R. A. Adams, Sobolev spaces Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], Pure and Applied Mathematics, vol.65, 1975.

I. Babu?ka, The finite element method with Lagrangian multipliers, Numerische Mathematik, vol.12, issue.3, pp.179-19273, 1972.
DOI : 10.1090/trans2/057/08

S. Badia and R. Codina, Unified Stabilized Finite Element Formulations for the Stokes and the Darcy Problems, SIAM Journal on Numerical Analysis, vol.47, issue.3, pp.1971-2000, 2009.
DOI : 10.1137/08072632X

T. Boiveau, Penalty-free Nitsche method for interface problems in computational mechanics, 2016.

T. Boiveau and E. Burman, A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity, IMA Journal of Numerical Analysis, vol.20, issue.2, pp.770-795, 2016.
DOI : 10.1090/S0025-5718-1990-1011446-7

C. Susanne, L. Brenner, and . Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol.15, 2008.

F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, Revue fran??aise d'automatique, informatique, recherche op??rationnelle. Analyse num??rique, vol.8, issue.R2, pp.129-151, 1974.
DOI : 10.1016/0029-5493(73)90006-X

F. Brezzi and J. Pitkäranta, On the Stabilization of Finite Element Approximations of the Stokes Equations, Efficient solutions of elliptic systems, pp.11-19, 1984.
DOI : 10.1007/978-3-663-14169-3_2

F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, of Springer Series in Computational Mathematics, 1991.
DOI : 10.1007/978-1-4612-3172-1

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow, Turbulence and Combustion, p.27, 1949.

E. Burman, A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions, SIAM Journal on Numerical Analysis, vol.50, issue.4, pp.1959-1981, 2012.
DOI : 10.1137/10081784X

E. Burman and P. Hansbo, A unified stabilized method for Stokes??? and Darcy's equations, Journal of Computational and Applied Mathematics, vol.198, issue.1, pp.35-51, 2007.
DOI : 10.1016/j.cam.2005.11.022

P. G. Ciarlet, The finite element method for elliptic problems, #25001)], p.520174, 1958.

. Ph and . Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér, vol.9, issue.2, pp.77-84, 1975.

D. Carlo, P. Angelo, and . Zunino, Robust numerical approximation of coupled Stokes' and Darcy's flows applied to vascular hemodynamics and biochemical transport, ESAIM Math. Model. Numer. Anal, vol.45, issue.3, pp.447-476, 2011.

J. Douglas, J. , and J. Wang, An absolutely stabilized finite element method for the Stokes problem, Mathematics of Computation, vol.52, issue.186, pp.495-508, 1989.
DOI : 10.1090/S0025-5718-1989-0958871-X

A. Ern and J. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences, vol.159, 2004.
DOI : 10.1007/978-1-4757-4355-5

P. Leopoldo, T. J. Franca, and . Hughes, Two classes of mixed finite element methods, Comput. Methods Appl. Mech. Engrg, vol.69, issue.1, pp.89-129, 1988.

J. Freund and R. Stenberg, On weakly imposed boundary conditions for second order problems, Proceedings of the international Conference on Finite Elements in Fluids -New trends and applications, 1995.

V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations Theory and algorithms, of Springer Series in Computational Mathematics, 1986.

A. Hannukainen, M. Juntunen, and R. Stenberg, Computations with finite element methods for the Brinkman problem, Computational Geosciences, vol.54, issue.3, pp.155-166, 2011.
DOI : 10.1016/j.crma.2009.03.010

P. Hansbo and M. Juntunen, Weakly imposed Dirichlet boundary conditions for the Brinkman model of porous media flow, Applied Numerical Mathematics, vol.59, issue.6, pp.1274-1289, 2009.
DOI : 10.1016/j.apnum.2008.07.003

J. R. Thomas, L. P. Hughes, and . Franca, A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg, vol.65, issue.1, pp.85-96, 1987.

E. W. Jenkins, V. John, A. Linke, and L. G. Rebholz, On the parameter choice in grad-div stabilization for the Stokes equations, Advances in Computational Mathematics, vol.26, issue.3, pp.491-516, 2014.
DOI : 10.1090/S0025-5718-04-01711-9

M. Juntunen and R. Stenberg, Nitsche???s method for general boundary conditions, Mathematics of Computation, vol.78, issue.267, pp.1353-1374, 2009.
DOI : 10.1090/S0025-5718-08-02183-2

M. Juntunen and R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo, vol.18, issue.1???3, pp.129-147, 2010.
DOI : 10.1016/j.crma.2009.03.010

K. A. Mardal, X. Tai, and R. Winther, A Robust Finite Element Method for Darcy--Stokes Flow, SIAM Journal on Numerical Analysis, vol.40, issue.5, pp.1605-1631, 2002.
DOI : 10.1137/S0036142901383910

A. Masud and T. J. Hughes, A stabilized mixed finite element method for Darcy flow, 29] J. Nitsche. ¨ Uber ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, pp.39-404341, 1971.
DOI : 10.1016/S0045-7825(02)00371-7

L. , R. Scott, and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp, vol.54, issue.190, pp.483-493, 1990.

R. Stenberg, On some techniques for approximating boundary conditions in the finite element method, International Symposium on Mathematical Modelling and Computational Methods Modelling 94, pp.139-148, 1994.
DOI : 10.1016/0377-0427(95)00057-7

V. Thomée, Galerkin finite element methods for parabolic problems, 2006.
DOI : 10.1007/978-3-662-03359-3

U. Wilbrandt, C. Bartsch, N. Ahmed, N. Alia, F. Anker et al., ParMooN???A modernized program package based on mapped finite elements, Computers & Mathematics with Applications, vol.74, issue.1, pp.74-88, 2017.
DOI : 10.1016/j.camwa.2016.12.020

URL : http://arxiv.org/pdf/1705.08784