M. C. An, N. Zhang, G. Scott, D. Montoro, T. Wittkop et al., Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells, Cell Stem Cell, vol.11, issue.2, pp.253-263, 2012.
DOI : 10.1016/j.stem.2012.04.026

H. Chen, M. Lisby, and L. S. Symington, RPA Coordinates DNA End Resection and Prevents Formation of DNA Hairpins, Molecular Cell, vol.50, issue.4, pp.589-600, 2013.
DOI : 10.1016/j.molcel.2013.04.032

C. Cinesi, L. Aeschbach, B. Yang, D. , and V. , Contracting CAG/CTG repeats using the CRISPR-Cas9 nickase, Nature Communications, vol.17, p.13272, 2016.
DOI : 10.1093/hmg/ddn019

URL : http://www.nature.com/articles/ncomms13272.pdf

A. P. Davis and L. S. Symington, RAD51-Dependent Break-Induced Replication in Yeast, Molecular and Cellular Biology, vol.24, issue.6, pp.2344-2351, 2004.
DOI : 10.1128/MCB.24.6.2344-2351.2004

URL : http://mcb.asm.org/content/24/6/2344.full.pdf

C. Fairhead and B. Dujon, Consequences of unique double-stranded breaks in yeast chromosomes: death or homozygosis, MGG Molecular & General Genetics, vol.1, issue.2, pp.170-178, 1993.
DOI : 10.1007/BF00277054

L. Foiry, L. Dong, C. Savouret, L. Hubert, H. Te-riele et al., Msh3 is a limiting factor in the formation of intergenerational CTG expansions in DM1 transgenic mice, Human Genetics, vol.23, issue.5, pp.520-526, 2006.
DOI : 10.1007/978-1-4615-0117-6_1

K. Fö-rstemann, M. Hö-ss, and J. Lingner, Telomerase-dependent repeat divergence at the 3' ends of yeast telomeres, Nucleic Acids Research, vol.28, issue.14, pp.2690-2694, 2000.
DOI : 10.1093/nar/28.14.2690

M. Frank-vaillant, M. , and S. , NHEJ regulation by mating type is exercised through a novel protein, Lif2p, essential to the Ligase IV pathway, Genes & Development, vol.15, issue.22, pp.3005-3012, 2001.
DOI : 10.1101/gad.206801

M. Frank-vaillant, M. , and S. , Transient Stability of DNA Ends Allows Nonhomologous End Joining to Precede Homologous Recombination, Molecular Cell, vol.10, issue.5, 2002.
DOI : 10.1016/S1097-2765(02)00705-0

C. H. Freudenreich, S. M. Kantrow, and V. A. Zakian, Expansion and Length-Dependent Fragility of CTG Repeats in Yeast, Science, vol.279, issue.5352, pp.853-856, 1998.
DOI : 10.1126/science.279.5352.853

J. E. Haber, In vivo biochemistry: Physical monitoring of recombination induced by site-specific endonucleases, BioEssays, vol.14, issue.7, pp.609-620, 1995.
DOI : 10.1128/MCB.14.2.888

A. M. Holmes and J. E. Haber, Double-Strand Break Repair in Yeast Requires Both Leading and Lagging Strand DNA Polymerases, Cell, vol.96, issue.3, pp.415-424, 1999.
DOI : 10.1016/S0092-8674(00)80554-1

URL : https://doi.org/10.1016/s0092-8674(00)80554-1

N. C. House, M. R. Koch, and C. H. Freudenreich, Chromatin modifications and DNA repair: beyond double-strand breaks, Frontiers in Genetics, vol.223, issue.e1002124, p.296, 2014.
DOI : 10.1002/jcp.22060

URL : http://journal.frontiersin.org/article/10.3389/fgene.2014.00296/pdf

J. C. Kim, S. T. Harris, T. Dinter, K. A. Shah, and S. M. Mirkin, The role of break-induced replication in large-scale expansions of (CAG) n /(CTG) n repeats, Nature Structural & Molecular Biology, vol.110, issue.1, pp.55-60, 2017.
DOI : 10.1073/pnas.1319313110

B. O. Krogh and L. S. Symington, Recombination Proteins in Yeast, Annual Review of Genetics, vol.38, issue.1, 2004.
DOI : 10.1146/annurev.genet.38.072902.091500

F. Lazzaro, V. Sapountzi, M. Granata, A. Pellicioli, M. Vaze et al., Histone methyltransferase Dot1 and Rad9 inhibit single-stranded DNA accumulation at DSBs and uncapped telomeres, The EMBO Journal, vol.409, pp.1502-1512, 2008.
DOI : 10.1128/MCB.19.1.556

URL : http://emboj.embopress.org/content/embojnl/27/10/1502.full.pdf

S. Lee, J. K. Moore, A. Holmes, K. Umezu, R. D. Kolodner et al., Saccharomyces Ku70, Mre11/Rad50, and RPA Proteins Regulate Adaptation to G2/M Arrest after DNA Damage, Cell, vol.94, issue.3, pp.399-409, 1998.
DOI : 10.1016/S0092-8674(00)81482-8

URL : https://doi.org/10.1016/s0092-8674(00)81482-8

B. M. Lengsfeld, A. J. Rattray, V. Bhaskara, R. Ghirlando, and T. T. Paull, Sae2 Is an Endonuclease that Processes Hairpin DNA Cooperatively with the Mre11/Rad50/Xrs2 Complex, Molecular Cell, vol.28, issue.4, pp.638-651, 2007.
DOI : 10.1016/j.molcel.2007.11.001

S. Liao, M. Tammaro, Y. , and H. , The structure of ends determines the pathway choice and Mre11 nuclease dependency of DNA double-strand break repair, Nucleic Acids Research, vol.2002, issue.12, pp.5689-5701, 2016.
DOI : 10.1016/j.molcel.2008.11.021

G. Liu, X. Chen, J. J. Bissler, R. R. Sinden, and M. Leffak, Replication-dependent instability at (CTG)???(CAG) repeat hairpins in human cells, Nature Chemical Biology, vol.35, issue.9, pp.652-659, 2010.
DOI : 10.1016/S0027-5107(02)00026-X

URL : http://europepmc.org/articles/pmc2924473?pdf=render

B. Llorente and L. S. Symington, The Mre11 Nuclease Is Not Required for 5' to 3' Resection at Multiple HO-Induced Double-Strand Breaks, Molecular and Cellular Biology, vol.24, issue.21, pp.9682-9694, 2004.
DOI : 10.1128/MCB.24.21.9682-9694.2004

K. S. Lobachev, D. A. Gordenin, and M. A. Resnick, The Mre11 Complex Is Required for Repair of Hairpin-Capped Double-Strand Breaks and Prevention of Chromosome Rearrangements, Cell, vol.108, issue.2, pp.183-193, 2002.
DOI : 10.1016/S0092-8674(02)00614-1

J. R. Lydeard, S. Jain, M. Yamaguchi, and J. E. Haber, Break-induced replication and telomerase-independent telomere maintenance require Pol32, Nature, vol.408, issue.7155, pp.820-823, 2007.
DOI : 10.1016/S1097-2765(03)00269-7

K. Manley, T. L. Shirley, L. Flaherty, and A. Messer, Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice, Nature Genetics, vol.240, issue.4, pp.471-473, 1999.
DOI : 10.1006/bbrc.1997.7643

C. T. Mcmurray, DNA secondary structure: A common and causative factor for expansion in human disease, Proc. Natl. Acad. Sci. USA 96, pp.1823-1825, 1999.
DOI : 10.1021/bi980157s

G. Millot, Comprendre et ré aliser les tests statistiques a ` l, 2011.

E. P. Mimitou and L. S. Symington, Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing, Nature, vol.207, issue.7214, pp.770-774, 2008.
DOI : 10.1128/MCB.19.7.4832

URL : http://europepmc.org/articles/pmc3818707?pdf=render

D. Mittelman, C. Moye, J. Morton, K. Sykoudis, Y. Lin et al., Zinc-finger directed double-strand breaks within CAG repeat tracts promote repeat instability in human cells, Proc. Natl. Acad. Sci. USA, pp.9607-9612, 2009.
DOI : 10.1093/nar/28.17.3361

URL : http://www.pnas.org/content/106/24/9607.full.pdf

M. E. Moynahan, J. W. Chiu, B. H. Koller, and M. Jasin, Brca1 Controls Homology-Directed DNA Repair, Molecular Cell, vol.4, issue.4, pp.511-518, 1999.
DOI : 10.1016/S1097-2765(00)80202-6

URL : https://doi.org/10.1016/s1097-2765(00)80202-6

M. E. Moynahan, A. J. Pierce, and M. Jasin, BRCA2 Is Required for Homology-Directed Repair of Chromosomal Breaks, Molecular Cell, vol.7, issue.2, pp.263-272, 2001.
DOI : 10.1016/S1097-2765(01)00174-5

O. Hoy, K. L. Tsilfidis, C. Mahadevan, M. S. Neville, C. E. Barceló et al., Reduction in size of the myotonic dystrophy trinucleotide repeat mutation during transmission, Science, vol.259, issue.5096, pp.809-812, 1993.
DOI : 10.1126/science.8094260

H. T. Orr and H. Y. Zoghbi, Trinucleotide Repeat Disorders, Annual Review of Neuroscience, vol.30, issue.1, pp.575-621, 2007.
DOI : 10.1146/annurev.neuro.29.051605.113042

T. L. Orr-weaver, J. W. Szostak, and R. J. And-rothstein, Yeast transformation: a model system for the study of recombination., Proc. Natl. Acad. Sci. USA 78, pp.6354-6358, 1981.
DOI : 10.1073/pnas.78.10.6354

B. A. Owen, Z. Yang, M. Lai, M. Gajec, J. D. Badger et al., (CAG) n -hairpin DNA binds to Msh2???Msh3 and changes properties of mismatch recognition, Nature Structural & Molecular Biology, vol.277, issue.8, pp.663-670, 2005.
DOI : 10.1074/jbc.M111450200

C. Park, T. Halevy, D. R. Lee, J. J. Sung, J. S. Lee et al., Reversion of FMR1 Methylation and Silencing by Editing the Triplet Repeats in Fragile X iPSC-Derived Neurons, Cell Reports, vol.13, issue.2, pp.234-241, 2015.
DOI : 10.1016/j.celrep.2015.08.084

C. A. Parsons, P. Baumann, E. Van-dyck, and S. C. West, Precise binding of single-stranded DNA termini by human RAD52 protein, The EMBO Journal, vol.259, issue.15, pp.4175-4181, 2000.
DOI : 10.1006/jmbi.1996.0297

C. E. Pearson, A. Ewel, S. Acharya, R. A. Fishel, and R. R. Sinden, Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases, Human Molecular Genetics, vol.6, issue.7, pp.1117-1123, 1997.
DOI : 10.1093/hmg/6.7.1117

URL : https://academic.oup.com/hmg/article-pdf/6/7/1117/1528724/6-7-1117.pdf

R. M. Pinto, E. Dragileva, A. Kirby, A. Lloret, E. Lopez et al., Mismatch Repair Genes Mlh1 and Mlh3 Modify CAG Instability in Huntington's Disease Mice: Genome-Wide and Candidate Approaches, PLoS Genetics, vol.6, issue.744, 2013.
DOI : 10.1371/journal.pgen.1003930.s016

URL : http://doi.org/10.1371/journal.pgen.1003930

A. Plessis, A. Perrin, J. E. Haber, and B. Dujon, Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus, Genetics, vol.130, pp.451-460, 1992.

G. F. Richard, Shortening trinucleotide repeats using highly specific endonucleases: a possible approach to gene therapy?, Trends in Genetics, vol.31, issue.4, pp.177-186, 2015.
DOI : 10.1016/j.tig.2015.02.003

URL : https://hal.archives-ouvertes.fr/pasteur-01370705

G. Richard, B. Dujon, and J. E. Haber, Double-strand break repair can lead to high frequencies of deletions within short CAG/CTG trinucleotide repeats, Molecular and General Genetics MGG, vol.261, issue.4-5, pp.871-882, 1999.
DOI : 10.1007/s004380050031

G. Richard, C. Cyncynatus, and B. Dujon, Contractions and Expansions of CAG/CTG Trinucleotide Repeats occur during Ectopic Gene Conversion in Yeast, by a MUS81-independent Mechanism, Journal of Molecular Biology, vol.326, issue.3, pp.769-782, 2003.
DOI : 10.1016/S0022-2836(02)01405-5

G. F. Richard, D. Viterbo, V. Khanna, V. Mosbach, L. Castelain et al., Highly Specific Contractions of a Single CAG/CTG Trinucleotide Repeat by TALEN in Yeast, PLoS ONE, vol.10, issue.4, p.95611, 2014.
DOI : 10.1371/journal.pone.0095611.s004

URL : https://hal.archives-ouvertes.fr/pasteur-01370694

D. Ristic, M. Modesti, R. Kanaar, and C. Wyman, Rad52 and Ku bind to different DNA structures produced early in double-strand break repair, Nucleic Acids Research, vol.31, issue.18, pp.5229-5237, 2003.
DOI : 10.1093/nar/gkg729

B. A. Santillan, C. Moye, D. Mittelman, W. , and J. H. , GFP-Based Fluorescence Assay for CAG Repeat Instability in Cultured Human Cells, PLoS ONE, vol.422, issue.11, 2014.
DOI : 10.1371/journal.pone.0113952.g006

C. Savouret, C. Garcia-cordier, J. Megret, H. Te-riele, C. Junien et al., MSH2-Dependent Germinal CTG Repeat Expansions Are Produced Continuously in Spermatogonia from DM1 Transgenic Mice, Molecular and Cellular Biology, vol.24, issue.2, pp.629-637, 2004.
DOI : 10.1128/MCB.24.2.629-637.2004

URL : http://mcb.asm.org/content/24/2/629.full.pdf

A. Shinohara, H. Ogawa, and T. Ogawa, Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein, Cell, vol.69, issue.3, pp.457-470, 1992.
DOI : 10.1016/0092-8674(92)90447-K

M. M. Slean, G. B. Panigrahi, A. L. Castel, A. E. Tomkinson, and C. E. Pearson, Absence of MutS?? leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks, DNA Repair, vol.42, pp.107-118, 2016.
DOI : 10.1016/j.dnarep.2016.04.002

N. Sugawara and J. E. Haber, Characterization of double-strand break-induced recombination: homology requirements and single-stranded DNA formation., Molecular and Cellular Biology, vol.12, issue.2, pp.563-575, 1992.
DOI : 10.1128/MCB.12.2.563

P. Sung, Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein, Science, vol.265, issue.5176, pp.1241-1243, 1994.
DOI : 10.1126/science.8066464

S. Tomé, I. Holt, W. Edelmann, G. E. Morris, A. Munnich et al., MSH2 ATPase Domain Mutation Affects CTG???CAG Repeat Instability in Transgenic Mice, PLoS Genetics, vol.277, issue.5, p.1000482, 2009.
DOI : 10.1371/journal.pgen.1000482.s001

S. Tomé, K. Manley, J. P. Simard, G. W. Clark, M. M. Slean et al., MSH3 Polymorphisms and Protein Levels Affect CAG Repeat Instability in Huntington's Disease Mice, PLoS Genetics, vol.20, issue.2, 2013.
DOI : 10.1371/journal.pgen.1003280.s009

M. Valencia, M. Bentele, M. B. Vaze, G. Herrmann, E. Kraus et al., NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae, Nature, vol.11, issue.6864, pp.666-669, 2001.
DOI : 10.1091/mbc.11.12.4241

E. L. Van-agtmaal, L. M. André, M. Willemse, S. A. Cumming, I. D. Van-kessel et al., CRISPR/Cas9-Induced (CTG???CAG) n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing, CRISPR/Cas9-Induced (CTG,CAG)n Repeat Instability in the Myotonic Dystrophy Type 1 Locus: Implications for Therapeutic Genome Editing, pp.24-43, 2017.
DOI : 10.1016/j.ymthe.2016.10.014

URL : https://hal.archives-ouvertes.fr/hal-01429815

E. Van-dyck, A. Z. Stasiak, A. Stasiak, and S. C. West, Binding of double-strand breaks in DNA by human Rad52 protein, Nature, vol.398, issue.6751, pp.728-731, 1999.
DOI : 10.1038/19560

D. D. Villarreal, K. Lee, A. Deem, E. Y. Shim, A. Malkova et al., Microhomology Directs Diverse DNA Break Repair Pathways and Chromosomal Translocations, PLoS Genetics, vol.10, issue.11, 2012.
DOI : 10.1371/journal.pgen.1003026.s006

URL : https://doi.org/10.1371/journal.pgen.1003026

C. I. White and J. E. Haber, Intermediates of recombination during mating type switching in Saccharomyces cerevisiae, EMBO J, vol.9, pp.663-673, 1990.

T. E. Wilson, U. Grawunder, and M. R. Lieber, Yeast DNA ligase IV mediates non-homologous DNA end joining, Nature, vol.153, issue.6641, pp.495-498, 1997.
DOI : 10.1016/0092-8674(93)90498-F

N. Xie, H. Gong, J. A. Suhl, P. Chopra, T. Wang et al., Reactivation of FMR1 by CRISPR/Cas9-Mediated Deletion of the Expanded CGG-Repeat of the Fragile X Chromosome, PLOS ONE, vol.15, issue.2, 2016.
DOI : 10.1371/journal.pone.0165499.s003

Y. Ye, L. Kirkham-mccarthy, and R. S. Lahue, The Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex promotes trinucleotide repeat expansions independently of homologous recombination, DNA Repair, vol.43, pp.1-8, 2016.
DOI : 10.1016/j.dnarep.2016.04.012

A. Yu, J. Dill, and M. Mitas, form hairpins, Nucleic Acids Research, vol.23, issue.20, pp.4055-4057, 1995.
DOI : 10.1093/nar/23.20.4055

A. Yu, J. Dill, S. S. Wirth, G. Huang, V. H. Lee et al., adopts ahairpin conformation, Nucleic Acids Research, vol.23, issue.14, pp.2706-2714, 1995.
DOI : 10.1093/nar/23.14.2706

URL : https://academic.oup.com/nar/article-pdf/23/14/2706/6329332/23-14-2706.pdf

Z. Zhu, W. H. Chung, E. Y. Shim, S. E. Lee, I. et al., Sgs1 Helicase and Two Nucleases Dna2 and Exo1 Resect DNA Double-Strand Break Ends, Cell, vol.134, issue.6, pp.981-994, 2008.
DOI : 10.1016/j.cell.2008.08.037

URL : https://doi.org/10.1016/j.cell.2008.08.037