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Abstract
Detail enhancement is a well-studied area of 3D rendering and image processing, which has few equivalents for 3D shape
processing. To enhance details, one needs an ef�cient analysis tool to express the local surface dynamics. We introduce Wavejets,
a new function basis for locally decomposing a shape expressed over the local tangent plane, by considering both angular
oscillations of the surface around each point and a radial polynomial. We link the Wavejets coef�cients to surface derivatives and
give theoretical guarantees for their precision and stability with respect to an approximate tangent plane. The coef�cients can
be used for shape details ampli�cation, to enhance, invert or distort them, by operating either on the surface point positions or
on the normals. From a practical point of view, we derive an ef�cient way of estimating Wavejets on point sets and demonstrate
experimentally the ampli�cation results with respect to noise or basis truncation.

Categories and Subject Descriptors(according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Curve, surface, solid and object representations

1. Introduction

Many shape processing methods, whether they target shape seg-
mentation, shape denoising or shape editing, rely heavily on sur-
face derivatives estimates. Surface derivatives are indeed useful to
estimate important shape features such as normals or curvatures.
The signal processing viewpoint is slightly different: instead of an-
alyzing signal derivatives, signals are often processed by using a
frequency analysis and by devising �lters operating on the Fourier
coef�cients. In this paper, we propose to bring together these two
trends in a new function basis taking into account both the local sur-
face derivatives and the angular oscillations of the surface around
each point of the surface. We consider surfaces as smooth mani-
folds that can locally be expressed as a height �eld over a planar
parameterization. In this setting, we locally analyze the surface by
extending the osculating Jets [CP03] in order to take into account
both the local angular oscillation frequencies, and their evolution
with respect to an increasing radius. This formulation, which we
term Wavejets, gives valuable information on the shape by empha-
sizing that the local behavior of the surface along an arbitrary radial
direction fromppp is a polynomial function of the distance toppp in the
parameterization plane. We propose to compute the Wavejets using
the tangent plane for parameterization purpose and we demonstrate
some theoretical properties of the Wavejets. In particular, we quan-
tify the stability of the decomposition for a small deviation of the
parameterization plane with respect to the tangent plane. This re-
sult is useful for estimating Wavejets on surfaces described by point
sets. Furthermore, Wavejets coef�cients can be used to compute in-

teresting indicators of differential volumes that can be an alterna-
tive to using curvatures and further surface derivatives. Those in-
dicators are used to devise ef�cient surface �lters. We demonstrate
two applications of these �lters working directly on point sets: po-
sition �ltering for detail modi�cation (such as detail ampli�cation
or detail inversion) and normal modi�cation. Figure 1 shows an
example of detail ampli�cation on the Armadillo shape.

Figure 1: Amplifying details of the Armadillo shape with a Wave-
jets �lter.

To summarize, our contributions are:

� A local frequency framework for representing a surface, whose
precision and stability are proven.

� A practical method for computing Wavejets for point set surfaces
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� Ef�cient shape processing �lters for detail ampli�cation, inver-
sion and warping using Wavejets coef�cients.

2. Related work

Surface derivatives estimation.Computing surface derivatives
has raised a lot of work in the geometry processing community.
[CP03] introduced the notion of osculatingn-jets to analyze a sur-
face around a point. An-jet is a truncated Taylor expansion used to
locally estimate a smooth surface. Each monomial coef�cient of a
Taylor expansion is directly linked to a high order derivative of the
surface, which yields information about the normal, local curva-
ture, or higher order differential quantities. By �tting an osculating
jet of orderK to a set of surface points in a neighborhood of radius
r, the precision of allk order derivatives iso(rK� k). [MT98] �rst
introduced a frequency interpretation of the local variations on a
surface. Given the principal curvatures at one point, a second or-
der smoothness measure is de�ned as the integral over a circle of a
second order polynomial. A similar process is proposed to de�ne a
third order smoothness measure. Following this work, [JS10] pro-
posed to interpret third order derivatives of a surface as Fourier se-
ries coef�cients of the height function above a circle in the tangent
plane. Interpreting high order derivatives as Fourier coef�cients is
interesting since it makes the choice of the origin vector of the local
parameterization plane irrelevant.

In many cases, however, surfaces are known only through a set
of discrete and potentially noisy measures obtained by a 3D acqui-
sition system. Local surface derivatives are directly impacted by
this noise since the noise is ampli�ed through an explicit deriva-
tion process. To alleviate this effect, one can compute some lo-
cal differential quantities by integration. Integral invariants build
on this principle to de�ne principal curvatures based descriptors
[MCH� 06, PWY� 07, PWHY09]. Integral invariants can be com-
puted directly on meshes or on grids, or on point sets using lo-
cal surface regression or interpolation. Similarly, [DM14] used co-
variance analysis to compute principal directions and curvatures
of point sets in an asymptotically consistent way. On meshes, the
derivatives can be estimated by considering the provided connec-
tivity [MDSB03,WMKG07]. Finally, it is also possible to use met-
rics derived from heat diffusion to give new expressions of surface
derivatives [LSW09].

Signal Processing-like approaches.Many approaches have tack-
led the problem of surface �ltering by mimicking standard signal
processing algorithms [PG01]. [Tau95] noticed that Fourier basis
functions are eigenfunctions of the Laplacian operator onR2. Thus,
by building a Laplacian operator over a surface and extracting its
eigenfunctions, the projection of the point coordinates functions
on such a basis gives a spectral decomposition which can be used
for designing low pass �lters [Tau95, TZG96]. Pauly proposed to
use iterative Laplacian smoothing to separate the signal into high
and low frequency information and designs Fourier-like �lters in
this setting [PKG06]. De�ning a Laplacian operator on a mesh
has been widely discussed. [VL08] proposed a formulation yield-
ing an orthogonal basis: the Manifold Harmonics Basis. Spectral
processing can be directly performed in this basis as if it was a
Fourier basis, hence low-pass, high-pass or high-boost �ltering has

a straightforward implementation, provided the shape eigenvectors
are known. Spherical Harmonics were also explored as a way to
get a spectral decomposition of a shape parameterized on a sphere
in a rotation-invariant way [KFR03]. Spherical harmonics are re-
stricted to genus 0 shapes and are a global basis of the shape, but
they can be used to design high- or low-pass �lters [ZBS04] or for
detail transfer [MCAG08]. In this paper, we set up a framework for
the local decomposition of a surface using a new basis. This basis is
tailored for analyzing the surface around one point, and for comput-
ing differential quantities at that point. Decomposing the signal on
this meaningful function basis is the core of Wavejets. Wavejets are
therefore related to Zernike basis functions [Zer34], an orthogonal
basis, introduced for optical lenses analysis and used often for pro-
cessing images (e.g. [KH90]) or shape retrieval [NK03]. Although
a linear relationship exists between Wavejets and Zernike polyno-
mials, the latter do not give direct access to differential quantities,
which are provided by our Wavejets basis by construction.

Detail Exaggeration. While the literature for detail exaggeration
in image or video processing is large (e.g. [LTF� 05, DMIF15]) it
has been far less studied for surfaces. Existing methods can be
sorted out in two categories: the �rst one modi�es the render-
ing of a shape while the second modi�es the shape through its
normals or point positions to enhance the shape details. Modify-
ing the rendering of a shape to enhance the details can be con-
sidered as a non-photorealistic rendering method in the special
case where the purpose is to ampli�y the details. Rusinkiewicz et
al. [RBD06] propose to modify the shader in a multiscale way and
merge this multiscale information with the classic shading color.
Detail Ampli�cation through rendering has been also studied via
view-dependent feature computation [VPB� 09]. The second cate-
gory of approaches explicitly modi�es the shape information in a
viewpoint-independent manner. In image processing the equivalent
operation is done by the so-called High Boost Filter, also known as
Unsharp Masking [PRM00, MLLY91, RSKMY96], which moves
each pixel value in a direction opposite to the one of the Laplacian
smoothing, to sharpen the contrasts. This idea dates back to Ga-
bor [Gab65, LFB94], and is known to produce artifacts if the �lter
is iterated too many times. This �lter can be trivially adapted to
point sets, and we will compare our method to it. Another way of
amplifying the visualization of details is to modify only the nor-
mals at the points. Cignoni et al. [CST05] propose to modify the
normals iteratively in a direction opposite to the mean normal of
the neighbors. This process can seen as a high boost �lter applied
to the normals. Finally, as a side-bene�t of Algebraic Point Set Sur-
faces rendering [GGG08], a curvature parameter controls the detail
enhancement or inversion, a feature that can also be obtained in our
Wavejets framework.

3. Wavejets

3.1. De�nition

Osculating jets, originally introduced in [CP03] are high order
polynomials that correspond to local truncated Taylor expansions
of height �eld surfaces, thus providing interesting differential prop-
erties, such as the normal and principal curvatures, for smooth sur-
faces. We introduce a different kind of jets, named Wavejets, that
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f 0;0 f 2;0 jf 2;2j j f 3;1j j f 3;3j f 4;0 jf 4;2j j f 4;4j

Figure 2: Computation of some values off k;n(ppp) for a radius Rf corresponding to the height of the eyes of the statue. If k and n do not share
the same parity, coef�cientf k;n is zero. For k� 0 and n6= 0, only the magnitude off k;n is displayed since the phase depends on the origin
direction of the angles. For k� 0, f k;0 is real, does not depend on the origin direction, and can be negative. Note thatf 1;1(ppp) = 0 if the
parameterization plane is the tangent plane at ppp to the surface.f 0;0(ppp) measures the offset of the input point ppp to the surface which can be
nonzero in the practical case where the Wavejets order is too low to catch every local variation around ppp.

retain all nice properties of the osculating Jets but also provide a
natural interpretation in terms of local angular oscillations.

Let S be a smooth surface andppp a point onS. As a consequence,
the surface can be locally parameterized as a height �eldf (x;y) in-
side a neighborhood of radiusRf on a planeP(ppp) passing through
ppp. The neighborhood ofppp can be expressed as a Taylor Expansion:

f (x;y) =
1

å
k= 0

k

å
j= 0

fxk� j y j (0;0)

(k � j)! j !
xk� jy j (1)

where fxk� j y j = ¶k f
¶xk� j ¶y j .

Restricting to a circle of radiusr (r < Rf ) centered atppp in P(ppp),
and expressingf with respect to an angleq yields a periodic func-
tion q ! f (r;q). q is measured with respect to an arbitrary origin
direction for the phases inP(ppp).

Using polar coordinates(r;q) with (x;y) = ( r cosq; r sinq) in
equation 1 and Euler's formulas to express cos(nq) and sin(nq) as
polynomials of cosq and sinq, one can show that

f (r;q) =
1

å
k= 0

k

å
n= � k

rkf k;neiiinq =
1

å
n= �1

1

å
k= jnj

rkf k;neiiinq (2)

with f k;n = å k
j= 0

1
j!(k� j)! b(k; j;n) fxk� j y j (0;0). b(k; j;n) is de�ned

as follows :

� b(k; j;n) = 0 if k andn do not have the same parity

� b(k; j;n) = 1
2kiii j å

n� k
2

h= 0

�
k � j

h

� �
j

n� k
2 � h

�
(� 1)h otherwise (see

the supplementary material for the full derivation).

This amounts to decomposing the function on a new function basis
Bk;n(r;q) = rkeiiinq.

In other words, while osculating jets provide arbitrary high or-
der derivativesfxk� j y j (0;0), our representation provides arbitrary
high order Fourier coef�cientsf k;n( f ) which are a linear combina-
tion of high order derivatives, combining them in a certain way that
favors the independence of the coef�cients with respect to the ori-
gin direction for the phases. More precisely, a rotation of the origin
vector in the parameterization planeP(ppp) induces a phase shift of
the coef�cients. Figure 2 shows the amplitude of the �rst Wavejets
termsf k;n. Eachf k;n is related to an order of radial derivationk
and to a number of oscillationsn. A Wavejet of orderK is called a
K-Wavejet.

3.2. Properties

Curvatures By explicitly writing the link betweenf k;n and the
derivatives off , the mean curvatureH(ppp) and the Gaussian curva-
tureK(ppp) at ppp can be obtained easily.

f 1;1 = f �
1;� 1 =

1
2

( fx + iii fy)

f 2;0 =
1
2

( fxx+ fyy) ; f 2;2 = f �
2;� 2 =

1
4

( fxx � fyy+ iii fxy)
(3)

Since the Gaussian curvatureK(ppp) can be expressed w.r.t. partial

derivatives off at ppp asK(ppp) =
fxx fyy� f 2

xy

(1+ f 2
x + f 2

y )2 , we get:

K(ppp) =
4f 2

2;0 � 16f 2;� 2f 2;2
�
1+ 4f 1;� 1f 1;1

� 2 (4)

Similarly, the mean curvature is expressed asH(ppp) =
(1+ f 2

x ) fxx+ (1+ f 2
y ) fyy� 2fx fy fyy

2(1+ f 2
x + f 2

y )
3
2

, yielding:

H(ppp) =
2f 2;0

�
1+ 4f 1;� 1f 1;1

�
+ 4f 2;� 2f 2

1;1 + 4f 2;2f 2
1;� 1

�
1+ 4f 1;� 1f 1;1

� 3
2

(5)

If P (ppp) = T (ppp), the tangent plane toS at ppp, thenf 1;1 = f 1;� 1 =
0, and :

K(ppp) = 4
�

f 2
2;0 � 4f 2;� 2f 2;2

�
; H(ppp) = 2f 2;0 (6)

The principal directions can be found using Wavejets by con-
sidering the signalå 2

n= � 2 f 2;neiiinq. This signal contains a constant
componentf 2;0 and a component that oscillates two times and
whose maximum is aligned with the �rst principal curvature di-
rection (corresponding to the phase off 2;2). As a consequence, the
principal curvaturesk1 andk2 can also be recovered using Wave-
jets:

k1 = 2
�
f 2;0 + f 2;2 + f 2;� 2

�
andk2 = 2

�
f 2;0 � f 2;2 � f 2;� 2

�
(7)

3.3. Stability

We now turn to our main result for the stability of the Wave-
jets coef�cients when the parameterization plane is close but dif-
ferent from the tangent plane. Let us callT (ppp) the true tangent
plane andP(ppp) the chosen parameterization plane, also passing
throughppp. Sinceppp belongs to both planes, they intersect along a
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line T (ppp) \ P (ppp) of directionu. We consider the anglegsuch that
the rotation of axis(ppp;u) and angleg transformsP(ppp) into T (ppp).
Let us parameterizeT (ppp) and P(ppp) so that a point of the sur-
face has coordinates(x = r cosq;y = r sinq;h) overT (ppp) and(x =
RcosQ;y = RsinQ;H) overP (ppp). Let us �rst assume thatq (resp.
Q) corresponds to the angular coordinate of a point on the surface
with respect tou in T (ppp) (resp. withu in P(ppp)). In this setting,
the surface Wavejets decomposition at pointppp writeså 1

k= 0 å n= k
n= � k

f k;nrkeiiinq overT (ppp) andå 1
k= 0 å n=+ k

n= � k F k;nRkeiiinQ overP(ppp). Us-
ing the rotation of angleg, we can express theF k;n coef�cients with
respect to thef k;n.

We will state our main theorem in this particular setting of ori-
gin vector for the phases. To generalize the theorem to an arbitrary
origin vector for the angular coordinateq, recall that a rotation of
angleµ of the origin vector inT (ppp) amounts to a phase shiftµ.
Thus, one can always change the origin vector, compute the Wave-
jets coef�cientsf k;n and recover the Wavejets coef�cients for origin
directionu asf k;neiiinµ (similar formulas hold forF k;n and an origin
vector change inP(ppp)).

Theorem 1 The coef�cientsF k;n w.r.t to P (ppp) can be expressed
with respect to the coef�cientsf k;n in the tangent planeT (ppp) as
follows:

F 0;0 = 0

F 1;1 = F �
1;� 1 =

g
2

e� iii p
2 + o(g)

F k;n = f k;n + gF(k;n) + o(g)

(8)

whereF(k;n) is a function of thef coef�cients of order lower than
k.

Proof: see the supplementary material.

Corollary 1 It follows from Theorem 1 thatjF 1;1j = 1
2g+ o(g)

andarg(F 1;1) = p
2 + o(g). Thus if the rotation is small enough, the

phase ofF 1;1 shifted byp=2 in the planeP(ppp) corresponds to the
axis of rotationu. Therefore, it is possible to correct the parame-
terization plane into the tangent plane by performing a rotation of
P (ppp) along the axisu with rotation angle 2jF 1;1j.

Proof: see the supplementary material.

3.4. Error correction

Corollary 2 One can recover thetrue coef�cients f k;n iteratively,
starting from the lowest order coef�cients as:

f k;n = F k;n � g
k� 2

å
j= 1

sj ;k;n + o(g) (9)

sj ;k;n= å
p+ m= n

j pj� k� j
jmj� j

f k� j;p

2iii
(f j+ 1;m+ 1(m+ j + 2) + f j+ 1;m� 1(m� j � 2)) (10)

In particular, f 2;0 = F 2;0 + o(g), f 2;2 = F 2;2 + o(g), f 2;� 2 =
F 2;� 2 + o(g), which means that the mean, Gaussian and principal
curvatures are also stable ino(g).

Proof: see the supplementary material.

3.5. Difference with Jets and Zernike

There exists a linear map between Wavejetsf k;n, JetsJk; j [CP03]
and Zernike polynomialsZn

k [Zer34]. This means that there is a way
to compute any quantity equivalently from either representation as
soon as the linear map is explicit. However this linear map is far
from trivial and computing certain quantities will be easier using
one or another function basis.

Jets give a direct expression of high-order cross derivatives of a
surface. This representation is well-suited to tangent plane estima-
tion, since the cross derivatives of order 1,J1;0 andJ1;1, are equal to
0 if the surface is parameterized with respect to the tangent plane.
When �tting a jet to a set of surface points, the offset between the
parameterization plane and the approximated surface is given di-
rectly byJ0;0.

Zernike polynomials give a polar representation of the surface.
Zernike basis is orthogonal, which makes it easy to estimate the co-
ef�cients on regular polar grids. However, the error between a pa-
rameterization plane and the tangent plane is hard to express using
Zernike coef�cients. This error can be found as a non-trivial linear
combination ofZ� 1

k . Similarly, the error offset obtained when �t-
ting Zernike polynomials to a set of points is given by a non-trivial
linear combination ofZ0

k .

Wavejets give a representation which is mid-way between Jets
and Zernike polynomials. Wavejets coef�cients explicitly hold in-
formation about the tangent plane. When used to �t a set of sur-
face points, they also provide a direct information on the offset
between the surface and the parameterization plane. Besides, they
split the surface into components corresponding to different angu-
lar frequencies in a similar manner as Zernike decomposition. This
angular separation holds important information about the surface,
which we will use to design our �lters. In particular, we will pro-
vide some integral invariants by integration over angleq, which
is straightforward using Wavejets or Zernike and dif�cult with the
Jets. Finally, the error in the orientation of the tangent plane or the
offset to the surface are easy to express using Wavejets and Jets but
dif�cult using Zernike polynomials. Thus, Wavejets retain interest-
ing properties from Jets and Zernike polynomials while avoiding
some of their weaknesses.

4. Details �ltering and enhancement

4.1. Principle

Let us consider the signed volumeVVV(s) delimited by the surface
and the parameterization plane in a small radiuss < Rf around a
point ppp. We can expressVVV(s) as the sum of in�nitesimal angular
slices of the volume between the surface and the tangent plane:
VVV(s) =

R2p
0 A(q;s) dq. In the plane corresponding to the angleq,

A(q;s) denotes the area enclosed between the surface and the tan-
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Input surface point
ef 2;0 ef 3;1 ef 2;2 ef 3;3

Paraboloid Hyperboloid Horse saddle Monkey saddle

9-Wavejets ef 0 ef 1 ef 2 ef 3

a0 2j a� 1j 2j a� 2j 2j a� 3j

Figure 3: Wavejets decomposition around a point of a sur-
face. Left: approximated 9-Wavejets surface. Letef k;n(r;q) =

rk
�

f k;neiiinq + f k;� ne� iiinq
�

and ef n = å 1
k= 0

ef k;n. The amplitude of

the functionsef n is more comparable to the amplitude of the input
surface than the functionsef k;n.

gent plane, for a radius varying between 0 ands, each point of the
surface being scaled by the radius.

A(q;s) =
Z s

0

 
1

å
k= 0

k

å
n= � k

rkf k;neiiinq

!

rdr

=
1

å
n= �1

 Z s

0

1

å
k= jnj

f k;nrk+ 1dr

!

eiiinq =
1

å
n= �1

an(s)eiiinq

(11)

Coef�cients an(s) correspond to a Fourier decomposition of
A(q;s). By developping the corresponding integrals for the radius
s, we obtain the following closed form:

an(s) =
1

å
k= jnj

f k;nsk+ 2

k+ 2
(12)

One can show that ifn 6= 0, 2ja� nj(s) is the amplitude of the os-
cillating function

Rs
0

ef n(r;q)rdr, whereef n(r;q), as de�ned in Fig-
ure 3, is the surface restricted to frequencies� n. For the spe-
cial casen = 0, a0(s) is the static part of

Rs
0 f (r;q)rdr. Thus,

8q;a0(s) =
Rs

0
ef 0(r;q)rdr (see Figure 3).

Each coef�cientan(s) has interesting properties regarding the
local surface dynamics. 2pa0(s) is equal to the signed volume be-
tween the surface and the parameterization plane. Indeed,

Z 2p

0

Z s

0
f (r;q)rdrdq =

Z 2p

0
A(q;s)dq = 2pa0(s) (13)

Importantly enough, thean are intrinsic quantities of the local
surface neighborhood, and as such do not depend on the initial pa-
rameterization choice.

Remark 1 Equation (13) relates to theVolume Descriptor Vs(ppp)
introduced by [MCH� 06] as follows:

Vs(ppp) � 2pa0 �
2
3

ps3 . (14)

Thus,a0(s) measures the local deviation of the surface with re-
gards to the tangent plane atppp. Local mean curvature is commonly
used to re�ect this local deviation, but it is meaningless in some
cases, for example some points might have 0 mean curvature but
nonzero higher orders derivatives anda0. Such is the case of(0;0)
for f (x;y) = x4 + y4. At those points, it is necessary to look at
higher order derivatives to reveal the local dynamics of the surface.
a0(s) involves higher orderf k;0 with k > 0, whereas local mean
curvature is only proportional tof 2;0. In addition, the mean curva-
ture is a measure per point, whose estimation precision from point
sets is theoretically controlled by the polynomial order, therefore it
will capture extremely small variations.a0(s) will on the contrary
capture variations at a scale controlled bys.

Similarly, a� 1(s) locally measures a �rst order antisymmetric
tendency of the surface to change its normal direction when one
moves away fromppp, along the direction given byq. Here, this anti-
symmetric change corresponds to the variation of the tangent plane
to be added on top of the variation induced by the mean variation
of the position (re�ected bya0(s)). More precisely, the normal di-
rection tends to change less when one moves away in the tangent
plane in the direction orthogonal to the phase arg(a� 1(s)) . Thus,
arg(a� 1(s)) gives the direction in which the rotation of the tangent
plane is maximal. In a nutshell, it measures around which direc-
tion and with what intensity the normal evolves.f 3;� 1 should theo-
retically be enough to give such information. However, similarly
to f 2;0, f 3;� 1 is an in�nitesimal measure whereasa� 1(s) gives
smoother information while still being able to catch high-order lo-
cal variations thanks to the high-order estimation of the surface.
Figure 3 illustrates the sensitivity of coef�cientsf 2;0 and f 3;� 1
compared toa0(s) anda� 1(s) in the 9-Wavejets decomposition of
a surface. Using thean instead of the Wavejets coef�cients them-
selves can also be seen as an extension of the use of averaged quan-
tities to compute surface derivatives [MCH� 06,PWY� 07,DM14].

To design the detail enhancement �lters, we use Wavejets com-
puted w.r.t. the tangent plane of the surface, and we only rely on
a0(s) anda� 1(s). Higher order valuesa� n(s) would carry further
information of higher order regarding the enclosed area in the direc-
tion q. For example,a� 2(s) measures the tendency of the evolution
of the local horse saddle shape,a� 3(s) gives information about the
evolution of the monkey saddle shape, and so on. The only limit
to this computation is the precision for the coef�cients when the
surface is only known through a set of points and that Wavejets
are �t, since, as demonstrated by [CP03], the precision of orderk
derivatives is ao(RK� k

F ). In such cases, coef�cienta� n(s) is less
interesting asn grows.

4.2. Position enhancement �lter

Algorithm 1 Position Enhancement
procedure ENHANCEPOSITION(S, a0;K;Rf ;s)

for all ( ppp;nnn) 2 S do
N  NEIGHBORHOOD(S,ppp;Rf )
f  COMPUTEWAVEJETS(ppp;nnn;N ;K;Rf )

a0(s)  å K
k= 2

f k;0sk+ 2

k+ 2
ppp  ppp�

�
f 0;0 + 2p(a0 � 1)a0(s)

�
nnn
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As noted previously,a0(s) gives the local deviation of the sur-
face. If the volume, estimated by 2pa0(s) (See Equation 13), was
to be increased, local details would be increased as well. Leta0
be the amplitude of the targeted detail enhancement. In order to
increase the volume, a pointppp with normalnnn is moved to a new
positionppp0 such that:

ppp0= ppp+
�
f 0;0 � 2p(a0 � 1)a0(s)

�
nnn (15)

If a0 = 1, the motion is independent ofa0(s) and the points are
simply projected on the Wavejets surface. Indeed, when the Wave-
jets order isK < 1 , f 0;0 measures the distance betweenppp and the
truncated Wavejets surface. If the Wavejets approximation is exact,
f 0;0 = 0. However, it is not the case in the presence of noise, on
sharp edges, or in the approximation framework for point sets de-
scribed in section 5. The Wavejets surface is however considered
as the true underlying surface and each pointppp is moved to this
surface by displacing it byf 0;0. This has the effect of smoothening
edges and canceling a part of the input noise. Ifa0 > 1, each point
is �rst moved to the underlying surface and then moved proportion-
ally to its underlying volume. Conversely, ifa0 < 0, it will tend to
invert the details and createanti-details.

The computation ofa0(s) must be performed by using the tan-
gent plane for parameterizing the surface at one point. Therefore,
the parameterization plane should be corrected beforehand if it does
not exactly �t the tangent plane as explained in section 3. Algo-
rithm 1 assumes that this parameterization plane update has been
performed. Notice that if the surface is smooth, the tangent plane
and the enclosed volumesa0(s) evolve continuously over the sur-
face. Therefore, the surface evolves continuously through the en-
hancement �lter. In practice, this process cannot be applied to the
in�nite set of points on the continuous surface, however the �lter
de�nition remains valid in the continuous setting.

4.3. Normal enhancement �lter

We propose a �lter enhancing the details by exaggerating only the
dynamics of the normals. Recall thata� 1(s) measures the local
balance of the shape by identifying the orientation (its phase) and
the intensity (its absolute value) of the antisymmetric evolution of
the tangent plane. The normal enhancement procedure amounts to
modifying f 1;� 1 proportionally toa� 1(s) at each point of the sur-
face. The corresponding false normal is then estimated as the nor-
mal to a plane obtained by rotation of the parameterization follow-
ing Corollary 1. Notice that this false normal is not coherent with
the real surface anymore. Given the desired detail normal evolution
gaina1 = a �

� 1, the value of the new coef�cientf 0
1;� 1 is de�ned as

follows:

f 0
1;� 1 = � p(a � 1 � 1)a� 1(s) (16)

Sincef 1;1 = f �
1;� 1, it is enough to compute either of these coef�-

cients and deduce the false normal using Corollary 1.

Settinga = 1 leaves the surface unchanged. Ifa1 = 2, normals
are enhanced, increasing the contrasts. Ifa1 = 0, the dynamic of
the normals is totally compensated, and the surface looks smoothed
out. If a1 < 0, normals are modi�ed and "anti-details" appear in
the rendering.a1 can also take imaginary values, which skew nor-
mals towards one direction as shown in �gure 15. Note that, when

Noisy
normals f 0;0 jf 1;1j f 2;0 jf 2;2j j f 3;1j j f 3;3j

Figure 4: Evolution of the coef�cients of a 3-Wavejets with in-
creasing Gaussian noise on the normal direction (First row: no
noise, 2nd row: Gaussian noise of standard deviationp=15, 3rd
row: Gaussian noise of standard deviationp=9). Notice howf 1;1,
which is0 without noise, captures most of the noise when the nor-
mals are perturbed.f 0;0 6= 0 because the order of a 3-Wavejets is
too low to catch all the details of this shape given a large radius,
leaving details as residue inf 0;0.

applying the normal enhancement �lter, the positions of the sur-
face points are unchanged. However since rendering algorithms are
more sensitive to normals that positions, it looks as if the positions
had been modi�ed. Algorithm 2 sums up the normal enhancement
�lter.

Algorithm 2 Normal Enhancement
procedure ENHANCENORMAL(S, a1;K;Rf ;s)

for all ( ppp;nnn) 2 S do
N  NEIGHBORHOOD(S,ppp;Rf )
f  COMPUTEWAVEJETS(ppp;nnn;N ;K;Rf )

a1(s)  å K
k= 3

f k;1sk+ 2

k+ 2
f 1;1  � p(a1 � 1)a1(s)
Compute the false normalnnn given byf 1;1

5. Application to point sets

5.1. Wavejet Decomposition Equation

Given a surfaceS that is only known through a set of measured
points possibly spoiled by noise, we want to compute the Wavejets
representation of the underlying surface up to a chosen orderK,
at an input pointppp. Let us assume that the surface is locally suf�-
ciently smooth,i.e. CK in a neighborhood of radiusRf aroundppp.
Our goal is to compute thef k;n coef�cients that best decompose
the underlying surface on the basis functionsBk;n(r;q) = rkeiiinq in
the neighborhoodN (p) of radiusRf of p. Let L denote the number
of samples in this neighborhood, and letql be one of these sam-
ples, with cylindrical coordinates(r l ;ql ;zl ) w.r.t. an axis that cor-
responds to a rough approximation of the normal direction at point
p. Then, the decomposition problem is formulated as �ndingf k;n
minimizing:

E(F ) =
L

å
l= 1











zl �

K� 1

å
k= 0

k

å
n= � k

r l
keiiinql f k;n












2

2

(17)
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For clarity, we state the problem using the`2 norm even if it is un-
reliable if there are outliers. When dealing with noisy point sets or
outliers we solve this minimization using an iteratively reweighted
least squares procedure. The weighting scheme involves the use of
a diagonal matrix of weightsW that are used to leverage the impor-
tance of emerging outliers within the norm.

To reformulate this energy minimization, let us reorder theB ba-
sis functionsBk;n into a vectorVb, and theB unknownf k;n into a
vectorF , such that thebth component ofF corresponds to the co-
ef�cient of the bth basis function in the decomposition. Letkb and
nb respectively denote the order of derivation, and the oscillation
frequency of thebth basis function (0� b � B � 1). Using these
notations, the energy to be minimized is the following:

E(F ) =
L

å
l= 1

 

zl �
B

å
b= 1

r l
kbeiiinbql F b

! 2

(18)

This amounts to the minimization ofkMF � Zk2
2, whereZ is a vec-

tor of sizeL containing the heightszl of neighborsql andM is a
matrix of sizeL � B such that:

Ml ;b = rkb
l eiiinbql (19)

Minimizing kMF � Zk2
2, is done by a QR decomposition ofM.

Thus computing the Wavejets decomposition around a pointppp
amounts to building matricesM andZ and performing the QR de-
composition ofM. Using a Cholesky decomposition instead of QR
fails becauseMM� is often ill-conditioned.

5.2. Algorithm

In order to compute Wavejets in the tangent plane, one can com-
pute a �rst estimate of Wavejets in a parameterization plane close
enough to the tangent plane. The initial parameterization plane
is obtained through a Principal Component Analysis. Importantly
enough the orientation is necessary neither to compute the Wave-
jets decomposition nor for the �ltering, we only need a local pa-
rameterization with respect to an approximate tangent plane. Then
the parameterization plane is corrected into the tangent plane using
Corollary 1 and the Wavejets coef�cients themselves are corrected
using Corollary 2.

Given a point set ofN points,K the Wavejets order andL the
number of neighbors, the complexity of the computation, using
Equation 19 for all points isO(NLK2). To be able to solve the
equation we pickL � K2, yielding a �nal complexity ofO(NK4).
As a consequence, whenK is big (i.e. 13 for example), the com-
putation cost increases a lot. Once the Wavejets decomposition is
computed, the �ltering amounts to computing a sum ofK terms for
each point, because the �lter only involves coef�cients of frequency
0 or 1 (K=2 coef�cients instead ofK2). Then each point is moved
in its normal direction, which is constant in time, thus the �ltering
complexity reduces toO(NK).

6. Experiments and comparisons

Our algorithm was implemented in C++ using Nano�ann and Eigen
libraries, and parallelized using OpenMP. Detail enhancements is
performed by �rst computing the Wavejets decomposition and then

Original Enhanced normals Enhanced positions

Figure 5: Normal and position enhancement on a bunny with 6-
Wavejets. Rf is equal to3%of the shape diameter, anda0 = a � 1 =
2.

K = 8 K = 2 K = 8
Unsharp Masking Unsharp Masking Ours

baseline baseline

Figure 6: Detail enhancement for different K-Wavejets and radii.
First column: naive Unsharp Masking with a precise mean cur-
vature computed using 8-Wavejets. Unsharp Masking is unstable
when applied to a precisely computed curvature. Second column:
our position-based detail enhancement algorithm (2-Wavejets).
This �ltering is equivalent to a coarse Unsharp Masking since a0
is proportional to the mean curvature when K= 2. Third column:
result for K = 8. Increasing neighborhood radius makes the pro-
cedure less sensitive to small local variations while still catching
larger details with a high resolution.a0 = 3=Rf .

applying the detail enhancement �lters. Table 1 gives the parame-
ters and computation times for different models. The computational
bottleneck lies in the Wavejets decomposition. Although the com-
putation times are already good enough for processing common 3D
point sets, the implementation could be made faster by porting the
code to GPU.

In our implementation, for numerical reasons, the local surface
is rescaled before computing the Wavejets decomposition so that
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APSS APSS APSS APSS
Scale 4 Scale 10 Scale 20 Scale 30

Figure 7: Unsharp Masking applied with mean curvature com-
puted with APSS [GGG08] (Meshlab implementation) for different
Minimum Least Squares (MLS) scales. MLS spherical parameter is
set to 1. Each point is moved in the normal direction with a magni-
tude of 3 times the mean curvature

a � 1 = 2 a � 1 = � 2iii a � 1 = � 2 a � 1 = � 2iii

a � 1 = 2 a � 1 = � 2iii a � 1 = � 2 a � 1 = � 2iii

a � 1 = 0 a � 1 = 1 a � 1 = 2 a � 1 = 4

a � 1 = 0 a � 1 = 1 a � 1 = 2 a � 1 = 4

Figure 8: In�uence of normal ampli�cation gaina � 1 and of order
K. Similarly to Figure 6, a high order yields a �ne enhancement.
The phase ofa � 1 sets the orientation followed by normal ampli�-
cation. Whena � 1 = 0, the normals are blurred.

Rf = 1. Sometimes, locally, the surface does not project well on the
tangent plane, this corresponds to locations where the surface can-
not be expressed as a height �eld over the parameterization plane
in a neighborhood of radiusRf , but it would project nicely if the
radius was smaller. This happens for example on the �ngers of Ar-
madillo on Figure 13. In such situations, Wavejets tend to have high
amplitudes and so do thean coef�cients, leading to high amplitude
motion. To alleviate this problem, we set a threshold on the motion
amplitude. In our experiments this threshold is set toRf

2 . In all our
experiments we set the radiuss for computinga0 anda1 equalsRf .

The input to our algorithm is a point set with coarse normals
which can be computed with a Principal Component Analysis. If
the normal orientation is provided, this information is used to re-

Shape N Order Decomposition Filter
time time

Armadillo 5M K = 6 11min 31s 1.7s
Bunny 600k K = 6 49s 187ms
Caesar 600k K = 8 2min 18s 200ms

Pyramid 1:5M K = 6 1min 43s 614ms
Manuscript 1:5M K = 5 1min 44s 582ms

Table 1: Computation times for various point sets and Wavejets
orders. N is the number of points (desktop computer with2 Intel
Xeon E5-2623 of 3.00GHz processors and32GB RAM).

a0 = � 2 a0 = � 1 a0 = 0 a0 = 1 a0 = 2

Figure 9: In�uence of position ampli�cation gaina0 and order K.
A lower order induces a coarser ampli�cation. Whena0 < 0, the
shape tends to be carved in the orientation opposite to the details
(visually similar to normal �ltering witha � 1 < 0, Fig. 8).

strict the neighborhoods to points having normals deviating up to
p
2 with regard to the normal of the center point. This is done to
avoid capturing two different surface sheets in a neighborhood.

The stability of the Wavejets coef�cients w.r.t. normal error is
shown in Figure 4. As can be seen, adding noise on the input nor-
mal direction mostly impactsf 1;� 1, while order 2 coef�cients are
very stable, which con�rms the results of Theorem 1. In order to
test the stability of thea0 coef�cients, the position enhancement
�lter was tested on a perfect sphere of radius 1 randomly sampled
(600k points). The parameters for the �lter wereRf = s = 0:03,
K = 8 and a0 = 100. The resulting shape is, unsurprisingly, a
sphere with a larger radius. The radius of this enhanced sphere,
computed by measuring the average distance to the center, is 1:07
with a standard deviations = 3:8:10� 5, meaning that our compu-
tation is quite stable. The resulting sphere is smooth and does not
exhibit any bumps. The theoretical equivalence between Wavejets
and the Zernike polynomials was also tested numerically. Given a
Wavejets and a Zernike decomposition of the same surface w.r.t.
the same parameterization plane, the average distance between the
2 reconstructed surfaces is around 10� 15, i.e. of the order of nu-
merical precision.

Figure 5 shows the effects of normal and position based detail
enhancement �lters on the Bunny. The exaggerated features have
a large scale, for example the borders of the ears and the fur fea-
tures. On Figure 6, one can see the in�uence of the chosen orderK
on the detail ampli�cation. As the neighborhood radius increases,
high order Wavejets allow to still amplify �ne details, whereas low
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Shape Ground truth

Wavejets APSS, scale 2 APSS, scale 4

Figure 10: Estimated mean curvature on a shape with varying
sparsity and curvature. The Wavejets order is set to15 but it de-
creases in sparse areas to adapt to the low number of neigh-
bors. We compare it with APSS [GGG08] (Meshlab implemen-
tation, spherical parameter set to1). The equation of the shape
is r (q; j ) = 1+ 0:005cos(100j 2=p) in spherical coordinates. In
sparse areas (left part of the shape), our method tends to underper-
form (due to the necessary order change), similarly to APSS (scale
4). However, APSS (scale 2) performs well in sparse regions but is
less accurate in dense regions than ours (right part of the shape).

Dense Sparse

Figure 11: Root Mean Square Error (RMSE) of estimated mean
curvature with Wavejets and APSS [GGG08] on the shape of Figure
10. The left chart shows the RMSE computed on the part of the
shape where the number of neighbors is stricly greater than 150
so K = 15. The right chart shows the RMSE computed where the
number of neighbors is between 17 and 31. Wavejets of order 4 are
computed in such cases. RF is 2:5%of the diameter of the shape.

order Wavejets tend to blur the shape. Since high order Wavejets
give similar results over radius variation, a large neighborhood can
be chosen to enhance details while being resilient to position noise.
This holds as long as the height �eld assumption is respected. Fig-
ure 8 shows the in�uence ofK on normal �ltering. The higherK,
the more precise the output is. One can note that applying a normal
enhancement procedure witha � 1 = 0 cancels local normal dynam-
ics. After normal update,a� 1 is close to 0, which means that local
normals dynamics become low. Settinga � 1 2 C locally twists nor-
mals (see Figure 15) and gives a twisted look to local features. The
nose and lips of the mask statue are good examples of this twist
(�rst and second rows of Figure 8). Similarly, Figure 9 shows the
in�uence of K and a0 on position enhancement. Settinga0 < 0
tends to carve the shape in the opposite direction of the details.
Note thata0 = � 2 gives similar visual results asa � 1 = � 2 (see
Figure 8 and 9).

Input a0 = 2 a � 1 = 0 a � 1 = 2

Figure 12: In�uence of noise on detail enhancement: Noise was
added to the positions of the input points. Rf corresponds to4:5%
of the shape diameter. Position �ltering witha � 1 = 0 gives very
stable results. Position enhancement has been performed using pre-
processed normals �ltered witha � 1 = 0 so the direction of points
motion remains stable over the shape.

We compare our method to a baseline high boost �lter, by com-
puting the mean curvature using Wavejets, and moving each point
in a direction opposed to the normal direction at a rate equal to
the mean curvature (Figure 6, �rst column). This naive ampli�-
cation is very sensitive to noise or to small local variations be-
cause of the high resolution of the mean curvature computed with
a high orderK. In �gure 7, we show Unsharp Masking applied to
the mean curvature computed with Algebraic Point Set Surfaces
(APSS) [GGG08] for different parameters. For high scales, the �l-
ter tends to produce similar outputs as our method with a low order
K. For a low scale, it tends to enhance very small variations. There
is a range of scales in which it produces similar results as our im-
plementation usinga0 or a low orderK with a small radius (see
Figures 6 and 7). In Figure 10, we show how Wavejets handle high
curvature variations and sparsity compared to APSS for computing
mean curvature. We use the PCA regression plane as parameteriza-
tion plane withRf as the neighborhood radius. Figure 11 shows the
Root Mean Square Error of computed mean curvatures. In dense re-
gions, our estimate starts to fail after frequency 40. Our representa-
tion approximates the surface with high precision in dense regions,
yielding lower RMSE than APSS. As sparsity increases, Wavejets
order decreases, yielding a coarser surface approximation. As one
can visualize in Figure 10, APSS performs better than our method
in such cases with MLS scale set to 2.

Detail exaggeration �lters are more likely to be sensitive to po-
sition noise. If noise is considered as a detail to amplify by the
algorithm, the output will tend to be noisier than the input. Our al-
gorithm is resilient until a certain amplitude of noise. If the neigh-
borhood radiusRf is large enough, noisy �uctuations in the signal
tend to compensate over the radial integration. On Figure 12, differ-
ent amplitudes of arti�cial noise over a shape are shown. On Figure
13, the detail exaggeration �lter on the position is applied to the
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Figure 13: Outputs of our procedures on an armadillo (Left:original; Middle: normal-based detail enhancement with K= 7;a � 1 = 3; Right:
position-based detail enhancement with K= 6;a0 = 2).

Original Positions enhanced Normals enhanced

Figure 14: On the left: input shape. On the top right: our position
and normal enhancement method. On the bottom right: the result
of a high-boost �lter applied to manifold harmonics of the dino (no
normal enhancement is de�ned using this method). Our position
enhancement method highlights more local details as the Manifold-
Harmonics based high-boost �lter. The rendering of the second row
is a capture of the MHB demo provided by the authors.

Armadillo shape. The details are particularly well enhanced by the
Wavejets �lter: creases are more distinctive and small details, such
as the tortoise-shell texture on the legs, are ampli�ed. The eyebrow
and teeth are also more prominent.

Figure 14 shows the difference of the output of our position �l-
ter with a high-boost �lter applied to manifold harmonics. One can
see that our result enhances the details in a different manner: the

a1 = 24 a1 = 24eiii p
4 a1 = 24iii a1 = 24eiii 3p

4

a1 = � 24eiii 3p
4 a1 = � 24iii a1 = � 24eiii p

4 a1 = � 24

Original Ours(a1 = 24) [CST05] [RBD06]

Figure 15: Normal enhancement on a golf ball. First and Sec-
ond row : normal ampli�cation for differenta1 on a 9-Wavejet.
Note thata � 1 = a �

1 on every examples. Last row: comparison
with [CST05] normal enhancement algorithm and with [RBD06]
detail exaggerating shading.

behavior highlighted by our approach is more local and less in-
�uenced by global shape structure. Indeed, both methods are very
different, since Wavejets �lters operate only locally while Manifold
Harmonics take the whole shape into consideration for building the
function basis. Furthermore, manifold harmonics often require a
mesh (although some point clouds generalization exist). The man-
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ifold harmonics basis does not permit to �lter or twist the normals
in such a simple way as our method does.

On Figure 16, we compare the result of our normal �lter with
[CST05] and [RBD06]. [CST05] has an effect on the normals that
is similar to our algorithm. This algorithm takes as input a neigh-
borhood radius, a number of iterations to perform, and a step. If the
number of iterations is too high, the normal enhancement [CST05]
becomes unstable. On the contrary, our algorithm can perform
higher detail enhancement while remaining stable. [RBD06] has
a very different approach that is not based on enhancing normals,
but rather on a shading algorithm taking the light direction into ac-
count in a multiscale way. Our Enhancement �lters can also be used
to exaggerate narrow details as shown in Figures 17 and 18 on ar-
chaeological artifacts. It makes details appear more clearly than on
the original point set.

Parameters. The parameters for our algorithm are the following:
the radiuss for the computation of the volumesa0 anda1 andRf ,
which we set equal in our tests, the order for the Taylor Expansion
K, and ampli�cation gainsa0 or a � 1 depending on which �lter is
chosen. Note thats = Rf should be chosen so that the number of

neighborsL of each point is above(K+ 1)(K+ 2)
2 , which is the number

of Wavejets coef�cients of orderK. The neighborhood sizeL is
an important parameter. IfL < (K+ 1)(K+ 2)

2 , the system to solve is
underdetermined. In such cases, the orderK is locally decreased
until the system can be safely solved. To do so, we add a parameter
b > 1, controlling the decrease rate of the order:K is decreased
until L < b (K+ 1)(K+ 2)

2 . We setb = 1:1 in our implementation. In
presence of noise,b should be greater.

Limitations Our method is still computationally expensive. The
computational bottleneck lies in the system solve in order to com-
pute the Wavejets for each point, with a complexity ofO(NK4).
The Wavejets order choice is thus critical for the computation time,
which is coherent with the measures of Table 1. In the presence of
fast enough varying features, stability of Wavejets coef�cients de-
creases (see �gure 11). Another limitation of our algorithm lies in
the assumption that the surface can be expressed as a height �eld
over a parameterization plane inside a neighborhood of given radius
r constant over the surface. For some points,r might be too large for
the assumption to hold and spurious artifacts can appear. To allevi-
ate this effect, Hamdi-Cherif et al. [HCDC17] proposed to encode
the surface as a height �eld over a quadric. This simple idea would
however require using the Fourier transform on geodesic circles,
which is a nontrivial adaptation. Another solution could be to adapt
the radius to the local feature size. [MGB� 12] proposes an interest-
ing approach to solve the problem of the right scale estimation that
could be adapted to Wavejets as a future work. As an alternative,
using multiscale Wavejets could alleviate the scale choice.

7. Conclusion

We introduced a new basis for decomposing locally a surface in a
basis that emphasizes both angular oscillations and surface deriva-
tives. This decomposition is proven to be stable with respect to a
small rotation of the parameterization plane from the tangent plane.
This allows to de�ne and compute surface characteristic functions

at a very high precision and build explicit shape enhancing �lters,
acting either on the normals or the point positions with a view
of amplifying, modifying or inverting shape details. Wavejets can
have a broader interest than this application, in a future work we
plan to study its application to surface description for shape match-
ing and shape registration.
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Original Enhanced shader [RBD06] [CST05] Ours (K = 5;a � 1 = 3)
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local geometry of the surface. The snapshot of [RBD06] was done usingXshade, a software provided by the authors.

Original Normal enhanced Position enhanced

Figure 17: Applying order7 (normal �lter) and order6 �lters (po-
sition �lter) to the Pyramid datasets witha0 = a� 1 = 2.

Original Normal enhanced Position enhanced

Figure 18: Applying order9 (normal exaggeration) and order8
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