellipse. However, if the wavelengt
expressed in term of the vortex separation, Leweke

Williamson12 report thatl̂50.77b, while here we havel̂
51.45b. This disagreement results from the difference
core concentration between the Lamb–Chaplygin vortex p
wherea/b50.39 and the experimental vortex pair for whic
a/b50.2. The fact that the experimental and numeri
wavelengths agree when expressed in term of the vortex
size and not in term of the vortex separation indicates t
the elliptic instability scales indeed on the vortex core siz

The modal axial vorticity@Fig. 4~b!# corresponding to
the third growth rate maximum@band E2 in Fig. 2~a!# is
again made ofumu51 azimuthal modes but with one add
tional radial node line in each vortex of the basic state. T
mode has a slightly lower growth rate than the previous o
and in addition is more dampened by viscous effects
Re5400 @Fig. 2~a!#.

Leweke and Williamson12 suggests that this short
wavelength antisymmetric instability (E1 and E2), which
they call ‘‘cooperative elliptic instability,’’ is related to the
elliptic instability. We shall give further evidences suppo
ing this view. The first indication is the close resemblance
the eigenmode inside each vortex of the pair@Fig. 4~a!# to
those obtained for an unbounded elliptical vortex
Pierrehumbert,8 Baily,9 and Waleffe.10 As predicted by the
elliptic instability theory, the perturbation in each vortex
tilted relative to the ellipse@Figs. 4~a!–4~b!#. The line joining
the vorticity extrema is approximately aligned with th
stretching direction which is at 45° and245° with respect to
thex axis for the upper and lower vortex, respectively.10 The
increase of the radial complexity of the perturbation as
wave number increases is also reminiscent of the elliptic
stability of a confined vortex~see for instance Fig. 2 o
Miyazaki, Imai, and Fukumoto7!. More quantitative compari-
sons can be made from the growth rates predicted eithe
elliptic instability theory for an unbounded vortex8–10 or for
a confined vortex embedded in a strain field.3–5,7 In the first
case, the maximum growth rates r is independent of the
axial wave number and proportional to the strain ratee by
s r59/16e50.5625e for asymptotically small strain rate
~small by comparison with the vorticity!. In the second case
the confinement through appropriate boundary condition
found to discretize the wave number band and select eig
modes with increasing internal radial nodes as the w
number is increased. However, the maximum rate of gro
seems to be almost not affected by the confinement. F
slightly elliptic Rankine vortex~straight circular vortex with
constant vorticity!, Tsai and Widnall4 founds r50.5708e for
the mode with one internal radial node ands r50.5695e for
the one with two nodes. These results have been show
hold quite satisfactorily even for finite strain in the numeric
study of Robinson and Saffman5 of the Moore–Saffman vor-
tex ~elliptic uniform patch of vorticity embedded within
strain field!. The independence of the maximum growth r
with respect to the internal radial structure of the eigenmo
is also a feature observed in Kirchhoff’s elliptic vortex7 ~el-
liptic uniform patch of vorticity without strain field!. To
compare these results with the present instability, we e
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mate the strain rate by expanding the basic stream func
~1! near one vortex center (r c5mm /m1 ,uc5p/2) of the pair
(mm51.8412 is the value at which the Bessel functionJ1 is
maximum in the interval@0,m1#),

c05
1

2 F ~n2e!x21~n1e!S y2
mm

m1
D 2G

1OS x3,S y2
mm

m1
D 3

,...D , ~12!

where 2n5v0z(r c ,uc)52m1J1(mm)/J0(m1)5211.12 is
the axial vorticity at the vortex center and

e5m1

J1~mm!

J0~m1! S 2

mm
2

21D 52.28,

is the local strain rate. Hence we have the following estim
for the growth rate of the first two modes,s r'1.30 accord-
ing to Tsai and Widnall4 or s r'1.28 if we use the relation
given by unbounded elliptic instability theory. These valu
are reasonably close to the values r51.26 for the first maxi-
mum ands r51.21 for the second one for Re5104 in Fig.
2~a!.

We now compare qualitatively the spatial structure
the eigenmodes@Figs. 4~a!–4~b!# to those predicted by Tsa
and Widnall4 for a Rankine vortex in a weak strain field. I
the latter case, the axial vorticity has a radial dependenc
the form J1(kr * ) inside the vortical core, wherek5A3kz

and r * is the radius measured from the vortex center. T
and Widnall4 have shown that the first two bands of instab
ity with one and two internal radial nodes have a maxim
growth rate for the wave numberskz152.5/ar and kz2

54.35/ar , respectively, wherear is the vortex radius. Physi
cally, these wave numbers are those for which Kelvin wa
m561 are steady and can diverge with strain. We theref
deduce that, forkz5kz1 , the axial vorticity should have on
node in 0,r * ,ar at the radiusr * 5m1 /(kz1A3)50.88ar

from the center of each vortex of the pair. This compa
well with Fig. 4~a!where the axial vorticity reveals one nod
close to the boundary of each vortex. Similarly, forkz

5kz2 , the axial vorticity will have two internal radial node
at r * 5m1 /(kz2A3)50.51ar and r * 5m2 /(kz2A3)50.93ar

(m257.0156 is the second zero ofJ1). Indeed, the eigen
mode in Fig. 4~b! exhibits two internal nodes at spatial loc
tions not far from these predictions.

The wave numbers at which maximum amplificati
should occur according to Tsai and Widnall4 can be also
compared to those obtained herein. The main difficulty
that the previous relation forkz1 and kz2 are defined for a
circular vortex with uniform vorticity, while the vortices o
the Lamb–Chaplygin dipole are elliptical with distribute
vorticity. The effects of these two departures from the the
can be however quantitatively taken into account. With
gard to the ellipticity, Robinson and Saffman5 have shown
that when a vortex is fully elliptical, Tsai and Widnall4 re-
sults continue to be valid if the radiusar is taken as the
geometric meanar5(cd)1/2 of the semimajorc and semimi-
nord axes of the ellipse.~Note that this result can be justifie
from the work of Waleffe10 in the small ellipticity limit.! For
n

te

s

f

of
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s
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s
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the vortices of the pair, the semimajor axis is the dipo
radiusc51 and the semiminor axis is half a radiusd50.5
giving ar5A0.5. In order to take into account the effect
the vorticity distribution, we use the results of Widnallet al.2

for a vortex with distributed vorticityvz5(r * 22ad
2)2,

which approximately represents the vorticity inside the v
tices of the Lamb–Chaplygin dipole. In this case, the m
amplified wave numbers should bekz153.9/ad and kz2

57/ad . Using the previous estimate for the radiusad5ar

5A0.5, this yields the predictionskz1'5.5 andkz2'9.9.
These wave numbers are close to those calculated in
present study (kz154.75 andkz258.5 for Re5104).

The present results can be also tested against ell
instability theory for unbounded vortices. However, as a c
sequence of the absence of outer boundary conditions, t
is no particular axial wave number more amplified than
others. Thus, similar predictions to those given above can
be obtained within the frame of elliptic instability theory
Nonetheless, it is possible to make a self-consistency ch
between the spatial structure of the eigenmodes show
Figs. 4~a!–4~b! and the wave numbers at which they a
observed. To this end, we shall use the results of Walef10

which are valid for finite strain. As in Tsai and Widnall,4 the
radial dependence of the axial vorticity isJ1(kr * ), but now
r * is defined from elliptico-polar coordinates,x
5r * E cosu, y5r * sinu, whereE5c/d is the aspect ratio of
the elliptical streamlines. In the vortex cores of the pair,
aspect ratio isE5A(n1e)/(n2e)'1.55 from~12!. The co-
efficient k is related to the latter aspect ratio byk
5kzE tana wherea is the angle between the wave vect
and the rotation axis. The dependence ofa with E at maxi-
mum growth rate is not provided by Waleffe,10 however this
information can be found in Baily,9 a'0.3p. We measure
next that the first radial node is atr * '0.34 in Fig. 4~a!and
at r * '0.21 in Fig. 4~b!. This yields the predictionskz1

5m1 /(r * E tana)'5.3 and kz2'8.6 which are in good
agreement with the location of maxima in Fig. 2~a!.

B. Symmetric modes

The growth rate of symmetric modes is shown in Fig
for Re5104 and Re5400. Again, we shall discuss main
the results for Re5104, the growth rate curves for Re5400
being similar. There are four instability bands labeledC, B,
E1 andE2. Also shown is the long-wavelength symmetr
instability mode as predicted by Crow’s theory for a pair
vortex filaments propagating at the same speed and sepa
by a distanceb50.96, which is the distance between vort
centers in the Lamb–Chaplygin vortex pair. This Bio
Savart cutoff theory requires also the effective core sizeae

of the vortices. The concept of effective core size which h
been introduced by Widnall, Bliss, and Zalay33,34 ~see also a
more recent derivation by Klein and Knio35!, states that, for
long-wavelength disturbances, a vortex of core radiusa with
a particular distribution of vorticity can be converted to
equivalent vortex of core radiusae with uniform vorticity.
Knowing this latter radius, the cutoff distanced is then de-
duced from the relationd5(ae/2)e1/4.1,33,34As mentioned in
the previous section, the Lamb–Chaplygin vortex pair is w
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approximated by two Lamb–Oseen vortices with nondim
sional core sizea50.37. Since the effective core size of
Lamb–Oseen vortex is known to beae51.36a, this yields
ae50.5. Alternatively,ae can be also estimated from th
results known for a vortex with the vorticity distributionvz

5(r * 22ad
2)2. For such vortex, Widnallet al.2 have obtained

that ae50.7ad . Therefore, takingad as the geometric mea
between the semimajor and semiminor axes of the ellip
i.e.,ad5A0.5, the same estimate for the effective core rad
is obtainedae50.5. At low wave numbers,kz<0.7, Crow’s
theory agrees reasonably well with our numerical res
@Fig. 5~a!#. The slight difference is probably due to the fa
that the vortices in the Lamb–Chaplygin dipole are not w
separated. At larger wave numbers, the long-wavelen
Crow theory is no longer valid and departs widely from t
numerically calculated stability curve.

In Fig. 6, we show a contour plot of the axial vorticit
vz of the eigenmode forkz51 at which maximum amplifi-
cation is achieved in the first instability bandC. Note thatvz

is odd iny as implied by~11!. If the perturbation axial vor-
ticity were superposed to the axial vorticity of the basic sta
it would be seen that this instability brings closer the tw
vortices of the pair and shifts them to the left, i.e., in t
direction of propagation of the vortex pair. Conversely, if t
sign of the perturbation is reversed~i.e., half a wavelength
away!, the two vortices move away from each other and
shifted to the right. Note that these perturbations do not

FIG. 5. Nondimensional growth rates r ~a! and frequencys i ~b! of sym-
metric modes as a function of non-dimensional axial wave numberkz for
Re5104 ~circle! and Re5400~square!. Only nonzero frequenciess i are
shown. The dashed line shows Crow’s prediction for a pair of vortex fi
ments.
-

e,
s

s
t
ll
th

,

re
s-

tort the internal vortex structure in contrast with the sho
wavelength antisymmetric instabilities described in the p
vious section. Such a scenario is consistent with the
described by Crow1 in his Fig. 8.

The second branch (B) of instability in Fig. 5~a! is os-
cillatory with a frequencys i shown in Fig. 5~b!. The growth
rates r presents no maximum supposedly because this in
bility branch is hidden by more unstable branchesC andE1
at low and high wave numbers. The axial vorticityvz at one
phase of the oscillation cycle is shown in Fig. 7. Apart fro
the fact that the symmetry iny is reversed, this mode is
similar to the antisymmetric oscillatory bulging instabilit
mode described in the previous section@Fig. 3~a!#. However,
the present symmetric mode is not observed to exist in
same wave number range as its antisymmetric counterp
These differences probably result from the influence of
perturbation of each vortex on the other which are differ
in the antisymmetric and symmetric configurations. In p
ticular, in the case of the symmetric mode, the two vortic
of the pair bulge in phase and are likely to hinder each oth
Note that a symmetric mode with a more complex rad
structure similar to the antisymmetric mode of Fig. 3~b! has
not been observed; the symmetric bulging eigenmode ke
the same structure over all wave numbers for which the
cillatory instability is the most dangerous.

The third and fourth instability branches labeledE1 and
E2 in Fig. 5~a! are centered on the wave numberskz55.25
and kz58.75 which are close to the wave numberskz

-

FIG. 6. Contours of axial vorticity in the horizontal plane of the Cro
long-wavelength mode atkz51 for Re5104. Same legend as in Fig. 3. Not
that the small distortions seen on some contours disappear if a 5123512
resolution is used, but the growth rate changes by only 0.2%.

FIG. 7. Contours of axial vorticity of standing oscillatory symmetric mo
in the horizontal plane at one phase of the oscillation cycle atkz52.5 for
Re5104. Same legend as in Fig. 3.
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54.75 andkz58.5 of maximum amplification of the short
wavelength antisymmetric modes for Re5104 @Fig. 2~a!#.
However, the associated maximum growth rates are lo
(s r51.06 ands r51.099 for Re5104) than those of the
short-wavelength antisymmetric modes (s r51.26 ands r

51.21, respectively!. The axial vorticity corresponding
the E1 and E2 most amplified symmetric modes are d
played in Figs. 8~a!–8~b!. These modes are very similar t
their antisymmetric counterparts shown in Fig. 4 except t
the symmetry byy→2y is reversed~in the terminology of
Leweke and Williamson,12 these instabilities would be there
fore called ‘‘anti-cooperative’’!. Like for the bulging insta-
bility, the occurrence of both symmetric and antisymmet
short-wavelength modes supports the idea that the elli
instability occurs almost independently on each vortex of
pair. Yet, there exists a weak interaction between the per
bation of each vortex that causes the growth rate to be lo
for the symmetric modes than for the antisymmetric one12

In the first elliptic antisymmetric mode@Fig. 4~a!#, the
x-velocity which is induced by the perturbation field of th
lower vortex on the upper vortex is in the same direction
the x-velocity induced by the perturbation of the upper vo
tex itself. By contrast, this induced velocity is opposite to t
one locally induced in the symmetric mode@Fig. 8~a!#. There
is therefore a kind of ‘‘collaboration’’ between perturbatio
of each vortex in the case of the antisymmetric mo
whereas these perturbations do not cooperate in the sym
ric mode.

IV. CONCLUSIONS

The three-dimensional stability of the Lamb–Chaplyg
vortex pair appears to be quite rich. Because of the intrin
symmetry of the basic state with respect to the middle pl
between the two vortices, eigenmodes split into two indep
dent classes, antisymmetric and symmetric modes. The m
unstable eigenmodes of each of these two classes have
numerically determined as a function of the axial wave nu
ber at the Reynolds numbers Re5104, approaching the in-
viscid limit and Re5400, typical of experimental investig
tions. Elliptic and oscillatory bulging instabilities have be
clearly identified, both with an antisymmetric and symmet
configurations. The antisymmetric mode is, however, alw
more unstable than its symmetric counterpart for both ty

FIG. 8. Contours of axial vorticity of short-wavelength symmetric modes
the horizontal plane for the bandE1 atkz55.25 ~a! and for the bandE2 at
kz58.75 ~b! for Re5104. Same legend as in Fig. 3.
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of instability. A third type of instability is the long-
wavelength Crow instability which is symmetric and has
antisymmetric counterpart. Of all these instabilities, the
tisymmetric elliptic instability is the most unstable with
growth rate and a wavelength in very good agreement w
recent experimental observations.12

On the practical side, we have shown that the ellip
instability theory of a single confined or unbounded vort
satisfactorily accounts for the short-wavelength instabilit
of a real vortex pair. Crow’s theory1 for the long-wavelength
symmetric instability works reasonably only at low wav
number. A deficiency of the present study is that the effe
of the distance between the two vortices have not been
vestigated since such distance is fixed in the Lam
Chaplygin vortex pair. There exists a vortex pair family
solutions with vortices separated of an arbitrary distance.36,37

However, the vortices have a uniform vorticity unlike re
vortex pairs12 and the Lamb–Chaplygin dipole. Recentl
Sipp, Coppens, and Jacquin38 have presented a stabilit
analysis of vortex pairs with variable vortex separation,
basic state being obtained numerically.

On the theoretical side, an unexpected oscillatory bu
ing instability, similar to the one operating on Stua
vortices,31 has been found. The evolution scenario of t
eigenmodes’ internal structure with additional radial nod
as the axial wave number increases is strikingly reminisc
of the elliptic instability one. In each vortex of the pair, th
bulging eigenmode is dominated bym50 and umu52 azi-
muthal modes. Therefore, just like the elliptic instability d
rives from a resonant interaction between the strain~whose
intrinsic azimuthal wave number isumu52) ~Refs. 2–4,10!
and Kelvin waves with azimuthal wave numberm511, m
521 when they have the same frequency, this bulging
stability could result from a resonant interaction of Kelv
waves with azimuthal wave numberm50 andumu52 with
the strain.3,18,31Indeed, the instability mechanism discover
by Widnall et al.,2 Moore and Saffman,3 and Tsai and
Widnall4 is general and not restricted tom561 Kelvin
waves although this latter case has been studied in de
Robinson and Saffman5 discuss some of these possible oth
types of resonance. To further examine the plausibility
this hypothesis, we have calculated the frequencys i for
Kelvin wavesm50 andm52 on a Rankine vortex by solv
ing numerically the dispersion relation~given for instance in
Ref. 18!. Figure 9 shows the frequency of the first four rad
modes for both azimuthal wave numbers. It can be seen
there exist axial wave numbers for which Kelvin wavesm
50 and m52 have the same frequency. Interestingly, t
two first crossing points~indicated by circles in Fig. 9! are at
kzar51.24 andkzar52.06, that is to say, at axial wave num
bers lower than those for whichm561 waves resonate
(kzar52.5 andkzar54.35). Moreover them50 andm52
waves cross at nonzero frequencies. Therefore, if an insta
ity originates from these resonance points, it will be o
served for axial wave number lower than those for which
elliptic instability occurs and would have an oscillatory b
havior. This agrees qualitatively with the observed bulgi
instability. It remains however to determine whether or n
the effect of strain is destabilizing near these crossing poi
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This would require a quantitative mathematical treatm
along the lines followed by Tsai and Widnall4 and Moore
and Saffman.3
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