Introduction aux topos des espaces connectifs. Morita-équivalences avec les espaces topologiques et les ensembles ordonnés dans le cas fini.

Abstract : This paper has two parts. First, we recall and detail the definition of the Grothendieck topos of a connectivity space, that is the topos of sheaves on such a space. In the second part, we prove that every finite connectivity space is Morita-equivalent to a finite topological space, and vice versa (we have given this proof in several, but we haven't yet shared this in writing).
Document type :
Preprints, Working Papers, ...
Complete list of metadatas

Cited literature [7 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01722695
Contributor : Stéphane Dugowson <>
Submitted on : Monday, March 5, 2018 - 12:35:32 AM
Last modification on : Friday, March 23, 2018 - 10:55:07 AM
Long-term archiving on : Wednesday, June 6, 2018 - 12:30:40 PM

Files

20180304 HAL Morita FCnc-FTop....
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01722695, version 1
  • ARXIV : 1803.02275

Collections

Citation

Stéphane Dugowson. Introduction aux topos des espaces connectifs. Morita-équivalences avec les espaces topologiques et les ensembles ordonnés dans le cas fini.. 2018. ⟨hal-01722695⟩

Share

Metrics

Record views

150

Files downloads

100