B. Bollobás, Graph theory, Graduate Texts in Mathematics, vol.63, 1979.

S. Boucheron, G. Lugosi, and P. Massart, A nonasymptotic theory of independence, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794821

R. Cerf, The Wulff crystal in Ising and percolation models, École d'Été de Probabilités de Saint Flour, number 1878 in Lecture Notes in Mathematics, 2006.

R. Cerf and M. Théret, Law of large numbers for the maximal flow through a domain of R d in first passage percolation, Trans. Amer. Math. Soc, vol.363, issue.7, pp.3665-3702, 2011.

R. Cerf and M. Théret, Lower large deviations for the maximal flow through a domain of R d in first passage percolation, Probab. Theory Related Fields, vol.150, issue.3-4, pp.635-661, 2011.

R. Cerf and M. Théret, Upper large deviations for the maximal flow through a domain of R d in first passage percolation, Ann. Appl. Probab, vol.21, issue.6, pp.2075-2108, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00659114

R. Cerf and M. Théret, Maximal stream and minimal cutset for first passage percolation through a domain of R d, Ann. Probab, vol.42, issue.3, pp.1054-1120, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00662764

R. Cerf and M. Théret, Weak shape theorem in first passage percolation with infinite passage times, Ann. Inst. H. Poincaré Probab. Statist, vol.52, issue.3, pp.1351-1381, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00980479

M. Damron and P. Tang, Superlinearity of geodesic length in 2D critical first-passage percolation, 2016.

G. Grimmett and H. Kesten, First-passage percolation, network flows and electrical resistances, Z. Wahrsch. Verw. Gebiete, vol.66, issue.3, pp.335-366, 1984.

G. Grimmett and . Percolation, , 1989.

J. M. Hammersley and D. J. Welsh, First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory, Proc. Internat, pp.61-110, 1965.

H. Kesten, Aspects of first passage percolation, École d'été de probabilités de Saint-Flour, XIV-1984, vol.1180, pp.125-264, 1986.

H. Kesten, Surfaces with minimal random weights and maximal flows: a higher dimensional version of first-passage percolation, Illinois Journal of Mathematics, vol.31, issue.1, pp.99-166, 1987.

U. Krengel and R. Pyke, Uniform pointwise ergodic theorems for classes of averaging sets and multiparameter subadditive processes, Stochastic Process. Appl, vol.26, issue.2, pp.289-296, 1987.

R. Rossignol and M. Théret, Lower large deviations and laws of large numbers for maximal flows through a box in first passage percolation, Annales de l'I.H.P. Probabilités et statistiques, vol.46, issue.4, pp.1093-1131, 2010.

R. Rossignol and M. Théret, Existence and continuity of the flow constant in first passage percolation, Electron. J. Probab, vol.23, p.42, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01568243

R. T. Smythe, Multiparameter subadditive processes, Ann. Probability, vol.4, issue.5, pp.772-782, 1976.

Y. Zhang, Supercritical behaviors in first-passage percolation, Stochastic Processes and their Applications, vol.59, pp.251-266, 1995.

Y. Zhang, Critical behavior for maximal flows on the cubic lattice, Journal of Statistical Physics, vol.98, issue.3-4, pp.799-811, 2000.

Y. Zhang, Limit theorems for maximum flows on a lattice, Probability Theory and Related Fields, 2017.

Y. Zhang and Y. Zhang, A limit theorem for N 0n /n in first-passage percolation, Ann. Probab, vol.12, issue.4, pp.1068-1076, 1984.