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Simultaneous Information and Energy Transmission:
A Finite Block-Length Analysis

Samir M. Perlaza, Ali Tajer, and H. Vincent Poor

Abstract—In this paper, a non-asymptotic analysis of the
fundamental limits of simultaneous information and energy
transmission (SIET) is presented. The notion of the information-
energy capacity region, i.e., the largest set of simultaneously
achievable information and energy rates, is revisited in a context
in which transmissions occur within a finite number of channel
uses and strictly positive decoding error probability (DEP) and
energy shortage probability (ESP) are tolerated. The focus is
on the case of one transmitter, one information receiver and
one energy harvester communicating through binary symmetric
memoryless channels. In this case, some outer bounds on the
information transmission rate and the energy transmission rate
are presented. More specifically, given a finite block-length, a
DEP, and an ESP, four scenarios arise depending on whether an
average or maximal probability constraint is imposed on the DEP
and the ESP. For each scenario, the limits on the information rate
and energy rate beyond which a transmission is no longer possible
are presented (impossibility results). These results reveal the
competitive interaction between the information transmission and
energy transmission tasks identifying a certain regime in which
increasing the information rate necessarily implies decreasing the
energy rate and vice versa.

Index Terms—Information and Energy Transmission, Infor-
mation and Power Transfer, Finite Block-Length Regime.

I. INTRODUCTION

Simultaneous information and energy transmission (SIET)
refers to a communication system in which a set of transmit-
ters aim to simultaneously carry on two tasks: information
transmission to a set of information receivers (IRs); and
energy transmission to a set of energy harvesters (EHs). The
performance of SIET is often measured by the information
and energy transmission rates that can be simultaneously
achieved under certain reliability constraints. Reliability can be
measured by two metrics: decoding error probability (DEP);
and energy shortage probability (ESP). The fundamental limits
of SIET consist of the largest set of information and energy
rate tuples that can be simultaneously achieved. This set is
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often referred to as the information-energy capacity region [1].
Traditionally, information-energy capacity regions are calcu-
lated subject to the fact that both DEP and ESP must be
arbitrarily close to zero. This strong reliability constraint leads
to the unavoidable use of infinitely long communication blocks
and thus, these fundamental limits are meaningful only under
the assumption that the communication might last a very long
time. Within this context, the case of one transmitter and one
co-located IR and EH is studied in [2], [3], and [4]. The multi-
user case is studied in [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], and references therein. Despite the existing
literature, these approaches quickly lose relevance in scenarios
in which communications must occur within a short period,
e.g., the Internet of things.

More relevant fundamental limits, from an engineering
perspective, are those that take into account that SIET occurs
within a finite number of channel uses and the system tolerates
strictly positive DEP and ESP. This paper introduces this novel
approach building upon the existing results on the fundamen-
tal limits of information transmission in the non-asymptotic
block-length regime (c.f. [16] and [17]). The main result is
the characterization of the information-energy capacity region
of an SIET system with one transmitter, one IR, and one EH
communicating over binary symmetric memoryless channels.
More specifically, for a given number of channel uses and
the biggest DEP and ESP that can be tolerated, the largest
set of simultaneously achievable information and energy rates
is characterized. The trade-off between information rate and
energy rate, first reported in [2] and [3] in the asymptotic
regime, is studied in the non-asymptotic regime. The system
parameters for which information and energy transmission are
conflicting tasks are also characterized. These results reveal the
central role of the ESP in both the information transmission
rate and the energy transmission rate.

The paper is organized as follows. Sec. II formulates the
problem and introduces the notion of the information-energy
capacity region in the non-asymptotic block-length regime.
Sec. III focuses on the case of binary symmetric memoryless
channels and presents the main results. Sec. IV concludes this
work.

II. SYSTEM MODEL

Consider a three-party communication system in which a
transmitter aims at simultaneously sending information to an
IR and energy to an EH through a noisy communication
medium. Such a system can be modeled by a random trans-
formation (X', x Z, Py 7| x) from an input alphabet X’ to an



output alphabet ) x Z consisting of a transition probability
kernel Py z x. That is, given an input x € A, the output
(y,2) € Y x Z is observed with probability Py 7 x (y, z|x). In
the following, the noisy communication medium is represented
by a memoryless channel. A memoryless channel is a random
transformation

(Xn7yn XZ”7PYZ\X)a (1)
where n € N is the block length and Y = (Y7,Y5,...,Y,,) €
Y, Z = (Z1,Zs....2,) € 2" and X =
(X1,Xs,...,X,) € X" are n-dimensional vectors of random
variables, such that given an input * = (z1,22,...,2Zn),
the output (y1,Y2,.--,Yn,21,22,--.,2,) is observed with
probability

Py zx(y, z|x) = H Py z71x (e, ze|we). 2
t=1

Within this context, two tasks are carried out by the transmit-
ter: (a) the information transmission task; and (b) the energy
transmission task.

A. Information Transmission Task

The message to be sent from the transmitter to the IR is a
realization of a random variable that is uniformly distributed
in {1,2,..., M}, with 1 < M < oco. To carry out this task
within n channel uses, the transmitter uses an (n, M )-code.

Definition I ((n, M)-code): An (n, M)-code for the random
transformation in (1) is a system

{(u(l)’Dl)a(u(2)7D2)a"'a(u(M)7DM)}a 3
where for all (i,j) € {1,2,..., M}?, with i # j,

’LL(Z) = (ul (i)7u2(i>7 s 7un(z)) € A", (4a)
D;ND; = 0; and (4b)
D1UD2UUDngn (40)

Given the system in (3), to transmit the message index ¢,
the transmitter inputs the symbol w;(¢) to the channel at time
t € {1,2,...,n}. The IR observes at the end of channel use
t, the output y;. At the end of n channel uses, the IR states
that the symbol ¢ was transmitted if it satisfies the rule

The probability of error associated with the transmission of
message index i, denoted by \; € [0, 1], is

(ylay2a" .

A2 PrlY € DS| X = u(i)], ©)

where the probability is with respect to the marginal Py |x of
the joint probability distribution in (2). The average probability
of error, denoted by A, is

,\él M/\ 7
27D e (7)
m=1

Given a parameter € € [0, 1], information transmission is
said to be reliably performed in two different senses:

(a) the average decoding error probability is smaller than e,
ie, A<eg, or

(b) the maximum decoding error probability is smaller than
€ Le, forall i € {1,2,... M}, X\ <e.

An (n,M)-code that exclusively satisfies the first criterion
is said to be an (n, M, €)-code with average decoding error
probability. Alternatively, an (n, M)-code that satisfies both
criteria is said to be an (n, M, €)-code with maximal decoding
error probability.

B. Energy Transmission Task

Let g : Z — R be a positive-valued function. The amount
of energy delivered to the EH by the channel outputs z =
(21,22,...,2), given by the function B, : Z™ — Ry, is

Bu(2) =) g(z). ®)

The objective of the transmitter is to ensure that a minimum
amount of energy b is harvested at the EH at the end of
n channel uses. An energy shortage is said to occur when
the energy harvested at the EH is less than the minimum
required at the end of the transmission. The probability of
an energy shortage when transmitting the message index
i€{1,2,..., M}, denoted by 6, is

0; £ Pr(B,(Z) < b| X = u(i)], ©)

where the probability is with respect to the marginal Pz x of
the joint probability distribution in (2). The average probability
of energy shortage, denoted by 6, is

s 1 &
QZM;@.

Given a parameter § € [0, 1], energy transmission is said to
be reliably performed in two different senses:

(¢) the average energy shortage probability is smaller than 0,
ie, 0 <6, or

(d) the maximum energy shortage probability is smaller than
d, ie., forallie€ {1,2,... , M}, 6; <.

An (n, M, €)-code that exclusively satisfies the first criterion is
said to be an (n, M, ¢, 6, b)-code with average energy shortage
probability. Alternatively, an (n, M, €)-code that satisfies both
criteria is said to be an (n,M,e€, d,b)-code with maximal
energy shortage probability.

(10)

C. Fundamental Limits

The non-asymptotic fundamental limits of SIET are de-
scribed by the notion of the information-energy capacity
region.

Definition 2 (Information-Energy Capacity Region): The
information-energy capacity region C € IN? x [0,1]2 x R
of the random transformation in (1) is the set of all tuples
(n,M,e,6,b) for which there exists an (n,M,e,d,b)-code
satisfying at least one of the reliability criterion pairs: (a,c);

(a,d); (b,c); or (b,d).





1—ay
0 0
/ . U(W) Y, . W
Source - Transmitter — : Receiver —» ¥
o %
1 T—ar 1
0 1—ay 0
. z
EH
az ‘
14— 1
o
Fig. 1. A three-party communication system in which a transmitter aims at

simultaneously sending information to an information receiver and energy to
an energy harvester through binary symmetric channels.

The information-energy capacity region C in Definition 2
is a subset of R® that is difficult to characterize. In this
work, given fixed parameters (n,e,d), the focus is on the
subset C(n,e,d) that contains the pairs (M,b) € IN x R
such that (n, M, €, d,b) € C. Therefore, if (M, b) € C(n,¢,d),
then the information rate % bits per channel use, and
the energy rate % energy units per channel use, are jointly
achievable within n channel uses with a (maximal and/or
average) decoding error probability € and (maximal and/or
average) energy shortage probability 9.

The subset C(n, €, d) is a subset of R2. In order to empha-
size the reliability criterion, when needed, the information-
energy capacity region C(n,e,d) is often written as
Clae) (N, €,6), Cla,ay(n,€,0), Cve)(n,€,9) or Crpay(n,e,0),
respectively. A 51m11ar notation is used for the larger region

C.

III. MEMORYLESS BINARY SYMMETRIC CHANNELS

This section focuses on the case in which X =) = Z =
{0,1} and the random transformation in (1) is such that for
all x € {0,1}", the outputs y € {0,1}" and z € {0,1}" are
observed with probability

= H Py x (yele) Pz x (2e|2),

Py z1x(y, z|z) (11)
t=1
where for all (z,y,2) € {0,1}3,
Py x (ylr)=a1lpzyy + (1 — a1)Lz—y, (12)
PZ|X(Z|x):a2]l{x;ﬁz} + (1 - a2)]l{x=z}a (13)

and a; € [0, 3) and a2 € (0, 3) are the crossover probabilities
of the channel This scenario is depicted by Figure 1. Let

bo = g(0) > 0 and by = g(1) > 0, (14)

be the energy harvested when the output of the channel at
the EH is 0 and 1, respectively. The case in which by = b;
is trivial, since the harvested energy is always nb; = nbg
energy units, independently of the codebook. This implies that
the information transmission task can be carried out without
taking into account the energy transmission task. Hence, for
avoiding the trivial cases, the following assumption is adopted
without loss of generality:

b < bo. (15)

For all z € {0,1}", it follows that
Bn(z):boN(O|z) + b N
=(bo — b1)N

where N (0|z) and N(1]z) are the numbers of zeros and ones
in the vector z, respectively. Note that B,,(z) is bounded for
all z € 2", ie.,

(1]z)
(0]2) + nby,

(16)
a7

Bn(z)

The inequalities in (18) imply that there exists a case in
which energy transmission might occur with zero (maximal
or average) energy shortage probability at a given energy rate
% < by. This is because the event B,,(Z) < nb; is observed
with zero probability. Basically, transmitting any symbol either
zero or one is indifferent from the energy transmission per-
spective. In this case, the information transmission task can
be carried out independently of the energy transmission task
given that nb; energy units can always be reliably transmitted
in n channel uses. Alternatively, any energy transmission rate
% > by cannot be achieved with an average or maximal energy
shortage probability strictly smaller than one.

Given an (n, M )-code described by the system in (3), let the
empirical probability distribution of the channel 1nput symbols
induced by the codeword (i), denoted by P, be such that

1 n
= Z L, (i)=0}>
t=1

foralli € {1,2,..., M}. Let also the empirical distribution of
the channel input symbols jointly induced by all codewords,
denoted by Px(0), be such that

(19)

_ _ 1 n
PX(0>=1—PX(1>:WZZ11{M =0y (20)

Using these empirical distributions some upper bounds can
be obtained on both the energy and information transmission
rates.

A. An Outer Bound on the Energy Rate of (n, M)-Codes

Define @ : R — [0,1] as the complementary cumulative
distribution function of the standard normal distribution, and
define @' : (0,1) — R as the functional inverse of Q.
Using this notation, the following proposition provides an
outer bound on the number of energy units b that can be
reliably delivered by any given (n, M)-code with an average
or maximal energy shortage probability § € (0, 1).

Proposition 1: Consider an (n, M, ¢, d,b)-code described
by the system in (3) for the random transformation in (11)
satisfying (15). Then, subject to a maximal energy shortage

probability constraint, it holds that for all i € {1,2,..., M},
_ _ B (%)
b<n((b0 b1)<(1 20[2) X (0) + O[Q) + bl)
—/n(bo = b1)2az(1 - a2)Q 7' (6) + O(1), D)



and subject to an average energy shortage probability con-
straint, it holds that

b<n<(b0 - bl)((l — 2as) Px (0) + a2) + bl)

—\/n(b() — b1)2a2(1 — OZQ)Q_l((S) + 0(1)

Proof of Proposition 1: Note that an (n, M, e, J, b)-code
with maximal energy shortage probability satisfies for all ¢ €
{1,2,..., M},

Pr[Ba(Z) < b| X = u(i)] <6,

(22)

(23)

where the probability operator in (23) applies with respect
to the marginal Pz x of the joint distribution in (11). Note
also that the random variable B,,(Z) in (23) is the sum of
n independent binary random variables 1z _o), where Z;
follows the distribution Pz x—., ;). That is,

, n b—nb
Pr([B,(Z)<b| X = u(i)]=Pr [Z ﬂ{zt:0}<(ﬁbll>
t=1

Hence, from the Berry-Essen theorem [18], it follows that for
all i € {1,2,..., M},

(i) > Lz 22)’ +of
Pr(B.(Z) <b| X = u(i)] > 2y/nas(l — az)

n (1= 202) P (0) + ap) — b=2bs

+Q (24)

nas(l — as)

Thus, from (23) and (24), it follows that
b<n((b0 — bl) ( (1 — 20&2) Px(O) + 042) + b1>

(1 —az)?+ a2 )

2¢/nas(l — as)

7\/71([70 — b1)2a2(1 — CYQ)Q71 (5 —+

<n((b0 — bl)((l — 2a) Px(0) + ag) + b1>

—/n(bo — b1)2as(1 — a2)Q~ 1 (5) + O(1),

where the last inequality in (25) follows from a Taylor
approximation of the function Q~!. A similar procedure can
be performed to prove (22). This completes the proof. ]

For fixed parameters (n,as,d,bg,by), let p* : Ry — Ry
be defined as

(25)

p*(b) = min (1, p™ (b)), (26)

with

pr(b) =
b— TL((]. — Oég)b1 + Oégb())
TL(bO — bl)(l — 20&2) \/ﬁ(l — 20[2)
Using this notation, the following corollary follows immedi-
ately from Proposition 1.
Corollary 1: Consider an (n,M,¢€,0,b)-code described
by the system in (3) for the random transformation in (11)
satisfying (15). Then, subject to a maximal energy shortage

021 =) 15140 <%)

probability constraint, for all i € {1,2,..., M}, the empirical
input distribution 15)(;) satisfies

Py (0)>p" (b),

and subject to an average energy shortage probability con-
straint, it follows that

27

Px (0)>p" (D),

where p*(b) is defined in (26).

Corollary 1 leads to interesting conclusions by noticing
that p*(b) is a lower bound on the fraction of zeros in each
codeword (maximal energy shortage probability) or the frac-
tion of zeros among all codewords (average energy shortage
probability) when energy is transmitted at an average energy
rate % This is natural from the perspective of the assumption
in (15), which implies that the symbol zero carries more energy
that the symbol one.

Note that the input distribution that achieves the largest
information transmission rate is the uniform distribution [16].
That is, Px(0) = 1 — Px (1) = 5. Hence, Proposition 1 pro-
vides an outer bound on the energy rate that can be transmitted
by an (n,M,e¢,d,b)-code that possesses an empirical input
distribution that is information-rate optimal. The following
corollary describes this observation.

Corollary 2: Consider an (n, M, €, 0, b)-code for the random
transformation in (11) satisfying (15). Assume that such a code
exhibits an information-rate optimal empirical distribution.
Then, it follows that b < b(n,d), with b : N x [0,1] — R,
such that

Q(nﬁ):n(
+0(1).

(28)

& 3 bl) —V/n (b — b1)? as(1 — a2)Q(6)

(29)

Essentially, Corollary 2 determines a threshold on the num-
ber of energy units b beyond which an (n, M, €, 4, b)-code, if it
exists, exhibits a conflict between the energy transmission task
and the information transmission task. More specifically, if
there exists an (n, M, ¢, §,b)-code whose energy transmission
rate b is beyond the threshold b, it exhibits an empirical input
distribution for which Px(0) > Px(1). This implies than
a zero is transmitted more often than a one, which is not
information-rate optimal.

Proposition 1 also provides an outer bound on the largest
energy rate that can be transmitted by any (n, M, €)-code.
Note that the largest energy-transmission rate is achieved by
a zero information-rate code whose codewords contain only
zeros, i.e., Px(0) = 1 — Px(1) = 1. The following corollary
describes this observation.

Corollary 3: Consider an (n, M, €, d, b)-code for the random
transformation in (11) satisfying (15). Then, it follows that:
b < b(n,d), with b: N x [0,1] — R, such that

B(n, (5):77,((1 — Oéz)bo + Ongl)
“\/n(bo — b))% as(1 — a2)Q () + O(1).(30)




Finally, from Corollary 2 and Corollary 3, it might be
expected that the energy transmission task and the informa-
tion transmission task exhibit a conflicting interaction. The
following section explores this particular interaction.

B. An Outer Bound on the Information Rate of (n, M)-Codes

Given an (n, M, €, 0, b)-code, the following proposition de-
scribes a bound on M. This bound does not take into account
the decoding error probability and thus, it might be loose
in some cases. However, it plays an important role when
b(n,d) < b < b(n,?).

Proposition 2: Consider an (n, M, €, 0,b)-code for the ran-
dom transformation in (11) satisfying (15). Then, subject to a
maximal energy shortage probability constraint, it holds that

)2("[”!7*(17)])’ (31)

< ( "
~ *
[np*(b)]
and subject to an average energy shortage probability con-
straint, it follows that

Mn
Ms ((an*am

where p*(b) is defined by (26).

Proof of Proposition 2: Corollary 1 provides an approx-
imation to the minimum number of zeros in each codeword
in any given (n, M, ¢, d,b)-code with maximal probability of
energy shortage. That is, for all ¢ € {1,2,..., M} if follows
that

)2(Mn— (an*(b)])7 (32)

N(Ofu(i)) = [np"(b)].

This immediately provides the upper-bound on M given that
all codewords must contain at least [np*(b)] zeros. Hence, the
right-hand side of (31) is the maximum number of codewords
of length n for which at least [np*(b)] symbols are zeros. The
same argument can be used to prove the fixed-point equation
in (32). This completes the proof. [ |
Note that p*(b) is monotonically increasing with the energy
rate b. Interestingly, when p*(b) € (3,1], the right-hand
sides of (31) and (32) are monotonically decreasing with b.
This highlights the existing trade-off between the information
transmission task and the energy transmission task. That is, in
the regime in which p*(b) € (4, 1], increasing the energy rate
would necessarily imply decreasing the information rate.

(33)

IV. CONCLUSIONS

In this paper, the fundamental limits of SIET have been
studied under the assumption that the transmission occurs
during a finite number of channel uses at the expense of
strictly positive DEP and ESP. From this perspective, a
non-asymptotic fundamental limit has been introduced: the
information-energy capacity region, that is, the largest set of
jointly achievable energy and information rates. The focus
has been on the case of one transmitter, one IR and one EH
communicating via binary symmetric memoryless channels.
In this case, given a finite block-length, a DEP, and an ESP,

four scenarios have been observed depending on whether an
average or maximal probability constraint is imposed on the

DEP and the ESP. For each scenario, the limits on the infor-
mation rate and energy rate beyond which a transmission is
no longer possible have been characterized. These results have
revealed the competitive interaction between the information
transmission task and energy transmission task. In particular,
a certain regime in which increasing the information rate
necessarily implies decreasing the energy rate and vice versa
has been identified.
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