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On the equations of electrodynamics in a flat
or a curved spacetime and a possible

interaction energy
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Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France

Abstract

We investigate which are the independent equations of continuum elec-
trodynamics and what is their number, beginning with the standard
equations used in special and in general relativity. We check by using
differential identities that there are as much independent equations as
there are unknowns, for the case with given sources as well as for the
general case where the motion of the charged medium producing the
field is unknown. Then we study that problem in an alternative the-
ory of gravity with a preferred reference frame, in order to constrain
an additional, “interaction” energy tensor that has to be postulated
in this theory, and that would be present also outside usual matter.
In order that the interaction tensor be Lorentz-invariant in special
relativity, it has to depend only on a scalar field p. Since the system
of electrodynamics of the theory is closed in the absence of the in-
teraction tensor, just one scalar equation more is needed to close it
again in the presence of p. We add the equation for charge conserva-
tion. We derive equations that will allow one to determine the field p
in a given weak gravitational field and in a given electromagnetic field.

Keywords: Maxwell equations, special relativity, general relativity,
alternative theory of gravitation, preferred reference frame
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1 Introduction and summary

The usual approach to classical electrodynamics considers, on one hand, a
system of point charges, and on the other hand, the electromagnetic (e.m.)
field that both is produced by them and acts upon them [1, 2]. The ideal no-
tion of point charge leads to well-known difficulties such as self-force, infinite
energy, run-away solutions,... , but actually in the Maxwell equations the
charge and current distribution is a continuous one, or at least is preferably
so. From the definitions of the “free” densities of electric charge and current
[2], it certainly follows that the distribution should be continuous for the
macroscopic Maxwell equations (the ones that contain the displacement field
D and the magnetizing field H in addition to the macroscopic electric field
E and the macroscopic magnetic field B). Now, for a linear and isotropic re-
sponse, the macroscopic equations have the same form as the “microscopic”
Maxwell equations (i.e. the most standard ones, with only the microscopic
electric field E and the microscopic magnetic field B) [2]. Hence, we may
and will study the Maxwell equations without D and without H, for a con-
tinuous charged medium and its e.m. field. This applies to a macroscopic,
practical situation, if one considers then the particular case of a linear and
isotropic medium. It applies also to the general situation at a “microscopic
but still classical” scale, if one considers the total microscopic charge den-
sity and the total microscopic current density, without doing any distinction
between “free” and “bound” charges. However, in the case that the source
is not considered given, one has to assume that the velocity of the electric
current is the velocity of the charged medium, see Eqs. (19) and (23) below.

The initial problem that we were investigating in this work is the de-
velopment of continuum electrodynamics in an alternative, scalar theory of
gravitation with a preferred reference frame or “ether”, in short the scalar
ether theory or SET. An alternative extension of Maxwell’s second group to
the situation with gravitation, consistent with SET, had been proposed in
a previous work [3]. That alternative second group predicted charge non-
conservation in a variable gravitational field. However, in a later work [4], it
has been found that the charge production/destruction thus predicted seems
much too high. It has also been found [4] that the cause for this failure is
that in SET one should not assume that the total energy(-momentum-stress)
tensor T (whose T 00 component in the preferred frame is the source of the
gravitational field [5]) is the sum of the energy tensors of the charged medium
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and the e.m. field: T 6= T chg +T field. The main aim of the present work was
therefore to derive explicit equations that should allow one later to calculate
the “interaction energy tensor”

T inter := T − T chg − T field (1)

in relevant situations. This is interesting not only for SET in itself, but also
because it might be the case that the interaction energy contribute to the
“dark matter” [4]. To assess T inter, we must precise the constraints that are
imposed on it, hence we must investigate in some detail which are the inde-
pendent equations of continuum electrodynamics and what is their number.

It is instructive and in fact necessary for our purpose to study that prob-
lem first for the case of special relativity (SR) and general relativity (GR).
This will be the task pursued in Section 2. We shall show there that the
notion of differential identity allows one to explain simply why the eight
components of the standard Maxwell equations are needed to determine the
six components of E and B, when the 4-current is given; and this same notion
allows us to show also that the more complete system obtained by adding
the equation of motion of the charged continuum is closed. (For that system
the 4-current is an unknown.)

The rest of the paper is devoted to the electrodynamics of SET and to
the equations for the interaction tensor. In Section 3 we summarize the
situation [3] when the “additivity assumption” (equivalent to T inter = 0 in
(1)) is made, and, using the same method as in Sect. 2, we find that also
here the equations form a closed system of PDE’s. Section 4 briefly exposes
the reasons [4] that enforce us to abandon this assumption. Then Sect. 5
studies the constraints that are imposed on T inter. The demand that it be
Lorentz-invariant in SR leads us to the simple form (43), depending on a
scalar field p. Just one scalar equation is then lacking in the electrodynamics
of SET, due to the introduction of just one new unknown p. It follows
therefrom that Maxwell’s second group cannot be the same in “SET with p”
as it is in GR and in the other metric theories of gravitation. In Sect. 6, we
consistently close the system of electrodynamics in “SET with p” by adding
the charge conservation. We show that the field p is constant (and arguably
zero) for a gravitational field that is constant in the preferred reference frame
assumed by that theory. Hence, in particular, p is constant, and arguably
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zero, in SR with this system of equations. Finally, Sect. 7 establishes the
explicit equation that determines the field p in a weak and slowly varying
gravitational field, Eq. (75), and proposes an integration procedure to get
the numerical values of p.

2 Independent equations in standard theory

By “standard theory”, we mean the electrodynamics in GR, or possibly in
another metric theory of gravity. This includes SR as the case that the
spacetime metric is Minkowski’s. In any such theory, the dynamical equation
verified by the total energy(-momentum-stress) tensor T of matter and non-
gravitational fields is

T µν;ν = 0; (2)

and, more generally, there is a rule to go from any equation valid in spe-
cial relativity in Cartesian coordinates to an equation valid with a general
Lorentzian metric in general coordinates: “comma goes to semicolon” [6],
i.e., partial derivatives have to be replaced by covariant derivatives based on
the connection associated with the spacetime metric γ. (This rule becomes
ambiguous in cases with derivatives of order larger than one, but one may
avoid this in the case of the Maxwell equations: they involve only the e.m.
field tensor F , not the e.m. 4-potential A.) That rule does lead to the stan-
dard equations for the Maxwell field in a curved spacetime: the first group,

Fλµ , ν + Fµν , λ + Fνλ , µ = Fλµ ; ν + Fµν ;λ + Fνλ ;µ = 0 (3)

(the first equality is an identity due to the antisymmetry of F (Fµν = −Fνµ)
and to the symmetry of the metric connection), and the second group, 1

F µν
;ν = −µ0J

µ. (4)

(Here Jµ (µ = 0, ..., 3) are the components of the e.m. 4-current J and µ0

is the permeability of free space.) How many independent unknowns do we
have in standard theory, and how many independent equations? First, since
the first group can be written as

Mλµν := Fλµ ; ν + Fµν ;λ + Fνλ ;µ = 0, (5)

1 In this paper, as in the foregoing [4], we are using the SI units and the (+ − − −)
signature. (In Refs. [1, 13, 3], the Gauss units were used.) Greek indices go from 0 to 3,
Latin ones from 1 to 3. Indices are raised or lowered using the spacetime metric γ.
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and since the l.h.s. is totally antisymmetric, i.e., Mλµν = −Mµλν = −Mλνµ, it
is usual to note that (3) contains exactly four linearly-independent equations:
for example, M012 = 0, M013 = 0, M023 = 0, M123 = 0. Also, the four
equations in the second group (4) are linearly independent.

2.1 Case with given 4-current

Most often in the discussion of the solutions to the Maxwell equations, the 4-
current J is considered given. Then we have the eight Maxwell equations (3)–
(4) for the six independent unknowns Fµν (0 ≤ µ < ν ≤ 3). It is nevertheless
well known that those eight equations are needed, i.e., one cannot consistently
remove two of them from the whole. In particular, one cannot consistently
remove the two divergence equations div B = 0 and div E = ρel/ε0 from the
usual three-vector form of the flat-spacetime Maxwell equations [7, 8, 9]. 2

Regarding this point, it is observed [7] that the Maxwell equations form two
pairs of “div-curl” systems of equations, a div-curl system consisting of four
scalar equations for three scalar unknowns ui (i = 1, 2, 3):

div u = f, rot u = s. (6)

Starting from this observation, the following has been shown in a detailed
mathematical work [7]: (i) There is a theorem stating uniqueness of the
solutions u to the div-curl system, modulo suitable boundary conditions,
and provided the data s verifies the compatibility condition

div s = 0 (7)

(which follows from applying the differential identity div rot u ≡ 0 to Eq.
(6)2). (ii) Removing the divergence equation in one div-curl system leads to
a system whose solutions are not necessarily solutions of that div-curl system.

However, in our opinion, the fact that the div-curl system, or respectively
the Maxwell equations, are not overdetermined, is more easily understood
from the observation that these systems of PDE’s verify definite differential

2 Here ρel is the volume density of the electric charge and ε0 is the permittivity of
the vacuum. With the SI units and the (+ − − −) signature, the relation between the
field tensor F and the electric and magnetic fields E and B in Cartesian coordinates in a
Minkowski spacetime is given on the Wikipedia page “Electromagnetic tensor”, or by Eq.
(47) of Ref. [4].
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identities. This notion (without its name) is recognized by Liu [9] as relevant,
see his Definition II, but unfortunately he does not indicate which differential
identities do apply to the div-curl system (6) or respectively to the Maxwell
equations. The identity div rot u ≡ 0, which he mentions, is not a differential
identity of the div-curl system (6), because rot u = 0 does not belong to the
equations of that system (unless s ≡ 0). Also, Eq. (7) is obviously not a
differential identity, i.e., a partial differential equation that is satisfied by any
regular vector function s. What happens is that, if Eq. (7) is satisfied by
some particular function s, then the following is indeed a differential identity,
i.e., it is valid for any regular vector function u:

div (rot u− s) ≡ 0. (8)

Moreover, this is a differential identity of the system (6), i.e., it has the form

n∑
k=1

OkPku ≡ 0, (9)

where Pku = 0 (k = 1, ..., n, thus n = 4 for the system (6)) are the scalar
PDE’s of the system, and where Ok are scalar differential operators of the
first order, or the zero operator. Indeed some among the Ok ’s, but not all,
can be the zero operator, meaning that the corresponding equation Pku = 0
is not involved in the differential identity. (Also, u designates in general the
list of unknown functions in the system.) We insist that, by definition, a
differential identity like (9) has to apply whether or not any of the equations
of the system (Pku = 0) is satisfied. Thus, in view of the scalar identity (8),
it is clear that the system (6) has only three independent equations instead
of four. But since it is a differential identity, not an algebraic one, and since
that identity involves not merely one but several equations among the scalar
PDE’s of the system, it is quite clear also that we can’t remove any of the
scalar PDE’s of the system without altering it. In particular, note that (un-
der the validity of the compatibility condition (7)), the differential identity
(8) is already a differential identity of the “curl system” (6)2 alone, which is
hence an underdetermined system: 3−1 = 2 independent equations for 3 un-
knowns. It thus becomes obvious that, if one removes the divergence equation
(6)1, one will indeed be able to find “spurious” solutions, i.e., undesired ones.

Consider now the flat-spacetime Maxwell system in vacuo: Eqs. (4)–
(5) with commas instead of semicolons (in Cartesian coordinates for the
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Minkowski metric), and with Jµ = 0. As noted by Das [10], that system has
the two differential identities

S := εµνρσMµνρ,σ ≡ 0 (10)

(where εµνρσ is the signature of the permutation (µνρσ) of {0, ..., 3}), and

F µν
,ν,µ ≡ 0, (11)

which both result from the antisymmetry of the tensor F (after a short alge-
bra, for (10)). The first identity is a differential identity of the first Maxwell
group (5), the second one is a differential identity of the second Maxwell
group in vacuo. Thus there are six independent equations for the six un-
knowns.

Finally, consider the Maxwell system in a general spacetime (4)–(5). In
a general coordinate system in a general Lorentzian spacetime, we have sim-
ilarly with (10) and (11) the two independent differential identities

eµνρσMµνρ;σ ≡ 0 (12)

(where eµνρσ is the usual totally antisymmetric tensor that coincides with
εµνρσ in coordinates such that the natural basis is direct and that γ :=
det(γµν) = −1), and

F µν
;ν;µ ≡ 0. (13)

These identities indeed apply (thus whether or not Eqs. (4) or (5) are veri-
fied), because the l.h.s. of either (12) or (13) is a manifestly invariant scalar,
and it is zero (as for (10) or (11)) in coordinates such that, at the event
considered, the Christoffel symbols vanish and the matrix (γµν) = (ηµν) :=
diag(1,−1,−1,−1). The first one, Eq. (12), is clearly a differential identity
of the first Maxwell group (5). The identity (13) implies that the second
Maxwell group (4) has charge conservation as a compatibility condition:

Jµ;µ = 0. (14)

Hence, it is here as with the div-curl system (6): if the compatibility condition
(14) is satisfied, as it should, then we get from (13) the following differential
identity of the second Maxwell group (4):

S ′ :=
(
F µν

;ν + µ0J
µ
)

;µ
≡ 0. (15)
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Thus, here also, we have six independent equations for the six unknowns.

It may be useful to show how the identities (12) and (15) appear with
the usual 3-vector form of the Maxwell equations for a flat spacetime. Using
Eqs. (24.13) and (24.14) of Fock [13], it is easy to check that the l.h.s. of
the identity (10) can be rewritten as

S = 6

[
div

(
rot E +

∂B

∂t

)
− ∂

∂t
(div B)

]
. (16)

In a flat spacetime, the identity S ≡ 0 is thus as well a differential identity of
the usual 3-vector form (e.g. Eqs. (1) and (4) in Ref. [9]) of Maxwell’s first
group. Using µ0ε0 = 1/c2, it is also easy to check that, in a flat spacetime,
the identity (15) rewrites as the following differential identity of the usual
form of Maxwell’s second group:

−S ′ = div

[
rot B− µ0

(
j + ε0

∂E

∂t

)]
+ µ0ε0

∂

∂t

(
div E− ρel

ε0

)
≡ 0. (17)

This identity is satisfied provided that the integrability condition of Maxwell’s
second group: Eq. (14) or equivalently ∂ρel

∂t
+ div j = 0, is satisfied (here j is

the 3-vector with components ji := J i). Of course, as for S ≡ 0, the identity
(17) applies whether or not any of the Maxwell equations is satisfied.

2.2 Complete system for a deformable charged medium

Often, in practice, the 4-current density J can be considered given (at least
as an approximation), as we just envisaged. This is not the general case,
however. A continuous charged medium is subjected to the Lorentz 4-force
(density)

fµ := F µ
ν J

ν , (18)

which tends to modify the (3-)velocity field v of the charged medium (es-
pecially if the latter is deformable, as is the case e.g. in magnetohydrody-
namics), and hence also to modify the current J as well. Indeed, in any
coordinates xµ, the components of the latter 4-vector are defined as ([1], Eq.
(90.3)):

J µ :=
ρel

β

dxµ

dt
, (19)
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where
β :=

√
γ00, (20)

and t := x0/c. The velocity field v (whose value at an event X is the
velocity of that infinitesimal volume element of the continuous medium which
is at X) is measured with the local standards, and has thus components
vi = dxi/dtx where tx is the synchronized local time in the reference fluid F
that is considered [1, 11, 12]. (Note that the data of one coordinate system
(xµ) automatically defines a unique reference fluid, whose reference world
lines are the lines x := (xi) = Constant [12].) Assuming that F admits
adapted coordinates that verify the synchronization condition

γ0i = 0 (21)

(and using any such coordinates), we have

dtx
dt

= β(t,x), (22)

so that J i = ρelv
i, or

j = ρelv (23)

for the 3-current, a spatial vector field in the reference fluid F . Moreover, a
deformable charged medium has state parameters, at least the proper rest-
mass density field ρ∗ or (equivalently for a barotropic perfect fluid) the pres-
sure field P .

In the general case, we thus add to the six field unknowns Fµν (0 ≤
µ < ν ≤ 3), the field unknowns ρel and v, plus the other state parameters,
say merely the field ρ∗ for the simplicity of discussion — thus we have five
unknowns more, that is 6 + 5 = 11 unknowns. The equation we have in
addition to the Maxwell equations (4)–(5) is the dynamical equation of GR
for the charged medium subjected to the 4-force (18):

T µνchg ;ν = F µ
λ J

λ, (24)

where T chg is the energy tensor of the deformable charged medium, depending
on v and ρ∗. Equation (24) extends a standard equation valid in special
relativity (e.g. [1], Eq. (33.9)), by using the “comma goes to semicolon”
rule. It can also be derived from the dynamical equation for the total energy
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tensor (2), Maxwell’s second group (4), and the assumption of additivity of
the energy tensors:

T = T chg + T field, (25)

with T field the energy tensor of the e.m. field [1, 13]:

T µν
field :=

(
−F µ

λF
νλ +

1

4
γ µνFλρF

λρ

)
/µ0. (26)

Indeed, by using the identity [3, 4]

µ0T
µν
field ;ν ≡ −F

µ
λ F

νλ
;ν , (27)

one deduces from the second group (4):

T µνfield ;ν = −F µ
λ J

λ. (28)

Equations (2) and (25) then imply immediately (24). Thus, we have five
unknowns more than in the case with given 4-current, and merely the four
equations (24) more, in addition to (4) and (5). 3 However, since in the
system [(4)–(5), (24)] the current J is unknown as well as is the e.m. field
F , Eq. (15) is not a differential identity of that system, even though it does
have the form (9) (with u denoting the set of all unknowns of the system:
now J, F , and ρ∗, or equivalently ρel, v, F , and ρ∗). This is because (15),
as well as the charge conservation (14), apply merely on the solution space
of the system. (Both indeed apply there, due to Maxwell’s second group
(4) and to the identity (13).) Whereas, a differential identity of the system
has to be valid for any regular field unknowns J, F , and ρ∗. Note also that
the identity (13) is not a differential identity of the system either, because
it does not have the form (9). Thus, for the system [(4)–(5), (24)], we have
merely the identity (12) that counts as a dependence relation. So we have
12− 1 = 11 equations for the 11 unknowns.

Note that the foregoing applies in SR as well as in a metric theory of
gravitation. However, in the case with gravitation, strictly speaking, the

3 At least if one assumes a perfect fluid, the mass conservation can be exactly deduced
from (24), in nearly the same way as one deduces it from (2) [14] in the case without the
e.m. field and current (in both cases, mass conservation applies iff the fluid is isentropic).
Hence it is not an additional equation.
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metric field γ should not be considered given, e.g. because the e.m. en-
ergy tensor does contribute to the total energy tensor and hence influences
the metric nonlinearly through the Einstein equations (considering GR for
definiteness) — even if this influence is very small in usual conditions, e.g.
in the solar system. If we account for this, we thus add the ten unknowns
γµν (0 ≤ µ ≤ ν ≤ 3). And we add the ten Einstein equations (of which only
six count as independent due to the four differential identities of Bianchi),
plus the four equations of the gauge condition which is selected.

3 Independent equations in SET without in-

teraction tensor

In SET, motion is governed by an extension of the special-relativistic form of
Newton’s second law to a curved spacetime, written in the preferred reference
fluid E assumed by the theory. This extension, which is formulated primarily
for a test particle [15], can be applied to each particle of a dust, that is an
ideal continuum made of a myriad of coherently moving test particles. This
leads [3] to the following dynamical equation in the presence of a field of
external (3-)force having volume density f with components f i (i = 1, 2, 3):

T µνmedium ;ν = bµ(Tmedium) + fµ, f 0 :=
f .v

cβ
, (29)

where β is defined in Eq. (20), v is the velocity field (with the local time,
see after that equation), Tmedium is the energy-momentum tensor of the con-
tinuous medium, and

b0(T ) :=
1

2
γ00 gij,0 T

ij, bi(T ) :=
1

2
gij gjk,0 T

0k. (30)

Here gij are the components of the spatial metric tensor g = gE associated
with the spacetime metric γ in the reference fluid E [1, 17, 3]. Equation
(29) is then assumed to be valid for any continuous medium [3], provided a
velocity field can be unambiguously be defined for that medium. In the case
that the continuous medium is a charged medium and f is the Lorentz (3-
)force, the logic of the theory leads one to define its components f i precisely
as the spatial components µ = i in Eq. (18) above [3]. Moreover, the f 0

component is thus derived (at least for a dust) to be given by (29)2 here, and
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this turns out to be also equal to the µ = 0 component in Eq. (18) [3] —
although the dynamics is different from that of GR. So for a charged medium
the dynamical equation writes:

T µνchg ;ν = bµ(T chg) + F µ
ν J

ν . (31)

The dynamical equation for the total energy tensor T is also obtained by
induction from what is got for a dust, this time without any non-gravitational
external force, and is thus [16]:

T µν;ν = bµ(T ). (32)

It seems natural at first sight to assume the additivity of the energy
tensors, Eq. (25). It turns out that, together with the dynamical equations
for the charged medium and the total energy tensor, Eqs. (31) and (32), this
determines Maxwell’s second group. This is already true for GR, as one can
see by reverting the line of reasoning in Eqs. (27) and (28) above: starting
from the dynamical equations for the charged medium and the total energy
tensor in GR, Eqs. (24) and (2), and using the additivity (25), we obtain
immediately Eq. (28). Equating with the identity (27) gives us

−F µ
λ F

νλ
;ν = −µ0 F

µ
λ J

λ, (33)

which, at least for the (generic) case of an invertible matrix (F µ
λ), is equiva-

lent to the second group of GR, Eq. (4). For SET, this same argument, with
Eqs. (31) and (32) replacing Eqs. (24) and (2) of GR, leads first to

T µνfield ;ν = bµ(Tfield)− F µ
ν J

ν , (34)

from which one gets by (27) [3]:

F µ
λ F

λν
;ν = µ0

[
bµ (Tfield)− F µ

λ J
λ
]
, (35)

which is the second group got in SET when one assumes the additivity (25).

The foregoing implies that, for SET with the additivity assumption (25),
we can take as the system of equations governing the motion of a charged
medium and its e.m. field: Maxwell’s first group (5), plus the dynamical
equations for the charged medium and the total energy tensor, Eqs. (31)
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and (32) — or, equivalently, Maxwell’s first group (5), plus Eqs. (31) and
(35). The unknown fields are the same as for GR: Fµν (0 ≤ µ < ν ≤ 3), ρel

and v, and ρ∗, or equivalently Fµν (0 ≤ µ < ν ≤ 3), J, and ρ∗ — in any case
11 unknowns. And as in GR, we have merely the identity (12) that counts
as a dependence relation. So again we have 12 − 1 = 11 equations for the
11 unknowns. If we account for the fact that the gravitational field is not
given, we add the scalar gravitational field unknown, ψ := −Log β, and we
add the scalar flat-spacetime wave equation obeyed by ψ according to that
theory [5].

4 Interaction energy tensor in SET

There are three reasons [4] why it turns out to be not satisfying to close the
electrodynamics for SET by stating the additivity assumption (25):

(i) The version (35) of Maxwell’s second group leads to the non-conservation
of charge in a variable gravitational field. (This is seen by using the identity
(13) [3].) It happens moreover that the amounts of electric charge which are
thus predicted to be produced or destroyed in a realistic e.m. and gravita-
tional field, seem much too high to be a tenable prediction.

(ii) In general, the energy tensors of the charged medium and the e.m.
field are both non-zero. This means that we are in the presence of a mixture.
According to the standard theory of mixtures (which has been developed for
non-relativistic physics), the effective energy tensor of the mixture is not the
sum of the energy tensors of its constituents [18]. This is not compatible
with the additivity assumption (25).

(iii) Equation (34) means that the e.m. field continuum verifies the dy-
namical equation (29) for a continuous medium with an external force field
ffield acting on it, with, specifically:

fµfield = −fµ := −fµchg := −F µ
νJ

ν . (36)

Using the spatial part of this (µ = 1, 2, 3), and noting respectively vfield and
vchg the velocity fields of the field continuum and the charged continuum
(assuming vfield is well defined), the “time” part rewrites as [4]:

fchg. (vfield − vchg) = 0. (37)
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However, for a general e.m. field, it is not easy to tell how to define its ve-
locity field vfield, be it experimentally or in terms of the energy tensor T field.
Anyway, Eq. (37) looks problematic for a general e.m. field. For a “null”
field (i.e., such that the classical invariants are both zero), the velocity field
can be defined naturally in terms of the energy tensor T field [4], and it has
modulus vfield := (g(vfield,v)field)1/2 = c. Furthermore, one can then prove
[4] that indeed (37) is satisfied (although usually vchg � c), but this proof
depends heavily on the fact the e.m. field is a null field.

Due to these reasons, we have to abandon the additivity assumption (25).
This means that the total tensor T verifying Eq. (32) involves another part,
say T inter:

T = T chg + T field + T inter. (38)

While introducing that “interaction tensor” T inter, we almost necessarily add
new unknowns — unless all state parameters for T inter would be extracted
from those of T 1 := T chg and T 2 := T field. 4 Hence, the system [(5), (31),
(32)] made of Maxwell’s first group and the dynamical equations for the
charged medium and for the total energy tensor, cannot be closed any more.
So we have to add at least one equation.

5 Constraints on the interaction tensor

The effect of the gravitational field on the e.m. field can usually be neglected,
e.g. because the gravitational force on a charged particle is extremely small
as compared with the Lorentz force. When this approximation is done, the
e.m. field is as in special relativity (SR), i.e. in a flat Minkowski spacetime.
There is a massive experimental evidence for the predictions deduced from
the usual (flat-spacetime) Maxwell equations. Therefore, we ask that the
electrodynamics of SET should exactly reduce to that of SR in the absence of
gravitation, i.e., when the scalar gravitational field β ≡ 1 so that, accordingly
[5], the physical spacetime metric γ is the Minkowski metric. (See Eq. (45)

4 For instance, the standard theory of mixtures makes a definite suggestion to define
T in terms of T 1, T 2, and the velocity fields v1 and v2: Eq. (2.13) in Ref. [18]. This
suggestion can be extended naturally to SET, by starting from Eq. (39) in Ref. [3] (valid
for a dust), but this definition for T does not verify Eq. (32). Anyway, an effective energy
tensor defined in such a way would not reduce to the sum (25) in special relativity, as is
required (see Sect. 5).
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below.) In special relativity, the dynamical equation for the charged medium
valid in GR, Eq. (24), can be derived directly from the Lorentz 4-force (e.g.
[1], Eq. (33.9)), while the dynamical equation for the e.m. field valid in GR,
Eq. (28), is derived essentially as it was derived hereabove for GR, i.e. from
the identity (27) and Maxwell’s second group (4) (though in a simpler way
for SR, with commas instead of semicolons in Cartesian coordinates; see e.g.
Eq. (33.7) in Ref. [1]). Hence we have in SR as well as in GR:

T µνchg ;ν + T µνfield ;ν = 0. (39)

Again for SR and GR, this is compatible with the additivity assumption
(25): of course, the latter plus the dynamical equation (2) for the total
energy tensor imply (39). Conversely, if we start from the fully general
decomposition (38) of the total tensor, then under the validity of Eq. (2),
we get that (39) is equivalent to

T µνinter ;ν = 0. (40)

We note that Eq. (2) does apply in SET for a constant gravitational field:
the latter means β,0 = 0, hence gij,0 = 0 in (30) (see Eq. (45) below), whence
bµ = 0 in (32). Hence, in particular, Eq. (2) does apply in SET in the
absence of gravitation, i.e., when β ≡ 1. Thus, if we do recover Eq. (39)
of SR from SET in the absence of gravitation, then Eq. (40) will apply in
that situation. Below, just to check that form of the interaction energy tensor
that, we will show independently, is relevant, we therefore assume in advance
that Eq. (40) applies to SET in the absence of gravitation, and we will show
in Sect. 6 that this is indeed the case with the precise framework that shall
be adopted.

In view of the foregoing, it is not a priori obvious that we may impose the
condition that the interaction tensor T inter should vanish in SR. However, we
may impose that it should be Lorentz-invariant in SR. Any Lorentz-invariant
second-order tensor is a scalar multiple of the Minkowski metric tensor, say
γ0 [19]. Therefore, T inter should have the form (in Cartesian coordinates for
the Minkowski metric, i.e., (γ0)µν = ηµν):

Tinter µν = p ηµν (SR), (41)

with some scalar field p. This defines of course a Lorentz-invariant tensor
field. Note that (41) is equivalent to:

T µinter ν := ηµρ p ηρν = p δµν (SR) (42)
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(again in Cartesian coordinates). Now we observe that the definition

T µinter ν := p δµν , (43)

thus got in Cartesian coordinates in a Minkowski spacetime, is actually
generally-covariant: if (43) applies in some coordinates xµ in a general space-
time with metric γ, it still applies after any coordinate change. Therefore,
we adopt for the general case the definition (43), which has been got by
demanding that T inter be Lorentz-invariant in SR. When gravitation is ab-
sent i.e. when the metric turns out to be Minkowski’s, we should have Eq.
(40), and this implies p = Constant, say p ≡ p∞. Indeed, if the metric is
Minkowski’s, Eqs. (40) and (41) imply that p,µ = 0. Thus by requiring only
that T inter should be Lorentz-invariant in SR, we get that it is then actually
constant. Moreover, it is natural to assume that, very far from any body, the
total energy tensor T , as well as T chg and T field, are zero. That assumption
implies that the constant p∞ is zero, and hence that the additivity condition
(25) applies in SR. We note also that, with the definition (43), we have just
one unknown more (p) in the system of electrodynamics of SET [(5), (31),
(32)], see the end of Sect. 3. So we have to find just one scalar equation
more. Thus we cannot add the standard Maxwell second group (4), since it
would add four independent scalar equations. We have to show this more
clearly, because it is an important point.

Once an interaction tensor is introduced through Eq. (38), we may a
priori postulate the standard Maxwell second group (4) in addition to the
system of electrodynamics of SET [(5), (31), (32)] [4]. This leads to (Eq.
(104) in Ref. [4]):

T µνinter ;ν − bµ(T inter) = bµ(T field). (44)

Let us compute the l.h.s. (this will be used also in the next section). Until
the end of this section, and again in Sect. 7, we will use coordinates xµ that
are adapted to the preferred reference fluid E and, more specifically, we will
assume that the spatial coordinates are Cartesian for the Euclidean spatial
metric g0 assumed in the theory (g0 is time-independent in any coordinates
that are adapted to the preferred frame E), and x0 = cT with T the preferred
time of the theory. In such coordinates, the curved “physical” spacetime
metric γ is by assumption [5]:

ds2 = γµνdx
µdxν = β2(dx0)2 − gijdxi dxj = β2(dx0)2 − β−2dxi dxi. (45)

16



This implies that, in such coordinates, we have

γ := det (γµν) = −β−4. (46)

With the help of an identity for T ν
µ ;ν ([1], Eq. (86.11)) and the definition

(30) of bµ, we obtain thus (for whatever symmetric tensor Tµν):

T ν
0 ;ν − b0(T ) ≡ β2

(
T 00
,0 + T 0j

,j

)
− ββ,0 T 00, (47)

T ν
i ;ν − bi(T ) ≡ β2

(
T ν
i

β2

)
,ν

− β−3β,0 T
0i − β−3β,i T

jj − ββ,i T 00. (48)

With the definition just adopted (43) for T inter, we get from this:

δ0 = p,0 − 3 p β,0 β
−1, (49)

δi = p,i, (50)

where
δµ := δµ(p) := T ν

inter µ ;ν − bµ(T inter). (51)

Equation (44) is equivalent to

δµ(p) = bµ(T field) (µ = 0, ..., 3). (52)

Clearly, for a general e.m. field, bµ(T field) can be essentially any 4-vector
field. (This can be checked by using the explicit forms of T field and bµ, Eqs.
(26) and (30).) Hence, Eqs. (49) and (50) imply that it cannot in general
exist a scalar field p that verify the four equations (52): already the three
spatial equations (µ = i = 1, 2, 3) imply that rot (bi) = 0, which is not true
in general.

Thus, postulating the validity of the standard Maxwell second group (4)
would demand to have a more general form than (43) for the interaction
tensor T inter, which instead should depend on four scalar fields. In that case,
the interaction tensor would not be Lorentz-invariant in SR any more. It is
hard to say in advance whether or not it would then be possible to get the
constancy of T inter in SR — which applies to the single-scalar form (43) as
we will show in the next section.
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6 Charge conservation and determination of

the interaction tensor

With the general decomposition (38), the dynamical equation (32) for the
total energy tensor in SET is equivalent to:

T µνfield ;ν = bµ(T field) + bµ(T chg)− T µνchg ;ν + bµ(T inter)− T µνinter ;ν . (53)

By using the identity (27) for T µνfield ;ν , the dynamical equation (31) for the
charged medium, and the definition (51), this rewrites as

F µ
λ F

λν
;ν = µ0 [bµ(T field)− F µ

ν J
ν − δµ(p)] . (54)

If the matrix (F µ
λ) is invertible, which is the generic situation and is equiv-

alent to E.B 6= 0 [4], this can still be rewritten as

F µν
;ν = µ0 [Gµ

ν (bν(T field)− δν(p))− Jµ] , (55)

where (Gµ
ν) is the inverse matrix of matrix (F µ

ν). By using the identity
(13), we get from this:

Jµ;µ = [Gµ
ν (bν(T field)− δν(p))];µ . (56)

Apart from the identities (27) and (13) (which are valid independently of
any physical theory), the validity of Eqs. (55) and (56) depends only on
the validity of Eqs. (32) and (31), accounting for the general decomposition
(38) with the interaction energy tensor (43). In Sect. 5, we showed that, to
close the system of electrodynamics of SET [(5), (31), (32)] in the presence
of the interaction energy tensor (43), we need just one scalar equation more.
Therefore, it suggests itself to close the system by adding the conservation
of charge Jµ;µ = 0, i.e., in view of (56), by adding the following equation:

[Gµν (bν(T field)− δν(p))];µ = 0. (57)

Thus we have the system [(5), (31), (32), (57)], or equivalently the system
[(5), (31), (55), (57)], which has the differential identity (12). So we have
13 − 1 = 12 equations for 12 unknowns Fµν (0 ≤ µ < ν ≤ 3), J, ρ∗, and
p. It is natural to expect that the system [(5), (31), (55), (57)] has a unique
solution when suitable boundary conditions are imposed, just as has the sys-
tem of electrodynamics of a metric theory, [(4)–(5), (24)]. (As at the end
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of Sect. 3, the fact that the scalar gravitational field β is also unknown
can be accounted for by adding the scalar flat-spacetime wave equation for
ψ := −Log β.)

Now consider the case of a constant gravitational field, which includes the
situation without any gravitational field. In that case, the general dynamical
equation of GR (2) applies to SET as noted after Eq. (40), so that we get
from the general decomposition (38) and the definition (43) of the interaction
tensor:

T µν;ν = 0 = T µνfield ;ν + T µνchg ;ν + T µνinter ;ν = T µνfield ;ν + T µνchg ;ν + p,νγ
µν . (58)

Hence, the system [(5), (31), (55), (57)] is solved by p = Constant := p∞ and
with the fields F , J, ρ∗ being the solution of the system [(4)–(5), (24)] for
the given time-independent metric and for the relevant boundary conditions.
Therefore, we get that Eq. (40) is true in a constant gravitational field. In
particular, Eq. (40) is true when the latter vanishes — as we provisionally
assumed after postulating the form (43) of the interaction energy tensor, to
check that form. Moreover, as noted after Eq. (43), we may assume that the
constant p∞ is zero, hence the additivity (25) of the energy tensors T chg and
T field does apply in a constant gravitational field.

If the e.m. field F and the gravitational field β are considered given, then
the scalar field p, and hence the interaction energy tensor, may in principle
be calculated by solving the equation for charge conservation, Eq. (57). Of
course F and β are coupled with the other fields that include precisely p.

7 First approximation of the scalar field in a

weak gravitational field

In this section we will obtain equations that should allow one, in a future
work, to assess numerically the scalar field p and the interaction energy in a
given e.m. field and in a given weak and slowly varying gravitational field.
To this aim, we may use the results of the asymptotic framework developed
in some detail in Sects. 4 and 5 of Ref. [4]. The only change with respect to
that former work is the additional term −Gµνδν(p) in Eq. (55), as compared
with Eq. (22) in Ref. [4], and correspondingly the additional equation (57).

19



Therefore, the analysis done in that work applies almost without any change.
In view of the additional equation (57), we must require that δν(p) be of the
same order as is bν(T field) in the gravitational weak-field parameter λ, with
λ = c−2 in specific λ-dependent units of mass and time. From Eqs. (34) and
(36) in Ref. [4], we have for the order of bν :

bν(T field) = ord(c2n−5), (59)

where

F = cn
(

0

F + c−2
1

F +O(c−4)

)
(60)

is the expansion of the e.m. field tensor. The gravitational field is expanded
as (Eq. (28) in Ref. [4]):

β :=
√
γ00 = 1− U c−2 +O(c−4), (61)

where U is the Newtonian gravitational potential. Using this and setting

p = cq
(

0
p+ c−2 1

p+O(c−4)
)
, (62)

we get from (49) and (50) that δµ = ord(cq), hence our requirement is satisfied
iff q = 2n− 5 so that

p,µ = c2n−5
(

0
p,µ +O(c−2)

)
. (63)

Let us define
ρ̂ := (Gµ

ν b
ν(T field));µ , (64)

as in Eq. (23) in Ref. [4] — but now ρ̂ 6= Jµ;µ, unlike in the latter work.
With this definition, everything in Sects. 4 and 5 of Ref. [4] remains valid
and we have in particular (Eq. (45) in Ref. [4]): 5

ρ̂ = c−3
[(
G1

µ0 T1
jj −G1

µi T1
0i
)
∂TU

]
,µ

(
1 +O

(
c−2
))
, (65)

where G1
µν and T1

µν are the first approximations of G µν and T µν , i.e.,

G1 := (F 1)−1, F 1 := cn
0

F , (66)

5 The remainder in this expansion was incorrectly written as O
(
c−5
)

in Eqs. (45) and

(54) of Ref. [4]. In fact it is O
(
cn−7

)
while the main term is ord

(
cn−5

)
, Eq. (41) of Ref.

[4]. The important point is precisely that the remainder is O
(
c−2
)

times the main term.
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and the like for T 1 [4]. This can be then calculated explicitly: as given by
Eqs. (53) and (54) of Ref. [4],

ρ̂ = c−3
(
ei∂TU

)
,i

(
1 +O

(
c−2
))
, (67)

where ei = 1
2 c µ0 (B1 E1+B2 E2+B3 E3)

×

×

 c2
(
B1

3 +B1B2
2 +B1B3

2
)

+B1E1
2 −B1E2

2 −B1E3
2 + 2B2E1E2 + 2B3E1E3

c2
(
B2

3 +B2B3
2 +B2B1

2
)

+B2E2
2 −B2E3

2 −B2E1
2 + 2B3E2E3 + 2B1E2E1

c2
(
B3

3 +B3B1
2 +B3B2

2
)

+B3E3
2 −B3E1

2 −B3E2
2 + 2B1E3E1 + 2B2E3E2

 .

(68)
In Eq. (68), Ei := Ei and Bi := Bi are the components of the first approx-
imations of the electric and magnetic fields in the frame E , in coordinates
of the class specified after Eq. (44). I.e., Ei and Bi are extracted (Note 2)
from the first approximation F 1 of the e.m. field tensor F , Eq. (66), that
obeys the flat-spacetime Maxwell equations [4]. Inserting (63) and (67) into
(57) using uµ;µ = (uµ

√
−γ),µ/

√
−γ, with

√
−γ = 1 + O(c−2) owing to (46)

and (61), gives us:

(G µν
1 (p1),ν),µ = G µν

1 ,µ (p1),ν = c−3
(
ei∂TU

)
,i

(
1 +O

(
c−2
))
, (69)

where p1 := c2n−5 0
p is the first approximation of p. The first equality is due

to the antisymmetry of Gµν and G µν
1 . The matrix G′ := (G µν

1 ) is given
explicitly by Eq. (50) in Ref. [4], which can be rewritten as

G′ =
−c
E.B

H , H :=


0 B1 B2 B3

−B1 0 −E3

c
E2

c

−B2
E3

c
0 −E1

c

−B3 −E2

c
E1

c
0

 . (70)

It is easy to check that Maxwell’s (flat-spacetime) first group, verified by F 1,
implies that

Hµν
,µ = 0. (71)

It follows from this and (70) that we have explicitly in (69):

(kν) :=
(
G µν

1 ,µ

)
= (72)

1
(E.B)2

×


−Bi c (E.B),i

E3 (E.B),2 − E2 (E.B),3 +B1 c (E.B),0
E1 (E.B),3 − E3 (E.B),1 +B2 c (E.B),0
E2 (E.B),1 − E1 (E.B),2 +B3 c (E.B),0

,
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i.e.,

k0 =
−c

(E.B)2 B.(∇(E.B)), (73)

(ki) =
1

(E.B)2

(
∂ (E.B)

∂T
B− E ∧ (∇(E.B))

)
. (74)

Equation (69) can be rewritten in the form

∂T p1 + uj∂j p1 = S, (75)

where

S :=
c−2 (ei∂TU),i

k0
(76)

(no confusion can occur with the sum S in Subsect. 2.1), and

uj :=
c kj

k0
. (77)

We assume k0 6= 0 in Eq. (72), i.e. B.(∇(E.B)) 6= 0. Note that E.B 6= 0
is required since Sect. 6. Remind that here the first-approximation fields
E and B are involved, and they obey the flat-spacetime Maxwell equations.
Equation (75) is an advection equation with a given source S for the unknown
field p1. This is a hyperbolic PDE whose characteristic curves are the integral
curves of the vector field u := (uj). That is, on the curve C(T0,x0) defined
by

dx

dT
= u(T,x), x(T0) = x0, (78)

we have from (75):

dp1

dT
=
∂p1

∂T
+
∂p1

∂xj
dxj

dT
= S(T,x). (79)

We note that the field u is given, Eq. (77), i.e., it does not depend on the
unknown field p1. Therefore, the integral lines (78) are given, too, hence the
characteristic curves do not cross. Thus, the solution p1 is got uniquely by
integrating (79):

p1(T,x(T ))− p1(T0,x0) =

∫ T

T0

S(t,x(t)) dt, (80)

where T 7→ x(T ) is the solution of (78). If at time T0 the position x0 in
the frame E is enough distant from material bodies, one may assume that
p1(T0,x0) = 0.
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8 Conclusion

The main results obtained in this paper are the following ones:

1) The structure of classical electrodynamics based on the standard Maxwell
equations of special relativity or general relativity has been discussed and it
has been shown by using the notion of differential identity that the number
of independent scalar PDE’s is the same as the number of unknown fields.
This applies to both the case with given 4-current and the more general case
where one takes into account the equation of motion of the charged medium,
the 4-current then belonging to the unknowns. Of course the result for the
first case is well known (e.g. [7, 8]), but the explanation by considering the
differential identities (12) and (15) is more straightforward and we could not
find it in the literature. For the more general case also, our discussion is
based on differential identities: (12) is still valid but (15) holds now only on
the solution space; that discussion too seems new.

2) In the investigated theory of gravity (“SET”), with the additivity as-
sumption (25), electrodynamics consists of the system [(5), (31), (32)], i.e.,
Maxwell’s first group and the dynamical equations for the charged medium
and for the total energy tensor. Using the same method as for SR and GR,
it has been shown that this is also a closed system of PDE’s. While in-
troducing the “interaction energy tensor” T inter by switching to (38), one
necessarily introduces new unknowns, so that the foregoing system is not
closed any more and one needs new equations. We imposed on T inter that,
in SR, it should be a Lorentz-invariant tensor. This determines that in the
general case it has the form T µinter ν := p δµν , with p a scalar field (which, we
showed, is constant and even zero in SR). Thus, only one additional equation
is needed and this can consistently be imposed to be the charge conservation.

3) Considering a weak and slowly varying gravitational field, we derived
the equation that determines the scalar field p, whose knowledge is equiva-
lent to that of the interaction energy tensor: Eq. (75). We indicated how
one may in principle compute that field in a given EM field and in a given
weak and slowly varying gravitational field, Eq. (80). The interaction energy
is gravitationally active, because its density T 00

inter = p γ00 contributes to the
total energy density of matter and non-gravitational fields, T 00. According to
SET [5], T 00 is the source of the gravitational field. The interaction energy
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is not especially localized inside matter, and it has to be present in space
as soon as there is matter that is electromagnetically active. It could thus
be counted as “dark matter”. To learn more, it will be necessary to have
recourse to a numerical work.

Acknowledgement: I am grateful to Jerzy Kijowski for a discussion on the
motion of the sources. Also, a referee asked for more explanation about why
the interaction energy could contribute to dark matter.
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[17] Møller C., The theory of relativity, Clarendon Press, Oxford, U.K., 1952

[18] Müller I., A thermodynamic theory of mixtures of fluids, Arch. Rational Mech.
Anal., 1968, 28, 1–39.

[19] Arminjon M., Lorentz-invariant second-order tensors and an irreducible set
of matrices, submitted for publication, and preprint HAL-01797592, 2018.

25

https://hal.archives-ouvertes.fr/view/index/docid/1797592

	Introduction and summary
	Independent equations in standard theory
	Case with given 4-current
	Complete system for a deformable charged medium

	Independent equations in SET without interaction tensor
	Interaction energy tensor in SET
	Constraints on the interaction tensor
	Charge conservation and determination of the interaction tensor
	First approximation of the scalar field in a weak gravitational field
	Conclusion

