Large area diamond detectors for fast beam tagging applications in particle therapy

LPSC Grenoble

M. Fontana, E. Testa
IPN Lyon

M. Salomé, J. Morse, W. De Nolf
ESRF

L. Abbassi, T. Crozes, JF. Motte
NEEL Institute

D. Dauvergne - ADAMAS 2017
Motivation (1/5)

Need for in vivo ballistic control in particle therapy

Uncertainty sources:
Dose calculation: Planification (from CT images, RBE), patient positionning, anatomic variations during treatment, moving organs/tumor → Margins

Strategies:
Planification: dual-energy or proton CT, Monte Carlo simulations
Online control: nuclear fragmentation products
 • PET: a posteriori
 • Prompt radiation: gamma, protons (ions heavier than protons)

[Knopf, PMB 2013]
Motivation (2/5)
Time of Flight prompt-gamma imaging with 1D collimated camera

Prompt–γ emission is correlated to ion range

[Roellinghoff PMB 2014]

TOF: reduction of neutron-induced background

➢ Synchronization with beam HF
 Possible with Cyclotron proton beams (IBA-C230)

160 MeV protons in PMMA (Cyclotron)

[Roellinghoff PMB 2014]

However:
 Phase changes with beam energy
 Limitations by bunch length (0.5 – 4 ns)

➢ Ion per ion tagging at 10^7 - 10^8 Hz
 Carbon ions from synchrotrons (HIT, CNAO...): Microbunch duration >20 ns
 Synchro-cyclotron proton beams (IBA S2C2): Nanobunch duration ~8 ns (10^4 p/bunch)
 TOF ⇒ reduction to 1 proton/bunch necessary
Motivation (3/5)

Spatial resolution issue

- Heterogeneities influence ion range and prompt-gamma yield

95 MeV/u carbon ions in PMMA
2 mm collimation slit

[Pinto Med Phys 2015]

- Gamma imaging: compromise between spatial resolution and efficiency (statistics issue)

Proposed solution by IBA:
Knife-edge camera
(~2 cm spatial resolution)

[Richter, RaOn 2016]

- Ultra-fast timing resolution will improve spatial resolution
Motivation (4/5)

Compton imaging with beam hodoscope

CLaRyS collaboration (IPN Lyon, CPPM Marseille, LPC Clermont, LPSC Grenoble)

Potentially higher detection efficiency than collimated devices

- Beam hodoscope: line-cone intersection

- TOF resolution < 500 ps → real time Compton imaging

[Distance between cone intersections]

RMS = 10 cm

[LeY PhD 2015]
Motivation (5/5)

Prompt-gamma counting solutions

• Prompt-\(\gamma\) timing
 - Average time and shape related to proton range
 - 5mm range shift measurable with single spot
 - Requires high timing resolution (< 1ns)
 - Limitations:
 • Cyclotrons
 • Bunch time spread

• Prompt-\(\gamma\) Peak Integral [Krimmer APL 2017]
 - 2-4 ns time window selection: PG issued from patient
 - Yield depends on energy deposited, beam position

• Both methods would benefit from fast and high-resolution beam-tagging system
Beam tagging hodoscope development: LPSC MoniDiam project (within CLaRyS collaboration)

Existing development (CLaRyS):
Array of scintillating fibres coupled to multichannel photomultiplier tubes (PMT). Fast readout with µTCA acquisition under test.

Foreseen development:
MoniDiam: diamond based hodoscope and its dedicated integrated fast read-out electronics for 100 ps resolution

Diamond Assets:
- Intrinsic radiation hardness
- Fast signal risetime enables timing precision of a few tens of ps
- Low noise

Issues:
- Cost
- Availability of large area

Solution: Assembly of double-side stripped diamond, polycrystalline or DOI

Limitations:
- Radiation hardness
- PMT count rate capability (10^7 cps per PMT)
- Time resolution 500 ps – 1 ns
First tests: single disk-shape metallized diamonds
Diamond detector characterization: test benches at LPSC

Alpha source ($^{241}\text{Am} - 5.4 \text{ MeV}$)

- Source α
- Diamant
- Preamp
- 500 V
- DAQ

Beta source (^{90}Sr)

- Collimateur Cu Source
- Scintillateur PM + filtre
- Preamp + filtre
- Diamant

Charge collection efficiency (single crystal)

- $ECC \cong 98\%$
- @ $\pm 500 \text{ V}$

Data acquisition:

- Wave catcher 500 MHz
- 3.2 Gs/s, 8 channels

- Wave-runner Lecroy 4GHz
- 40Gs/s

11/28/2017

D.Dauvergne - ADAMAS 2017
Beam test at GANIL: 95 MeV/u ^{12}C

^{12}C

Wavecatcher
500MHz, 3.2G/s

Monocry staline:
sc-CVD E6 + DBA III
0.45 x 0.45 cm² x 518 µm

Hetero-epitaxial:
DOI-CVD Audiatec + Cividec C2
0.5 x 0.5 cm² x 300 µm

Deposited energy ~40 MeV

Timing resolution Mono vs DOI

Energy resolution DOI

Timing resolution Mono vs DOI

Energy resolution DOI

$\sigma_t = 18 \text{ ps}$

$\sigma_E = 7%$
Beam test at GANIL: Time of flight measurements

Simulation G4: TOF distribution LaBr vs. sc-CVD E6

\[\sigma_{\text{exp}} \approx 400\text{ps} \]

\[\Delta t \approx 1.3\text{ns} \]
Beam test at ESRF: XBIC source at 8.5 keV

Continuous energy deposit (0 to 4 MeV)
- Spot ~ 1 μm
- ~ 1500 photons/bunch
- Bunch width = 100 ps

Timing resolution
- sc-CVD E6
 - 0.45 x 0.45 cm² x 518 μm
 - DOI-CVD Audiatec
 - 0.5 x 0.5 cm² x 300 μm
 - $\sigma = 45$ ps

Current response map
- Poly-crystalline
 - 1 mm²
 - 10 x 10 mm² x 500 μm pc-CVD

DOI
- Non-homogenous response
 - 5 x 5 mm² x 300 μm DOI-CVD
Beam test at ESRF: XBIC source at 8.5 keV

Continuous energy deposit (0 to 4 MeV)

- Spot ~ 1 um
- ~ 1500 photons/bunch
- Bunch width = 100 ps

Although noisy conditions in 2017
100 ps resolution reasonable

Time resolution

DOI vs DOI

TOF resolution: DOI vs sc-CVD

2017 data
Stripped diamond characterization

NANOFAB Neel Institut Grenoble
100 nm Al deposition by UV lithography
Wire bonding

LPSC Grenoble
PCB design
Current preamplifier
Detector assembly

11/28/2017
D.Dauvergne - ADAMAS 2017
Beam test at ESRF : XBIC source at 8.5 keV

Surface Analysis

Current-integration mode

Current (nA/10⁷ph/s) @ 8.53 keV

1 x 1 cm² x 300 µm pc-CVD from Element 6

XBIC detecteur scan (100 µm step)

Wavecatcher

11/28/2017 D.Dauvergne - ADAMAS 2017
First results

Timing resolution

Best result: $\sigma_t = 103$ ps

Reconstructed position

Detection efficiency
Front-End Electronics: Architecture

- 130nm CMOS TIA + Fast Discriminator
 - Radhard technology
 - Wide bandwidth, Low noise TIA

TIA Parameters

<table>
<thead>
<tr>
<th>TIA Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_0</td>
<td>> 60 dB</td>
</tr>
<tr>
<td>F_{-3dB}</td>
<td>1.2 GHz</td>
</tr>
<tr>
<td>Z_{in}</td>
<td>20 – 50 Ω</td>
</tr>
<tr>
<td>$V_{n,\text{out}}$ (output noise)</td>
<td>< 1 mV$_{\text{RMS}}$</td>
</tr>
<tr>
<td>Input Dynamic range</td>
<td>3 µA – 120 µA ($<1%$ linearity)</td>
</tr>
</tbody>
</table>
Front-End Electronics: Simulation

- Simulation parameters:
 - Extracted view + Noise tran
 - With bonding wires (2nH): Power supply, ground and input signal
 - Multi-gain discriminator
 - Jitter estimation: from 3 μA to 120 μA input signal

@3 μA input signal

@10 μA input signal
Front-End Electronics: Layout

• 130nm CMOS
 • 8 channels FEE: TIA + Discriminator
 • Will be submitted on December 2017

1.485 x 1.2 mm²
Conclusion

- Characterization of the performances of small and medium size detectors with sources, ions, and synchrotron

- Multi-strip detectors: a first prototype of 1 cm2 has been developed and tested with discrete electronics

- Micro-electronics readout under development (technical collab. with LPC-Caen)

- Framework:
 - Local: ESRF, NEEL:
 - local pole for detector and electronic devices
 - crystal processing and characterization
 - National: LSPM, IPHC, CEA-LIST and CLaRyS collaboration (+CAL-Nice, Arronax...)
 - International: RD42
Acknowledgements

The authors would like to acknowledge the ESRF for provision of synchrotron radiation facilities and would like to thank the ID21 beamline staff for their assistance with experiment MI-1243.

This work was supported by the Labex PRIMES (ANR-11-LABX-0063), FranceHadron (ANR-11-INBS-0007) and ANR MONODIAM-HE (ANR-089520).

The CLARA Canceropole (Oncostarter Project) is thanked.

The authors are grateful to Matthias Schreck from the Augsburg University for providing the LPSC laboratory with samples of diamond heteroepitaxially grown.

Dominique Breton from the Laboratoire de l’Accélérateur Linéaire and Eric Delagnes from CEA Saclay are thanked for their implication in dedicated software development and technical support of the namely ”wavecatcher” data acquisition system.