Aperiodic points in $\mathbb Z^2$-subshifts

Abstract : We consider the structure of aperiodic points in $\mathbb Z^2$-subshifts, and in particular the positions at which they fail to be periodic. We prove that if a $\mathbb Z^2$-subshift contains points whose smallest period is arbitrarily large, then it contains an aperiodic point. This lets us characterise the computational difficulty of deciding if an $\mathbb Z^2$-subshift of finite type contains an aperiodic point. Another consequence is that $\mathbb Z^2$-subshifts with no aperiodic point have a very strong dynamical structure and are almost topologically conjugate to some $\mathbb Z$-subshift. Finally, we use this result to characterize sets of possible slopes of periodicity for $\mathbb Z^3$-subshifts of finite type.
Type de document :
Communication dans un congrès
ICALP 2018, Jul 2018, Prague, Czech Republic. 〈10.4230/LIPIcs.ICALP.2018.496〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01722008
Contributeur : Benjamin Hellouin de Menibus <>
Soumis le : mardi 22 mai 2018 - 15:59:22
Dernière modification le : mercredi 20 juin 2018 - 10:36:02
Document(s) archivé(s) le : lundi 24 septembre 2018 - 16:08:12

Fichier

icalp.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Anaël Grandjean, Benjamin Hellouin De Menibus, Pascal Vanier. Aperiodic points in $\mathbb Z^2$-subshifts. ICALP 2018, Jul 2018, Prague, Czech Republic. 〈10.4230/LIPIcs.ICALP.2018.496〉. 〈hal-01722008v2〉

Partager

Métriques

Consultations de la notice

240

Téléchargements de fichiers

44