K. Ravindra, . Ahuja, L. Thomas, J. B. Magnanti, and . Orlin, Network flows, 2014.

U. Brandes, A faster algorithm for betweenness centrality*, The Journal of Mathematical Sociology, vol.113, issue.2, pp.163-177, 2001.
DOI : 10.1017/CBO9780511815478

URL : http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf

F. Chung and W. Zhao, PageRank and Random Walks on Graphs, Fete of combinatorics and computer science, pp.43-62, 2010.
DOI : 10.1007/978-3-642-13580-4_3

URL : http://www.math.ucsd.edu/~fan/wp/lov.pdf

D. Erik, M. Demaine, and . Zadimoghaddam, Minimizing the diameter of a network using shortcut edges, Algorithm Theory-SWAT 2010, pp.420-431, 2010.

W. Edsger and . Dijkstra, A note on two problems in connexion with graphs. Numerische mathematik, pp.269-271, 1959.

A. Dussutour, V. Fourcassie, D. Helbing, and J. Deneubourg, Optimal traffic organization in ants under crowded conditions, Nature, vol.198, issue.6978, p.42870, 2004.
DOI : 10.1006/jtbi.1999.0917

URL : http://arxiv.org/pdf/cond-mat/0403142

L. Terry and . Friesz, Transportation network equilibrium, design and aggregation: Key developments and research opportunities Special Issue Transportation Research: The State of the Art and Research Opportunities, Transportation Research Part A: General, vol.19, issue.5, pp.413-427, 1985.

C. Gao, C. Yan, D. Wei, Y. Hu, S. Mahadevan et al., A biologically inspired model for transshipment problem, 2014.

V. Andrew, . Goldberg, D. Jeffrey, S. Oldham, C. Plotkin et al., An implementation of a combinatorial approximation algorithm for minimum-cost multicommodity flow, International Conference on Integer Programming and Combinatorial Optimization, pp.338-352, 1998.

K. Ito, A. Johansson, T. Nakagaki, and A. Tero, Convergence properties for the physarum solver, 2011.

A. Jonathan, L. Kelner, A. Orecchia, Z. A. Sidford, and . Zhu, A simple, combinatorial algorithm for solving sdd systems in nearly-linear time, Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pp.911-920, 2013.

A. Lambert, R. Bourqui, and D. Auber, Winding Roads: Routing edges into bundles, Computer Graphics Forum, pp.853-862, 2010.
DOI : 10.1111/j.1467-8659.2009.01700.x

URL : https://hal.archives-ouvertes.fr/hal-00495279

D. Levinson and B. Yerra, Self-Organization of Surface Transportation Networks, Transportation Science, vol.40, issue.2, pp.179-188, 2006.
DOI : 10.1287/trsc.1050.0132

R. Louf, P. Jensen, and M. Barthelemy, Emergence of hierarchy in cost-driven growth of spatial networks, Proceedings of the National Academy of Sciences, pp.8824-8829, 2013.
DOI : 10.1038/35022643

Q. Ma, A. Johansson, A. Tero, T. Nakagaki, J. David et al., Current-reinforced random walks for constructing transport networks, Journal of The Royal Society Interface, vol.8, issue.9, p.20120864, 2013.
DOI : 10.1016/j.tics.2004.07.008

URL : http://rsif.royalsocietypublishing.org/content/royinterface/10/80/20120864.full.pdf

L. Masi and M. Vasile, A multidirectional Physarum solver for the automated design of space trajectories, 2014 IEEE Congress on Evolutionary Computation (CEC), pp.2992-2999, 2014.
DOI : 10.1109/CEC.2014.6900287

C. Mimeur, F. Queyroi, A. Banos, and T. Thévenin, Revisiting the structuring effect of transportation infrastructure: an empirical approach with the French Railway Network from 1860 to 1910, Historical Methods: A Journal of Quantitative and Interdisciplinary History, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01616746

T. Miyaji and I. Ohnishi, Physarum can solve the shortest path problem on riemannian surface mathematically rigourously, International Journal of Pure and Applied Mathematics, vol.47, issue.3, pp.353-369, 2008.

T. Miyaji, I. Ohnishi, A. Tero, and T. Nakagaki, Failure to the shortest path decision of an adaptive transport network with double edges in Plasmodium system, International Journal of Dynamical Systems and Differential Equations, vol.1, issue.3, pp.210-219, 2008.
DOI : 10.1504/IJDSDE.2008.019683

S. Navlakha, A. L. Barth, and Z. , Decreasing-Rate Pruning Optimizes the Construction of Efficient and Robust Distributed Networks, PLOS Computational Biology, vol.35, issue.7, p.1004347, 2015.
DOI : 10.1371/journal.pcbi.1004347.s012

N. Parotisidis, E. Pitoura, and P. Tsaparas, Selecting Shortcuts for a Smaller World, SIAM International Conference on Data Mining (SDM), 2015.
DOI : 10.1137/1.9781611974010.4

J. Raimbault, A. Banos, and R. Doursat, A hybrid network/grid model of urban morphogenesis and optimization. CoRR, abs, 1612.
URL : https://hal.archives-ouvertes.fr/halshs-01388885

J. Rodrigue, C. Comtois, and B. Slack, The geography of transport systems, Routledge, 2009.

A. Tero, R. Kobayashi, and T. Nakagaki, A mathematical model for adaptive transport network in path finding by true slime mold, Journal of Theoretical Biology, vol.244, issue.4, pp.553-564, 2007.
DOI : 10.1016/j.jtbi.2006.07.015

A. Tero, S. Takagi, T. Saigusa, K. Ito, P. Dan et al., Rules for Biologically Inspired Adaptive Network Design, Science, vol.47, issue.3, pp.327439-442, 2010.
DOI : 10.1016/S0301-4622(00)00108-3

URL : http://wiki.cs.unm.edu/pibbs/lib/exe/fetch.php?media=slimemold.pdf

D. Vogel and A. Dussutour, Direct transfer of learned behaviour via cell fusion in nonneural organisms, Proc. R. Soc. B, p.20162382, 2016.

M. Bhanu, . Yerra, M. David, and . Levinson, The emergence of hierarchy in transportation networks, The Annals of Regional Science, vol.39, issue.3, pp.541-553, 2005.