Analysis of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy problems

Abstract : In this paper we study the Brinkman model as a unified framework to allow the transition between the Darcy and the Stokes problems. We propose an unconditionally stable low-order finite element approach, which is robust with respect to the whole range of physical parameters, and is based on the combination of stabilized equal-order finite elements with a non-symmetric penalty-free Nitsche method for the weak imposition of essential boundary conditions. In particular, we study the properties of the penalty-free Nitsche formulation for the Brinkman setting, extending a recently reported analysis for the case of incompressible elasticity (Boiveau and Burman, IMA J. Numer. Anal. 36 (2016) 770-795). Focusing on the two-dimensional case, we obtain optimal a priori error estimates in a mesh-dependent norm, which, converging to natural norms in the cases of Stokes or Darcy ows, allows to extend the results also to these limits. Moreover, we show that, in order to obtain robust estimates also in the Darcy limit, the formulation shall be equipped with a Grad-Div stabilization and an additional stabilization to control the discontinuities of the normal velocity along the boundary. The conclusions of the analysis are supported by numerical simulations.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (6), pp.2149-2185. 〈10.1051/m2an/2018063 〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01725387
Contributeur : Franz Chouly <>
Soumis le : mercredi 7 mars 2018 - 14:04:38
Dernière modification le : jeudi 7 février 2019 - 17:13:48
Document(s) archivé(s) le : vendredi 8 juin 2018 - 13:31:24

Fichier

Brinkman_P1P1_HAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Laura Blank, Alfonso Caiazzo, Franz Chouly, Alexei Lozinski, Joaquin Mura. Analysis of a stabilized penalty-free Nitsche method for the Brinkman, Stokes, and Darcy problems. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (6), pp.2149-2185. 〈10.1051/m2an/2018063 〉. 〈hal-01725387〉

Partager

Métriques

Consultations de la notice

392

Téléchargements de fichiers

171