Efficient Dense Disparity Map Reconstruction using Sparse Measurements

Abstract : In this paper, we propose a new stereo matching algorithm able to reconstruct efficiently a dense disparity maps from few sparse disparity measurements. The algorithm is initialized by sampling the reference image using the Simple Linear Iterative Clustering (SLIC) superpixel method. Then, a sparse disparity map is generated only for the obtained boundary pixels. The reconstruction of the entire disparity map is obtained through the scanline propagation method. Outliers were effectively removed using an adaptive vertical median filter. Experimental results were conducted on the standard and the new Middlebury datasets show that the proposed method produces high-quality dense disparity results.
Type de document :
Communication dans un congrès
13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018), Jan 2018, Madère, Portugal. 〈http://www.visapp.visigrapp.org/?y=2018〉
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01724779
Contributeur : Cédric Demonceaux <>
Soumis le : mardi 6 mars 2018 - 18:10:14
Dernière modification le : mercredi 7 mars 2018 - 01:15:16

Fichier

VISAPP_2018_52_CR.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01724779, version 1

Collections

Citation

Oussama Zeglazi, Mohammed Rziza, Aouatif Amine, Cédric Demonceaux. Efficient Dense Disparity Map Reconstruction using Sparse Measurements. 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP 2018), Jan 2018, Madère, Portugal. 〈http://www.visapp.visigrapp.org/?y=2018〉. 〈hal-01724779〉

Partager

Métriques

Consultations de la notice

140

Téléchargements de fichiers

45