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Regularity of the time constant for a supercritical

Bernoulli percolation ∗

Barbara Dembin †

Abstract: We consider an i.i.d. supercritical bond percolation on Zd, every
edge is open with a probability p > pc(d), where pc(d) denotes the critical pa-
rameter for this percolation. We know that there exists almost surely a unique
infinite open cluster Cp [11]. We are interested in the regularity properties of
the chemical distance for supercritical Bernoulli percolation. The chemical dis-
tance between two points x, y ∈ Cp corresponds to the length of the shortest
path in Cp joining the two points. The chemical distance between 0 and nx
grows asymptotically like nµp(x). We aim to study the regularity properties
of the map p → µp in the supercritical regime. This may be seen as a special
case of first passage percolation where the distribution of the passage time is
Gp = pδ1 + (1 − p)δ∞, p > pc(d). It is already known that the map p → µp is
continuous (see [10]).

AMS 2010 subject classifications: primary 60K35, secondary 82B43.
Keywords: Regularity, percolation, time constant, isoperimetric constant.

1 Introduction

The model of first passage percolation was first introduced by Hammersley
and Welsh [12] as a model for the spread of a fluid in a porous medium. Let
d ≥ 2. We consider the graph (Zd,Ed) having for vertices Zd and for edges Ed
the set of pairs of nearest neighbors in Zd for the Euclidean norm. To each edge
e ∈ Ed we assign a random variable t(e) with values in R+ so that the family
(t(e), e ∈ Ed) is independent and identically distributed according to a given
distribution G. The random variable t(e) may be interpreted as the time needed
for the fluid to cross the edge e. We can define a random pseudo-metric T on
this graph: for any pair of vertices x, y ∈ Zd, the random variable T (x, y) is
the shortest time to go from x to y. Let x ∈ Zd \ {0}. One can ask what is the
asymptotic behavior of the quantity T (0, x) when ‖x‖ goes to infinity. Under
some assumptions on the distribution G, one can prove that asymptotically
when n is large, the random variable T (0, nx) behaves like n · µG(x) where
µG(x) is a deterministic constant depending only on the distribution G and the
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point x. The constant µG(x) corresponds to the limit of T (0, nx)/n when n goes
to infinity, when this limit exists. This result was proved by Cox and Durrett
in [5] in dimension 2 under some integrability conditions on G, they also proved
that µG is a semi-norm. Kesten extended this result to any dimension d ≥ 2
in [14], and he proved that µG is a norm if and only if G({0}) < pc(d). In the
study of first passage percolation, µG is usually called the time constant. The
constant µG(x) may be seen as the inverse of the speed of spread of the fluid in
the direction of x.

It is possible to extend this model by doing first passage percolation on a
random environment. We consider an i.i.d. supercritical bond percolation on
the graph (Zd,Ed). Every edge e ∈ Ed is open with a probability p > pc(d),
where pc(d) denotes the critical parameter for this percolation. We know that
there exists almost surely a unique infinite open cluster Cp [11]. We can define
the model of first passage percolation on the infinite cluster Cp. To do so, we
consider a probability measure G on [0,+∞] such that G([0,∞[) = p. In this
setting, the p-closed edges correspond to the edges with an infinite value and
so the cluster Cp made of the edges with finite passage time corresponds to
the infinite cluster of a supercritical Bernoulli percolation of parameter p. The
existence of a time constant for such distributions was first obtained in the
context of stationary integrable ergodic field by Garet and Marchand in [7] and
was later shown for an independent field without any integrability condition by
Cerf and Théret in [2].

The question of the continuity of the map G → µG started in dimension
2 with the article of Cox [4]. He showed the continuity of this map under
the hypothesis of uniform integrability: if Gn weakly converges toward G and
if there exists an integrable law F such that for all n ∈ N, F stochastically
dominates Gn, then µGn → µG. In [6], Cox and Kesten prove the continuity of
this map in dimension 2 without any integrability condition. Their idea was to
consider a geodesic for truncated passage times min(t(e),M), and along it to
avoid clusters of p-closed edges, that is to say edges with a passage time larger
than some M > 0, by bypassing them with a short path in the boundary of
this cluster. Note that by construction, the edges of the boundary have passage
time smaller than M . Thanks to combinatorial considerations, they were able
to obtain a precise control on the length of these bypasses. This idea was later
extended to all the dimensions d ≥ 2 by Kesten in [14], by taking a M large
enough such that the percolation of the edges with a passage time larger than M
is highly subcritical: for such a M , the size of the clusters of p-closed edges can
be controlled. However, this idea does not work anymore when we allow passage
time to take infinite values. In [10], Garet, Marchand, Procaccia and Théret
proved the continuity of the map G→ µG for general laws on [0,+∞] without
any moment condition. More precisely, let (Gn)n∈N, and G probability measures

on [0,+∞] such that Gn weakly converges toward G (we write Gn
d→ G), that

is to say for all continuous bounded functions f : [0,+∞]→ [0,+∞), we have

lim
n→+∞

∫
[0,+∞]

fdGn =

∫
[0,+∞]

fdG .

Equivalently, we say that Gn
d→ G if and only if limn→+∞Gn([t,+∞]) =

G([t,+∞]) for all t ∈ [0,+∞] such that x → G([x,+∞]) is continuous at t.
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If moreover for all n ∈ N, Gn([0,+∞)) > pc(d) and G([0,+∞)) > pc(d), then

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0

where Sd−1 is the unit sphere for the Euclidean norm.
In this paper, we focus on distributions of the form Gp = pδ1 + (1 − p)δ∞,

p > pc(d). We denote by C′p be the subgraph of Zd whose edges are open for the
Bernoulli percolation of parameter p. The travel time given a law Gp between
two points x and y ∈ Zd coincides with the so-called chemical distance that is
the graph distance between x and y in C′p. Namely, for x, y ∈ Zd, we define the
chemical distance DC

′
p(x, y) as the length of the shortest p-open path joining x

and y. Note that if x and y are not in the same cluster of C′p, DC
′
p(x, y) = +∞.

Actually, when x and y are in the same cluster, DC
′
p(x, y) is of order ‖y − x‖1.

In [1], Antal and Pisztora obtained the following large deviation upper bound:

lim sup
‖y‖1→∞

1

‖y‖1
logP[0↔ y,DC

′
p(0, y) > ρ] < 0 .

This result implies that there exists a constant ρ depending on the parameter
p and the dimension d such that

lim sup
‖y‖1→∞

1

‖y‖1
DC
′
p(0, y)10↔y ≤ ρ, Pp a.s.

These results were proved using renormalization arguments. They were im-
proved later in [7] by Garet and Marchand, for the more general case of a

stationary ergodic field. They proved that DC
′
p(0, x) grows linearly in ‖x‖1.

More precisely, for each y ∈ Zd \ {0}, they proved the existence of a constant
µp(y) such that

lim
n→∞
0↔ny

DC
′
p(0, ny)

n
= µp(y), Pp a.s. .

The constant µp is called the time constant. The map p→ µp can be extended
to Qd by homogeneity and to Rd by continuity. It is a norm on Rd. This
convergence holds uniformly in all directions, this is equivalent of saying that
an asymptotic shape emerges. Indeed, the set of points that are at a chemical
distance from 0 smaller than n asymptotically looks like nBµp , where Bµp de-
notes the unit ball associated with the norm µp. In another paper [8], Garet

and Marchand studied the fluctuations of DC
′
p(0, y)/µp(y) around its mean and

obtained the following large deviation result:

∀ε > 0, lim sup
‖x‖1→∞

lnPp
(

0↔ x, D
C′p (0,y)
µp(y) /∈ (1− ε, 1 + ε)

)
‖x‖1

< 0 .

In the same paper, they showed another large deviation result that, as a corol-
lary, proves the continuity of the map p → µp in p = 1. In [9], Garet and

Marchand obtained moderate deviations of the quantity |DC
′
p(0, y)−µp(y)|. As

a corollary of the work of Garet, Marchand, Procaccia and Théret in [10] we
obtain the continuity of the map p→ µp in (pc(d), 1]. Our paper is a continua-
tion of [10], our aim is to obtain better regularity properties for the map p→ µp
than just continuity. We prove the following theorem.
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Theorem 1.1 (Regularity of the time constant). Let p0 > pc(d). There exists
a constant κd depending only on d and p0, such that for all p ≤ q in [p0, 1]

sup
x∈Sd−1

|µp(x)− µq(x)| ≤ κd(q − p)| log(q − p)| .

To study the regularity of the map p→ µp, our aim is to control the difference
between the chemical distance in the infinite cluster Cp of a Bernoulli percolation
of parameter p > pc(d) with the chemical distance in Cq where q ≥ p. The
key part of the proof lies in the modification of a path. We couple the two
percolations such that a p-open edge is also q-open but the converse does not
necessarily hold. We consider a q-open path for some q ≥ p > pc(d). Some of
the edges of this path are p-closed, we want to build upon this path a p-open
path by bypassing the p-closed edges. In order to bypass them, we use the idea
of [10] and we build our bypasses at a macroscopic scale. This idea finds its
inspiration in the works of Antal and Pisztora [16] and Cox and Kesten [6]. We
have to consider an appropriate renormalization and we obtain a macroscopic
lattice with good and bad sites. Good and bad sites correspond to boxes of size
2N in the microscopic lattice. We will do our bypasses using good sites at a
macroscopic scale that will have good connectivity properties at a microscopic
scale. The remainder of the proof consists in getting probabilistic estimates of
the length of the bypass. In this article we improve the estimates obtained in
[10]. We quantify the renormalization to be able to give quantitative bounds
on continuity. Namely, we give an explicit expression of the appropriate size of
a N -box. We use the idea of corridor that appeared in the work of Cox and
Kesten [6] to have a better control on combinatorial terms and derive a more
precise control of the length of the bypasses than the one obtained in [10].

We recall that Bµp denotes the unit ball associated with the norm µp. From
Theorem 1.1, we can easily deduce the following regularity of the asymptotic
shapes.

Corollary 1.1 (Regularity of the asymptotic shapes). Let p0 > pc(d). There
exists a constant κ′d depending only on d and p0, such that for all p ≤ q in
[p0, 1],

dH(Bµq ,Bµp) ≤ κ′d(q − p)| log(q − p)|

where dH is the Hausdorff distance between non-empty compact sets of Rd.

Here is the structure of the paper. In section 2, we introduce some definitions
and preliminary results that are going to be useful in what follows. The section
3 presents the renormalization process and how we modify a q-open path to
turn it into a p-open path and how we can control the length of the bypasses.
In section 4 and 5, we get probabilistic estimates on the length of the bypasses.
Finally, in section 6 we prove the main Theorem 1.1 and its Corollary 1.1.

Remark 1.1. The section 3 is a simplified version of the renormalization process
that was already present in [10]. The simplification comes from the fact that
we are not interested in general distributions but only on distributions Gp for
p > pc(d) which have the advantage of taking only two values 1 or +∞. The
original part of this work is the quantification of the renormalization and the
combinatorial estimates of section 5.
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2 Definitions and preliminary results

Let d ≥ 2. Let us recall the different distances in Rd. Let x = (x1, . . . , xd) ∈
Rd, we define

‖x‖1 =

d∑
i=1

|xi|, ‖x‖2 =

√√√√ d∑
i=1

x2
i and ‖x‖∞ = max{|xi|, i = 1, . . . , d} .

Let G be a subgraph of (Zd,Ed) and x, y ∈ G. A path γ from x to y in
G is a sequence γ = (v0, e1, . . . , en, vn) such that v0 = x, vn = y and for all
i ∈ {1, . . . , n}, the edge ei = 〈vi−1, vi〉 belongs to G. We say that x and y are
connected in G if there exists such a path. We denote by |γ| = n the length of
γ. We define

DG(x, y) = inf{|r| : r is a path from x to y in G}

the chemical distance between x and y in G. If x and y are not connected in
G, DG(x, y) = ∞. In the following, G will be C′p the subgraph of Zd whose
edges are open for the Bernoulli percolation of parameter p > pc(d). To get
around the fact that the chemical distance can take infinite values we introduce
regularized chemical distance. Let C ⊂ C′p be a connected cluster, we define x̃C

as the vertex of C which minimizes ‖x− x̃C‖1 with a deterministic rule to break
ties. As C ⊂ C′p, we have

DC
′
p(x̃C , ỹC) ≤ DC(x̃C , ỹC) <∞ .

Typically, C is going to be the infinite cluster for Bernoulli percolation with a
parameter p0 ≤ p (thus Cp0 ⊂ C′p).

We can define the regularized time constant as in [9] or as a special case of
[2].

Proposition 2.1. Let p > pc(d). There exists a deterministic function µp :
Zd → [0,+∞), such that for every p0 ∈ (pc(d), p]:

∀x ∈ Zd lim
n→∞

DCp(0̃Cp0 , ñx
Cp0 )

n
= µp(x) a.s. and in L1.

It is important to check that µp does not depend on p0, i.e., on the cluster Cp0
we use to regularize. This is done in Lemma 2.11 in [10]. As a corollary, we
obtain the monotonicity of the map p→ µp which is non increasing, see Lemma
2.12 in [10].

Corollary 2.1. For all pc(d) < p ≤ q and for all x ∈ Zd,

µp(x) ≥ µq(x) .

We will also need this other definition of path that corresponds to the context
of site percolation. Let G be a subset of Zd and x, y ∈ G. We say that the
sequence γ = (v0, . . . , vn) is a Zd-path from x to y in G if v0 = x, vn = y and
for all i ∈ {1, . . . , n}, vi ∈ G and ‖vi − vi−1‖1 = 1.
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3 Modification of a path

In this section we present the renormalization process. We are here at a
macroscopic scale, we define good boxes to be boxes with useful properties to
build our modified paths.

3.1 Definition of the renormalization process

Let p > pc(d) be the parameter of an i.i.d. Bernoulli percolation on the edges
of Zd. For a large integerN , that will be chosen later, we set BN = [−N,N [d∩Zd
and define the following family of N -boxes, for i ∈ Zd,

BN (i) = τi(2N+1)(BN )

where τb denotes the shift in Zd with vector b ∈ Zd. Zd is the disjoint union of
this family: Zd = ti∈ZdBN (i). We need to introduce larger boxes that will help
us to link N -boxes together. For i ∈ Zd, we define

B′N (i) = τi(2N+1)(B3N ).

To define what a good box is, we have to list properties that a good box should
have to ensure that we can build a modification of the path as we have announced
in the introduction. We have to keep in mind that all the properties must occur
with probability close to 1 when N goes to infinity. Before defining what a good
box is, let us recall some definitions. A connected cluster C is crossing for a
box B, if for all d directions, there is an open path in C ∩B connecting the two
opposite faces of B. We define the diameter of a finite cluster C as

Diam(C) := max
i=1,...,d
x,y∈C

|xi − yi| .

Definition 3.1. We say that the macroscopic site i is p-good if the following
events occur:

(i) There exists a unique p-cluster C in B′N (i) with diameter larger than N ;

(ii) This p-cluster C is crossing for each of the 3d N -boxes included in B′N (i);

(iii) For all x, y ∈ B′N (i), if x and y belong to C then DC
′
p(x, y) ≤ 12βN , for

an appropriate β that will be defined later.

C is called the crossing p-cluster of the p-good box BN (i).

Let us define a percolation by site on the macroscopic grid given by the state
of the boxes, i.e., we say that a macroscopic site i is open if the box BN (i) is
p-good, otherwise we say the site is closed. Note that the state of the boxes are
not independent, there is a short range dependence.

On the macroscopic grid Zd, we consider the standard definition of closest
neighbors, that is to say x and y are neighbors if ‖x − y‖1 = 1. Let C be a
connected set of macroscopic sites, we define its exterior vertex boundary

∂vC =

{
i ∈ Zd \ C : i has a neighbour in C and is connected

to infinity by a Zd-path in Zd \ C

}
.

For a bad macroscopic site i, let us denote by C(i) the connected cluster of bad
macroscopic sites containing i. If C(i) is finite, the set ∂vC(i) is not connected
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in the standard definition but it is with a weaker definition of neighbors. We say
that two macroscopic sites i and j are ∗-neighbors if and only if ‖i − j‖∞ = 1.
Therefore, ∂vC(i) is an ∗-connected set of good macroscopic sites see for instance
Lemma 2 in [17]. We adopt the convention that ∂vC(i) = {i} when i is a good
site.

3.2 Construction of bypasses

Let us consider pc(d) < p ≤ q, we fix N in this section. Let us consider
a q-open path γ. In this paper, we will consider two different couplings. We
do not specify here what coupling we use. However, for these two couplings a
p-open edge is necessarily q-open. Thus, some edges in γ might be p-closed. We
denote by γo the set of p-open edges in γ, and by γc the set of p-closed edges
in γ. Our aim is to build a bypass for each edge in γc using only p-open edges.
The proof will follow the proof of Lemma 3.2 in [10] up to some adaptations.

As the bypasses are going to be made at a macroscopic scale, we need to
consider the N -boxes that γ crosses. We denote by Γ ⊂ Zd the connected
set of all the N -boxes visited by γ. The set Γ is connected in the standard
definition. We denote by Bad the random set of bad connected components on
the macroscopic percolation given by the states of the N -boxes. The following
Lemma states that we can bypass all the p-closed edges in γ and gives a control
on the total size of these bypasses.

Lemma 3.1. Let us consider y, z ∈ Cp such that the N -boxes of y and z belong
to an infinite cluster of p-good boxes. Let us consider a q-open path γ joining y
to z. Then there exists a p-open path γ′ between y and z that has the following
properties:

(1) γ′ \ γ is a set of disjoint self avoiding p-open paths that intersect γ′ ∩ γ at
their endpoints;

(2) |γ′ \ γ| ≤ ρdN

( ∑
C∈Bad:C∩Γ6=∅

|C|+ |γc|

)
, where ρd is a constant depending

only on the dimension d.

Remark 3.1. Note that here we don’t need to introduce a parameter p0 and
require that the bypasses are p0 open as in [10]. Indeed, this condition was
required because finite passage times of edges were not bounded. This is the
reason why it was needed in [10] to bypass p-closed edges with p0-open edges.
These p0-open edges were precisely edges with passage time smaller than some
constant M0. In our context, we can get rid of this technical aspect because
passage times when finite may only take the value 1.

Before proving Lemma 3.1, we need to prove the following lemma that gives a
control on the length of a path between two points in a ∗-connected set of good
boxes.

Lemma 3.2. Let I be a set of n ∈ N∗ macroscopic sites such that (BN (i))i∈I is
a ∗-connected set of p-good N -boxes. Let x ∈ BN (j) be in the p-crossing cluster
of BN (j) with j ∈ I and y ∈ BN (k) be in the p-crossing cluster of BN (k) with
k ∈ I. Then, we can find a p-open path joining x and y of length at most 12βNn
(with the same constant β as in Definition 3.1).
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Proof of Lemma 3.2. Since I is a ∗-connected set of macroscopic sites, there
exists a self-avoiding macroscopic ∗-connected path (ϕi)1≤i≤r ⊂ I such that
ϕ1 = j, ϕr = k. Thus, we get that r ≤ |I| = n. As all the sites in I are good,
all the N -boxes corresponding to the sites (ϕi)1≤i≤r are good.

For each 2 ≤ i ≤ r − 1, we define xi to be a point in the p-crossing cluster
of the box BN (ϕi) chosen according to a deterministic rule. We define x1 = x
and xr = y. For each 1 ≤ i < r, xi and xi+1 both belong to B′N (ϕi). Using
property (iii) of a p-good box, we can build a p-open path γ(i) from xi to xi+1

of length at most 12βN . By concatenating the paths γ(1), . . . , γ(r − 1) in this
order, we obtain a p-open path joining x to y of length at most 12βNn.

Proof of Lemma 3.1. Let us consider y, z ∈ Cp such that the N -boxes of y and
z belong to an infinite cluster of p-good boxes. Let γ be a q-open path joining
y to z. The idea is the following. We want to bypass all the p-closed edges of
γ. Let us consider an edge e ∈ γc and BN (i) its associated N -box. There are
two different cases:

— If BN (i) is a good box, we can build a p-open bypass of e at a microscopic
scale by staying in a fixed neighborhood of BN (i). We will use the third
property of good boxes to control the length of the bypass that will be
at most 12βN .

— If BN (i) is a bad box, we must build a p-open bypass at a macroscopic
scale in the exterior vertex boundary ∂vC(i) that is an ∗-connected com-
ponent of good boxes. We will use Lemma 3.2 to control the length of
this bypass.

Let ϕ0 = (ϕ0(j))1≤j≤r0 be the sequence of N -boxes γ visits. From the se-
quence ϕ0, we can extract the sequence of N -boxes containing at least one
p-closed edge of γ. We only keep the indices of the boxes containing the small-
est extremity of a p-closed edge of γ for the lexicographic order. We obtain
a sequence ϕ1 = (ϕ1(j))1≤j≤r1 . Notice that r1 ≤ r0 and r1 ≤ |γc|. Before
building our bypasses, we have to get rid of some pathological cases. We are
going to proceed to further extractions. Note that two ∗-connected components
of (∂vC(ϕ1(j)))1≤j≤r1 can be ∗-connected together, in that case they count as
a unique connected component. Namely, the set E = ∪1≤j≤r1∂vC(ϕ1(j)) has
at most r1 ∗-connected component (Sϕ2(j))1≤j≤r2 . Up to reordering, we can
assume that the sequence (Sϕ2(j))1≤j≤r2 is ordered in such a way that Sϕ2(1)

is the first ∗-connected component of E visited by γ among the (Sϕ2(j))1≤j≤r2 ,
Sϕ2(2) is the second and so on. Next, we consider the case of nesting, that
is to say when there exist j 6= k such that Sϕ2(j) is in the interior of Sϕ2(k).
In that case, we only keep the largest connected component Sϕ2(k): we obtain
another subsequence (Sϕ3(j))1≤j≤r3 with r3 ≤ r2. Finally, we want to exclude
a last case, when between the moment we enter for the first time in a given
connected component and the last time we leave this connected component, we
have explored other connected components of (Sϕ3(j))1≤j≤r3 . That is to say we
want to remove the macroscopic loops γ makes between different visits of the
same ∗-connected components Sϕ3(j) (see Figure 1). We iteratively extract from
(Sϕ3(j))1≤j≤r3 a sequence (Sϕ4(j))1≤j≤r4 in the following way: Sϕ4(1) = Sϕ3(1),
assume (Sϕ4(j))1≤j≤k is constructed ϕ4(k + 1) is the smallest indice ϕ3(j) such
that γ visits Sϕ3(j) after its last visit to Sϕ4(k). We stop the process when
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z

y

γ

: the boxes (ϕ1(j))1≤j≤r1

: the sets of good boxes (Sϕ4(j))1≤j≤r4

: the sets of good boxes (Sϕ2(j))1≤j≤r2 that do not belong to (Sϕ4(j))1≤j≤r4

Figure 1 – Construction of the path γ′ - First step

we cannot find such j. Of course, r4 ≤ r3. The sequence (Sϕ4(j))1≤j≤r4 is a
sequence of sets of good N -boxes that are all visited by γ.

Let us introduce some notations (see Figure 2), we write γ = (x0, . . . , xn).
For all k ∈ {1, . . . , r4}, we denote by Ψin(k) (respectively Ψout(k)) the first
moment that γ enters in Sϕ4(1) (resp. last moment that γ exits from Sϕ4(1)).
More precisely, we have

Ψin(1) = min
{
j ≥ 1, xj ∈ Sϕ4(1)

}
and

Ψout(1) = max
{
j ≥ Ψin(1), xj ∈ Sϕ4(1)

}
.

Assume Ψin(1), . . . ,Ψin(k) and Ψout(1), . . . ,Ψout(k) are constructed then

Ψin(k + 1) = min
{
j ≥ Ψout(k), xj ∈ Sϕ4(k+1)

}
and

Ψout(k + 1) = max
{
j ≥ Ψin(k + 1), xj ∈ Sϕ4(k+1)

}
.

Let Bin(j) be the N -box in Sϕ4(j) containing xΨin(j), Bout(j) be the N -box in
Sϕ4(j) containing xΨout(j). Let γ(j) be the section of γ from xΨout(j) to xΨin(j+1)

for 1 ≤ j < r4, let γ(0) (resp γ(r4)) be the section of γ from y to xΨin(1) (resp.
from xΨout(r4) to z).

We have to study separately the beginning and the end of the path γ. Note
that as the N -boxes of y and z both belong to an infinite cluster of good boxes,
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their box cannot be nested in a bigger ∗-connected components of good boxes
of the collection (Sϕ4(j))1≤j≤r4 . Thus, if BN (k), the N -box of y, contains a
p-closed edge of γ, necessarily Sϕ4(1) contains BN (k), Bin(1) = BN (k) and
xΨin(1) = y. Similarly, if BN (l), the N -box of z, contains a p-closed edge of γ,
necessarily Sϕ4(r4) contains BN (l), Bout(r4) = BN (l) and xΨout(r4) = z.

γ

: Sϕ4(j)

γlink(j)xψin(j)

Bin(j)

B′in(j)

B′out(j)

Bout(j) xψout(j)

Figure 2 – Construction of the path γ′ - Second step

In order to apply Lemma 3.2, let us show that for every j ∈ {1, . . . , r4},
xΨin(j) (resp. xΨout(j)) belongs to the p-crossing cluster ofBin(j) (resp. Bout(j)).
Let us study separately the case of xΨin(1) and xΨout(r4). If xΨin(1) = y then
xΨin(1) belongs to the p-crossing cluster of Bin(j). Suppose that xΨin(1) 6= y.
As y ∈ Cp and y is connected to xΨin(1) by a p-open path, xΨin(1) is also in Cp.
By the property (i) of a good box applied to Bin(1), we get that xΨin(1) is in the
p-crossing cluster of Bin(1). We study the case of xΨout(r4) similarly. To study
xΨin(j) (resp. xΨout(j))) for j ∈ {2, . . . , r4 − 1}, we use the fact that by con-
struction, thanks to the extraction ϕ2, two different elements of (Sϕ4(j))1≤j≤r4
are not ∗-connected. Therefore, for 1 ≤ j < r4, we have

‖xΨin(j+1) − xΨout(j)‖1 ≥ N

and so the section γ(j) of γ from xΨout(j) to xΨin(j+1) has a diameter larger than
N and contains only p-open edges. As Bout(j) and Bin(j + 1) are good boxes,
we obtain, using again property (i) of good boxes, that xΨout(j) and xΨin(j+1)

belong to the p-crossing cluster of their respective boxes.
Finally, by Lemma 3.2, for every j ∈ {1, . . . , r4}, there exists a p-open path

γlink(j) joining xΨin(j) and xΨout(j) of length at most 12βN |Sϕ4(j)|. We obtain a

10



p-open path γ′ joining y and z by concatenating γ(0), γlink(1), γ(1), . . . , γlink(r4),
γ(r4) in this order. Up to removing potential loops, we can suppose that each
γlink(j) is a self-avoiding path, that all the γlink(j) are disjoint and that each
γlink(j) intersects only γ(j − 1) and γ(j) at their endpoints. Let us estimate
the quantity |γ′ \ γ|, as γ′ \ γ ⊂ ∪r4i=1γlink(i), we obtain:

|γ′ \ γ| ≤
r4∑
j=1

|γlink(j)|

≤
r4∑
j=1

12βN |Sϕ4(j)|

≤ 12βN |γc|+ 12βN
∑

C∈Bad:C∩Γ6=∅

|∂vC|

where the last inequality comes from the fact that each Sϕ4(j) is the union of
elements of {∂vC : C ∈ Bad;C ∩ Γ 6= ∅} and of good boxes that contain edges
of γc. We conclude by noticing that |∂vC| ≤ 2d|C|.

3.3 Deterministic estimate

When q−p is small, we want to control the probability that the total length
of the bypasses γ′ \ γ of p-closed edges is large. We can notice in Lemma 3.1
that we need to control the bad connected components of the macroscopic site
percolation. This will be done in section 5. We will also need a deterministic
control on |Γ| which is the purpose of the following Lemma (this Lemma is an
adaptation of Lemma 3.4 of [10]).

Lemma 3.3. For every path γ of Zd, for every N ∈ N∗, there exists a ∗-
connected macroscopic path Γ̃ such that

γ ⊂
⋃
i∈Γ̃

B′N (i) and |Γ̃| ≤ 1 +
|γ|+ 1

N
.

Proof. Let γ = (xi)1≤i≤n be a path of Zd where xi is the i-th vertex of γ. Let
Γ be the set of N -boxes that γ visits. We are going to define iteratively the
macroscopic path Γ̃. Let p(1) = 1 and i1 be the macroscopic site such that
x1 ∈ BN (i1). We suppose that i1, . . . , ik and p(1), . . . , p(k) are constructed. Let
us define

p(k + 1) = min {j > p(k) : xj /∈ B′N (ik)} .
If this set is not empty, we set ik+1 to be the macroscopic site such that

xp(k+1) ∈ BN (ik+1) .

Otherwise, we stop the process, and we get that for every j ∈ {p(k), . . . , n},
xj ∈ B′N (ik). As n is finite, the process will eventually stop and the two
sequences (p(1), . . . , p(r)) and (i1, . . . , ir) are finite. Note that the ij are not

necessarily all different. We define Γ̃ = (i1, . . . , ir). By construction,

γ ⊂
⋃
i∈Γ̃

B′N (i) .

11



Notice that for every 1 ≤ k < r, ‖xp(k+1)−xp(k)‖1 ≥ N , thus p(k+1)−p(k) ≥ N .
This leads to N(r − 1) ≤ p(r)− p(1) ≤ n, and finally,

|Γ̃| ≤ 1 +
|γ|+ 1

N
.

Remark 3.2. This Lemma implies that if Γ is the set of N -boxes that γ visits
then

|Γ| ≤ 3d|Γ̃| ≤ 3d
(

1 +
|γ|+ 1

N

)
.

4 Control of the probability that a box is good

We need in what follows to control the quantity
∑
|C| where the sum is over

all C ∈ Bad such that C ∩ Γ 6= ∅. We would like to obtain a control which is
uniform in the parameter of percolation p. To do so, we are going to introduce a
parameter p0 > pc(d) and show that exponential decay is uniform for all p ≥ p0.
Indeed, the speed will only depend on p0.

Theorem 4.1. Let p0 > pc(d). There exist positive constants A(p0) and B(p0)
such that for all p ≥ p0 and for all N ≥ 1

P(BN is p-bad) ≤ A(p0) exp(−B(p0)N) .

Note that the property (ii) of the definition of p-good box is a non-decreasing
event in p. Thus, it will be easy to bound uniformly the probability that property
(ii) is not satisfied by something depending only on p0. However, for properties
(i) and (iii) a uniform bound is more delicate to obtain. Before proving Theorem
4.1, we need the two following lemmas that deal with properties (i) and (iii).
Let Tm,N (p) be the event that BN has a p-crossing cluster and contains some
other p-open cluster C having diameter at least m.

Lemma 4.1. Let p0 > pc(d), there exist ν = ν(p0, d) > 0 and κ = κ(p0, d) such
that for all p ≥ p0

P(Tm,N (p)) ≤ κN2d exp(−νm) . (1)

The following Lemma is an improvement of the result of Antal and Pisztora
in [1] that controls the probability that two connected points have a too large
chemical distance. In the original result, the constants depend on p, we slightly
modify its proof so that constants are the same for all p ≥ p0. This improvement
is required to obtain a decay that is uniform in p.

Lemma 4.2. Let p0 > pc(d), there exist β = β(p0) > 0, Â = Â(p0) and

B̂ = B̂(p0) > 0 such that for all p ≥ p0

∀x ∈ Zd P(β‖x‖1 ≤ DC
′
p(0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (2)

Remark 4.1. Note that this is not an immediate corollary of [1]. Although
increasing the parameter of percolation p reduces the chemical distance, it also
increases the probability that two vertices are connected. Therefore the event
that we aim to control is neither non-increasing neither non-decreasing in p.
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Before proving these two lemmas, we are first going to prove Theorem 4.1.

Proof of Theorem 4.1. Let us fix p0 > pc(d). Let us denote by (iii)′ the property
that for all x, y ∈ B′N (i), if ‖x − y‖∞ ≥ N and if x and y belong to the p-

crossing cluster C then DC
′
p(x, y) ≤ 6βN . Note that properties (ii) and (iii)′

imply property (iii). Indeed, thanks to (ii), we can find z ∈ C ∩ B′N (i) such
that ‖x− z‖∞ ≥ N and ‖yz‖∞ ≥ N . Therefore, by applying (iii)′,

DC
′
p(x, y) ≤ DC

′
p(x, z) +DC

′
p(z, y)

≤ 12βN .

Thus, we can bound the probability that a N -box is bad by the probability
that it does not satisfy one of the properties (i), (ii) or (iii)′. Since we want
to control the probability of BN being a p-bad box uniformly in p, we will
emphasize the dependence of (i), (ii) and (iii)′ in p by writing (i)p, (ii)p and
(iii)′p. First, let us prove that the probability that a N -box does not satisfy
property (ii)p, i.e., the probability for a box not to have a p-crossing cluster,
is decaying exponentially, see for instance Theorem 7.68 in [11]. There exist
positive constants κ1(p0) and κ2(p0) such that for all p ≥ p0

P(BN does not satisfies (ii)p) ≤ P(BN does not satisfies (ii)p0)

≤ κ1(p0) exp(−κ2(p0)Nd−1) . (3)

Next, let us bound the probability that a N -box does not satisfy property (iii)′p.
Using Lemma 4.2, for p ≥ p0,

P(BN does not satisfy (iii)′p)

≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥NP
(

6βN ≤ DC
′
p(x, y) < +∞

)
≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥NP
(
β‖x− y‖∞ ≤ DC

′
p(x, y) < +∞

)
≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥N Â exp(−B̂N)

≤ (6N + 1)2dÂ exp(−B̂N) .

Finally, by Lemma 4.1,

P(BN is p-bad)

≤ P(BN does not satisfies (ii)p) + P(BN satisfies (ii)p but not (i)p)

+ P(BN does not satisfy (iii)′p)

≤ κ1 exp(−κ2N
d−1) + 3dκN2d exp

(
−ν N

3d

)
+ (6N + 1)2dÂ exp(−B̂N)

≤ A(p0)e−B(p0)N .

For the second inequality, we used inequality (3) and the fact that the event
that the 3d N -boxes of B′N are crossing and there exist another p-open cluster
of diameter larger than N in B′N is included in the event there exists a N -
box in B′N that has a crossing property and contains another p-open cluster of
diameter at least N/3d. The last inequality holds for N ≥ C0(p0), where C0(p0),
A(p0) > 0 and B(p0) > 0 depends only on p0 and on the dimension d.
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Proof of Lemma 4.1. In dimension d ≥ 3 , we refer to the proof of Lemma
7.104 in [11]. The proof of Lemma 7.104 requires the proof of Lemma 7.78. The
probability controlled in Lemma 7.78 is clearly non decreasing in the parameter
p. Thus, if we choose δ(p0) and L(p0) as in the proof of Lemma 7.78 for p0 >
pc(d), then these parameters can be kept unchanged for some p ≥ p0. Thanks
to Lemma 7.104, we obtain

∀p ≥ p0, P(Tm,N (p)) ≤ d(2N + 1)2d exp

((
m

L(p0) + 1
− 1

)
log(1− δ(p0))

)
≤ d.3d

1− δ(p0)
N2d exp

(
−− log(1− δ(p0))

L(p0) + 1
m

)
.

We get the result with κ = d.3d

1−δ(p0) and ν = − log(1−δ(p0))
L(p0)+1 > 0.

In dimension 2, the result is obtained by Couronné and Messikh in the more
general setting of FK-percolation in Theorem 9 in [3]. We proceed similarly as
in dimension d ≥ 3, the constant appearing in this theorem first appeared in
Proposition 6. The probability of the event considered in this proposition is
clearly increasing in the parameter of the underlying percolation, it is an event
for the subcritical regime of the Bernoulli percolation. Let us fix a p0 > pc(2) =
1/2, then 1− p0 < pc(2) and we can choose the parameter c(1− p0) and keep it
unchanged for some 1 − p ≤ 1 − p0. In Theorem 9, we get the expected result
with c(1− p0) for a p ≥ p0 and g(n) = n.

We explain now how to modify the proof of [1] to obtain the uniformity in p.

Proof of Lemma 4.2. Let p0 > pc(d) and p ≥ p0. First note that the constant
ρ appearing in [1] corresponds to our β. the proof of Lemma 2.3 in [1] can be
adapted (as we did above in the proof of Lemma 4.1) to choose constants c3,
c4, c6 and c7 that depend only on p0 and d, we do not get into details again.
Thanks to this, N may be chosen in the expression (4.47) of [1] such that it
only depends on p0 and d and so is ρ. This concludes the proof.

5 Probabilistic estimates

We can now use the stochastic minoration by a field of independent Bernoulli
variables to control the probability that the quantity

∑
|C| is big, where the

sum is over all C ∈ Bad such that C∩Γ 6= ∅. The proof of the following Lemma
is in the spirit of the work of Cox and Kesten in [6] and relies on combinatorial
considerations. These combinatorial considerations were not necessary in [10].

We consider a path γ and its associated lattice animal Γ. We need in the
proof of the following Lemma to define Γ as a path of macroscopic sites, that is
to say a path (ik)k≤r in the macroscopic grid such that ∪k≤rBN (ik) = Γ (this
path may not be self-avoiding). We can choose for instance the sequence of sites
that γ visits. However, it is difficult to control the size of this sequence by the
size of Γ. That is the reason why we consider the path of the macroscopic grid
Γ̃ that was introduced in Lemma 3.3.

Proposition 5.1. Let p0 > pc(d) and ε ∈ (0, 1− pc(d)). There exist a constant
Cε ∈ (0, 1) depending only on ε and a positive constant C1 depending on p0, d
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and β, such that if we set N = C1| log ε|, then for all p ≥ p0 , for every n ∈ N∗

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn

 ≤ Cnε
where Γ is the lattice animal associated with the path γ and Γ̃ the macroscopic
path given by Lemma 3.3.

Proof. Let us consider a path γ starting from 0, its associated lattice animal Γ,
i.e., the set of boxes γ visits and its associated path on the macroscopic grid
Γ̃ = (Γ̃(k))0≤k≤r as defined in Lemma 3.3. We first want to include Γ̃ in a

subset of the macroscopic grid. Of course, Γ̃ is included in the hypercube of
side-length 2r centered at Γ̃(0), but we need to have a more precise control.
Let K ≥ 1 be an integer that we will choose later. Let v be a site, we denote
by S(v) the hypercube of side-length 2K centered at v and by ∂S(v) its inner
boundary:

S(v) = {w ∈ Zd : ‖w − v‖∞ ≤ K} and ∂S(v) = {w ∈ Zd : ‖w − v‖∞ = K} .

Γ̃Γ̃(0) = v(0)

Γ̃(r)

v(1)

v(2)

∂S(v(0))
∂S(v(1))

v(τ)∂S(v(τ))

2K

2K

Figure 3 – Construction of v(0), . . . , v(τ)

We define v(0) = Γ̃(0), p0 = 0. If p0, . . . , pk and v(0), . . . , v(k) are constructed,
we define if any

pk+1 = min
{
i ∈ {pk + 1, . . . , r} : Γ̃(i) ∈ ∂S(v(k))

}
and v(k+1) = Γ̃(pk+1) .

If there is no such index we stop the process. Since pk+1− pk ≥ K, there are at

most 1 + r/K such pk. Notice that 1 + r/K ≤ 1 + n/K on the event {|Γ̃| ≤ n}.
We define τ = 1 + n/K. On the event {|Γ̃| ≤ n}, the macroscopic path Γ̃ is
contained in the union of those hypercubes:

D(v(0), . . . , v(τ)) =

τ⋃
i=0

S(v(i)) .
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If we stop the process for a k < τ , we artificially complete the sequence until
attaining τ by setting for k < j ≤ τ , v(j) = v(k). See figure 5, the corridor
D(v(0), . . . , v(τ)) is represented by the grey section. By construction, for all

1 ≤ k ≤ r, there exists a j ≤ τ such that Γ̃(k) is in the strict interior of S(v(j)),
so we have

Γ ⊂
r⋃

k=1

{
j, j is ∗-connected to Γ̃(k)

}
⊂ D(v(0), . . . , v(τ)) .

Thus, we obtain

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ P

 ⋃
v(0),...,v(τ)

{
∃γ starting from 0 such that∑

C∈Bad:C∩Γ6=∅
|C| ≥ εn, Γ ⊂ D(v(0), . . . , v(τ))

}
≤

∑
v(0),...,v(τ)

P

(
∃γ starting from 0 such that∑

C∈Bad:C∩Γ6=∅
|C| ≥ εn, Γ ⊂ D(v(0), . . . , v(τ))

)

≤
∑

v(0),...,v(τ)

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| ≥ εn



≤
∑

v(0),...,v(τ)

∑
j≥εn

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


where the first sum is over the sites v(0), . . . , v(τ) satisfying v(0) = Γ(1) and for
all 0 ≤ k < τ , v(k+ 1) ∈ ∂S(v(k))∪{v(k)}. Since ∂S(v)∪{v} contains at most
(cdK)d−1 sites where cd ≥ 1 is a constant depending only on the dimension, the
sum over the sites v(0), . . . , v(τ) contains at most

(cdK)(d−1)τ ≤ (cdK)
2n(d−1)

K := Cn2

terms for n large enough. For any fixed v(0), . . . , v(τ), D(v(0), . . . , v(τ)) con-
tains at most

(τ + 1)(2K + 1)d ≤ (n/K + 2)(2K + 1)d ≤ 2n(3K)d := C3n

macroscopic sites. Let us recall that for a bad macroscopic site i, C(i) denotes
the connected cluster of bad macroscopic sites containing i. Let us notice that
the following event 

∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| = j


is included in the event: there exist an integer ρ ≤ C3n and distinct bad
macroscopic sites i1, . . . , iρ ∈ D(v(0), . . . , v(τ)), disjoint connected components
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C̄1, . . . , C̄ρ such that for all 1 ≤ k ≤ ρ, C(ik) = C̄k and
∑ρ
k=1 |C̄k| = j. There-

fore, for any fixed v(0), . . . , v(τ),

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ))6=∅

|C| = j


=

C3n∑
ρ=1

∑
i1∈D(v(0),...,v(τ))

...
iρ∈D(v(0),...,v(τ))
∀k 6=l,ik 6=il

∑
j1,...,jρ≥1
j1+···+jρ=j

∑
C1∈Animals

j1
i1...

Cρ∈Animals
jρ
iρ

P

 ∀1 ≤ k ≤ ρ
C(ik) = C̄k,∑ρ
k=1 |C̄k| = j

 (4)

where Animalskv is the set of connected macroscopic sites of size k containing
the site v. We have |Animalskv | ≤ (7d)k (see for instance Grimmett [11], p85).
There are at most

(
C3n
ρ

)
ways of choosing the sites i1, . . . , iρ. Thus, if we fix

the sites i1, . . . , iρ the number of possible choices of the connected components
C̄1, . . . , C̄ρ such that for all 1 ≤ k ≤ ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| = j is at

most: ∑
j1,...,jρ≥1
j1+···+jρ=j

(7d)j1 · · · (7d)jρ = (7d)j
∑

j1,...,jρ≥1
j1+···+jρ=j

1 .

Next we need to estimate, for given sites i1, . . . , iρ and disjoint connected com-
ponents C̄1, . . . , C̄ρ, the probability that for all 1 ≤ k ≤ ρ, C(ik) = C̄k. For all
sites i ∈ ∪ρk=1C̄k, the N -box BN (i) is bad. There is a short range of dependence
between the state of the boxes. However, by definition of a p-good box, the
state of BN (i) only depends on boxes BN (j) such that ‖i − j‖∞ ≤ 13β. Thus,
if ‖i− j‖∞ ≥ 27β the state of the boxes BN (i) and BN (j) are independent. We
can deterministically extract from ∪ρk=1C̄k a set of macroscopic site E such that
|E| ≥ j/(27β)d and for any i 6= j ∈ E , the state of the boxes BN (i) and BN (j)
are independent. Therefore, we have using Proposition 4.1

P

(
∀1 ≤ k ≤ ρ, C(ik) = C̄k,

ρ∑
k=1

|C̄k| = j

)
≤ P (∀i ∈ E , BN (i) is p-bad)

≤ P(BN (0) is p-bad)j/(27β)d

≤ (A(p0) exp(−B(p0)N(ε)))
j/(27β)d

.
(5)

In what follows, we set α = α(ε) = (A(p0) exp(−B(p0)N(ε)))
1/(27β)d

in order
to lighten the notations. We aim to find an expression of α(ε) such that we
get the upper bound stated in the Proposition. The expression of N(ε) will be
determined by the choice of α(ε). Combining inequalities (4) and (5), we obtain

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ))6=∅

|C| = j

 ≤ (C3n

ρ

)
(7dα)j

∑
j1,...,jρ≥1
j1+···+jρ=j

1
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and so

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ Cn2

∑
j≥εn

(7dα)j
C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 .

Notice that

C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 =
∑

j1,...,jC3.n
≥0

j1+···+jC3.n
=j

1 =

(
C3n+ j − 1

j

)
.

To bound those terms we will need the following inequality, for r ≥ 3, N ∈ N∗
and a real z such that 0 < ez(1 + r

N ) < 1:

∞∑
j=N

zj
(
r + j − 1

j

)
≤ ν

(ez(1 + r
N ))N

1− ez(1 + r
N )

(6)

where ν is an absolute constant. This inequality was present in [6] but without
proof, for completeness we will give a proof of (6) at the end of the proof of
Proposition 5.1. Using inequality (6) and assuming 0 < e7dα(ε)(1 + C3

ε ) < 1,
we get,

P

∃γ starting from 0 such that |Γ̃| ≤ n,
∑

C∈Bad:C∩Γ6=∅

|C| ≥ εn


≤ Cn2

∑
j≥εn

(7dα)j
(
C3n+ j − 1

j

)

≤ νCn2

[
e7dα(ε)(1 + C3

ε )
]εn

1− e7dα(ε)(1 + C3

ε )
.

Let us recall that C2 = (cdK)2(d−1)/K and C3 = 2(3K)d. We have to choose
K(ε), α(ε) and a constant 0 < Cε < 1 such that C2

[
e7dα(ε)(1 + C3

ε )
]ε
< Cε

that is to say

(cdK)
2(d−1)
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
< Cε . (7)

Note that the condition (7) implies the condition 0 < e7dα(ε)(1 + C3

ε ) < 1. We
fix K the unique integer such that 1

ε ≤ K < 1
ε + 1 ≤ 2

ε . We recall that ε < 1.
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Thus,

(cdK)
2(d−1)
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
≤ (cdK)

2d
K

[
e7dα(ε)

4(3K)d

ε

]ε
≤ exp

[
2d

K
log(cdK) + ε log

(
e7dα(ε)

4(3K)d

ε

)]
≤ exp

[
2dε log

(
2cd
ε

)
+ ε log

(
e7dα(ε)

4(3 2
ε )d

ε

)]

≤ exp

[
− 2dε log ε+ dε log(2cd) + ε log

(
4e(42)dα(ε)

1

εd+1

)]
.

We set

α(ε) = (2cd)
d εr

4e(42)d

where r is the smallest integer such that r ≥ 3d+ 2. We obtain

(cdK)
d
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
≤ exp((r − (3d+ 1))ε log ε)

≤ exp(ε log ε) < 1 .

Therefore there exists a positive constant C1 depending on β, d, p0 such that

N(ε) = C1| log ε| .

It remains now to prove inequality (6) to conclude. To show this inequality, we
need a version of Stirling’s formula with bounds: for all n ∈ N∗, one has

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n ,

thus,

∞∑
j=N

zj
(
r + j − 1

j

)
=

∞∑
j=N

zj
(r + j − 1)!

j!(r − 1)!

≤
∞∑
j=N

zj
e (r + j − 1)r+j−

1
2 e−(r+j−1)

2π jj+
1
2 (r − 1)r−

1
2 e−(r+j−1)

=

∞∑
j=N

e

2π
zj
(
r + j − 1

j

)j (
r + j − 1

r − 1

)r− 1
2

j−
1
2

≤
∞∑
j=N

e

2π
zj
(

1 +
r

N

)j (
1 +

j

r − 1

)r−1(
1

j
+

1

r − 1

) 1
2

≤
∞∑
j=N

e

2π
zj
(

1 +
r

N

)j
e(r−1) log(1+j/(r−1))

≤
∞∑
j=N

e

2π
(ez)j

(
1 +

r

N

)j
=

e

2π

(ez(1 + r
N ))N

1− ez(1 + r
N )
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where we use in the last inequality the fact that for all x > 0, log(1+x) ≤ x.

6 Regularity of the time constant

In this section, we prove the main result Theorem 1.1 and its Corollary 1.1.
Before proving this Theorem, we need to prove two lemmas. The following
Lemma enables to control the number of p-closed edges |γc| in a geodesic γ
between two given points y and z in the infinite cluster Cp. We denote by Fx
the event that 0, x ∈ Cp and the N -boxes containing 0 and x belong to an infinite
cluster of p-good boxes.

Lemma 6.1. Let pc(d) < p ≤ q. Let us consider x ∈ Zd. Then, for δ > 0

P

Fx, DCp(0, x) > DCq (0, x)

(
1 + ρdN

(
q − p
q

+ δ

))
+ ρdN

∑
C∈Bad:
C∩Γ6=∅

|C|


≤ e−2δ2‖x‖1 .

where Γ is the lattice animal of N -boxes visited by an optimal path γ between 0
and x in Cq.

Proof. On the event Fx, we have 0, x ∈ Cp ⊂ Cq so there exists a q-open path
joining 0 to x, let γ be an optimal one. Necessarily, we have |γ| ≥ ‖x‖1. We
consider the modification γ′ given by Lemma 3.1. As γ′ is p-open,

DCp(0, x) < |γ′| ≤ |γ ∩ γ′|+ |γ′ \ γ|

≤ |γ|+ ρd

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|


≤ DCq (0, x) + ρd

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|

 . (8)

We want to control the size of γc. For that purpose, we want to introduce a
coupling of the percolations q and p, such that if any edge is p-open then it
is q-open, and we want the random path γ, which is an optimal q-open path
between 0 and x, to be independent of the p-state of any edge, i.e., any edge
is p-open or p-closed independently of γ. This is not the case when we use the
classic coupling with a unique uniform random variable for each edge. Here
we introduce two sources of randomness to ease the computations by making
the choice of γ independent from the p-state of its edges. We proceed in the
following way: with each edge we associate two independent Bernoulli random
variables V and Z of parameters respectively q and p/q. Then W = Z · V is
also a Bernoulli random variable of parameter p. This implies

P(W = 0|V = 1) = P(Z = 0|V = 1) = P(Z = 0) = 1− p

q
=
q − p
q

.
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Thus, we can now bound the following quantity by summing on all possible self-
avoiding paths for γ. For short, we use the abbreviation s.a. for self-avoiding.

P

(
|γc| ≥ |γ|

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |γc| ≥ |γ|

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |{e ∈ r : e is p-closed}| ≥ k

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P
(
γ = r, |{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

))

=

∞∑
k=‖x‖1

∑
|r|=k

r s.a. path

P (γ = r)P
(
|{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

))

≤
∞∑

k=‖x‖1

∑
|r|=k

r s.a. path

P (γ = r) e−2δ2k ≤ e−2δ2‖x‖1 (9)

where we use Chernoff bound in the second to last inequality (see Theorem 1

in [13]). On the event Fx ∩
{
|γc| < |γ|

(
q−p
q + δ

)}
, by (8), we get

DCp(0, x) ≤ DCq (0, x) + ρd

N |γ|(q − p
q

+ δ

)
+N

∑
C∈Bad:C∩Γ6=∅

|C|


= DCq (0, x)

(
1 + ρdN

(
q − p
q

+ δ

))
+ ρdN

∑
C∈Bad:C∩Γ6=∅

|C|

and the conclusion follows.

The proof of the following Lemma is the last step before proving Theorem 1.1.

Lemma 6.2. Let p0 > pc(d) and ε ∈ (0, 1− p0), we set N(ε) as in Proposition
5.1. There exists p := p(ε, p0) > 0 such that for all q ≥ p ≥ p0, for all x ∈ Zd
with ‖x‖1 large enough,

P
(
DCp(0̃Cp , x̃Cp) ≤ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdε‖x‖1

)
≥ p(ε, p0)

where ηd > 0 is a constant depending only on d.

Proof. Let us fix ε > 0 and N(ε) as in Proposition 5.1. Fix an x ∈ Zd such that
‖x‖1 ≥ 3dN(ε). We denote by BN(ε)(0) (respectively BN(ε)(x)) the N(ε)-box
containing 0 (rep. x) and by Cp the union of infinite cluster of p-good boxes.
We recall that

Fx =
{

0 ∈ Cp, x ∈ Cp
}
∩
{
BN(ε)(0) ∈ Cp, BN(ε)(x) ∈ Cp

}
.
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We have

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)

)
+ 3εβρd‖x‖1

)
≤ P

(
Fx, D

Cp(0, x) ≥ DCq (0, x)

(
1 + ρd

q − p
q

N(ε)

)
+ 3εβρd‖x‖1

)
+ P(F cx) .

(10)

We have

P(F cx) ≤ P({0 ∈ Cp, x ∈ Cp}c) + P({BN(ε)(0) ∈ Cp, BN(ε)(x) ∈ Cp}c) .

Using FKG inequality, we have

P(0 ∈ Cp, x ∈ Cp) ≥ P(0 ∈ Cp)P(x ∈ Cp) ≥ θ2
p0 .

Let us define Yi = 1{BN(ε)(i) is p-good}. First note that the field (Yi)i∈Zd has
a finite range of dependence that depends on β and d. Using the stochastic
comparison in [15], for every p1, there exists a positive constant α depending
on β, d and p1 such that if P(Y0 = 0) ≤ α then the field (Yi)i∈Zd stochastically
dominates a family of independent Bernoulli random variables with parameter
p1. Let us choose p1 large enough such that

1− θ2
site,p1

≤
θ2
p0

2

where θsite,p1
denotes the probability for a site to belong to the infinite cluster

of i.i.d. Bernoulli site percolation of parameter p1. Thanks to Theorem 4.1,
there exists a positive integer N0 depending only on α, p0 and d such that for
every N ≥ N0,

P(Y0 = 0) ≤ α .

For every ε ≤ 1 − p0, we have | log ε| ≥ | log(1 − p0)|. Up to taking a larger
constant C1 in the expression of N(ε) stated in Proposition 5.1, i.e., N(ε) =
C1| log ε|, we can assume without loss of generality that N(ε) ≥ N0 so that
using the stochastic domination and FKG we obtain

P(BN(ε)(0) ∈ Cp, BN(ε)(x) ∈ Cp) ≥ θ2
site,p1

.

Finally, we get

P(F cx) ≤ 1− θ2
p0 + 1− θ2

site,p1
≤ 1−

θ2
p0

2
. (11)

On the event Fx, we have 0, x ∈ Cp ⊂ Cq, we can consider γ a geodesic from
0 to x in Cq, and let Γ be the set of N -boxes that γ visits.
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By Lemma 6.1, we have for every δ > 0

P
(
Fx, D

Cp(0, x) ≥ DCq (0, x)

(
1 + ρd

q − p
q

N(ε)

)
+ 3εβρd‖x‖1

)
≤P

Fx, ρdN(ε)

DCq (0, x)δ +
∑

C∈Bad:C∩Γ6=∅

|C|

 ≥ 3εβ‖x‖1


+ P

 Fx, D
Cp(0, x) > DCq (0, x)

(
1 + ρdN(ε)

(
q−p
q + δ

))
+ρdN(ε)

∑
C∈Bad:
C∩Γ6=∅

|C|


≤P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ 3εβ‖x‖1
N(ε)

− δ|γ|


+ P (Fx, |γ| > β‖x‖1) + e−2δ2‖x‖1

≤P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ β‖x‖1
(

3ε

N(ε)
− δ
)

+ P (Fx, |γ| > β‖x‖1) + e−2δ2‖x‖1 . (12)

We set δ = ε/N(ε). We know by Lemma 3.3 that |Γ̃| ≤ 1 + (|γ| + 1)/N(ε).

Moreover as |γ| ≥ 3dN(ε), we have |Γ̃| ≤ 2|γ|/N(ε). Using Proposition 5.1,

P

Fx, |γ| ≤ β‖x‖1, ∑
C∈Bad:C∩Γ6=∅

|C| ≥ β‖x‖1
(

3ε

N(ε)
− δ
)

≤ P

 ∃γ starting from 0 such that |Γ̃| ≤ 2β‖x‖1
N(ε) ,∑

C∈Bad:C∩Γ6=∅
|C| ≥ ε 2β‖x‖1

N(ε)

 ≤ C2β‖x‖1/N(ε)
ε (13)

where Cε < 1. Moreover, by Lemma 4.2, we get

P (Fx, |γ| > β‖x‖1) ≤ P(β‖x‖1 ≤ DCq (0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (14)

Finally, combining (10), (11), (12), (13) and (14), we obtain that

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)

)
+ 3εβρd‖x‖1

)
≤ 1−

θ2
p0

2
+ C2β‖x‖1/N(ε)

ε + Âe−B̂‖x‖1 + e−2ε2‖x‖1/N(ε)2

≤ 1− p(ε, p0)

for an appropriate choice of p(ε, p0) > 0 and for every x such that ‖x‖1 is large
enough.

Proof of Theorem 1.1. Let ε > 0, δ > 0, p0 > pc(d) and x ∈ Zd, consider
N(ε) = C1| log ε| as in Proposition 5.1, p = p(ε, p0) as in Lemma 6.2 and
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q ≥ p ≥ p0. With the convergence of the regularized times given by Proposition
2.1, we can choose n large enough such that

P

(
µp(x)− δ ≤ DCp(0̃Cp , ñx

Cp)

n

)
≥ 1− p

3

P

(
DCq (0̃Cp , ñx

Cp)

n
≤ µq(x) + δ

)
≥ 1− p

3

P
(
DCp(0̃Cp , ñx

Cp) ≤ DCq (0̃Cp , ñxCp)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdεn‖x‖1

)
≥ p .

The intersection of these three events has positive probability, we obtain on this
intersection

µp(x)− δ ≤ (µq(x) + δ)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdε‖x‖1 .

By taking the limit when δ goes to 0 we get

µp(x) ≤ µq(x)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdε‖x‖1 .

By Corollary 2.1, we know that the map p → µp is non-increasing. We also
know that µp(x) ≤ ‖x‖1µp(e1) for e1 = (1, 0, . . . , 0), for any p > pc(d) and any
x ∈ Zd. Thus, for every ε > 0,

µp(x)− µq(x) ≤ µq(x)ρd
q − p
q

N(ε) + ηdε‖x‖1

≤ µp0(e1)‖x‖1ρd
q − p
pc(d)

N(ε) + ηdε‖x‖1

≤ η′d(p0)‖x‖1(N(ε)(q − p) + ε)

where η′d(p0) is a constant depending on d and p0. Using the expression of N(ε)
stated in Proposition 5.1, we obtain

µp(x)− µq(x) ≤ η′d‖x‖1 (C1| log ε|(q − p) + ε) . (15)

By setting ε = q − p in the inequality, we get

µp(x)− µq(x) ≤ η′′d‖x‖1(q − p)| log(q − p)|

where η′′d > 0 depends only on p0 and d. Thanks to Corollary 2.1, we have
µp(x)− µq(x) ≥ 0, so that

|µp(x)− µq(x)| ≤ η′′d‖x‖1(q − p)| log(q − p)| . (16)

By homogeneity, (16) also holds for all x ∈ Qd. Let us recall that for all x, y ∈ Rd
and p ≥ pc(d),

|µp(x)− µp(y)| ≤ µp(e1)‖x− y‖1 , (17)
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see for instance Theorem 1 in [2]. Moreover, there exists a finite set (y1, . . . , ym)
of rational points of Sd−1 such that

Sd−1 ⊂
m⋃
i=1

{
x ∈ Sd−1 : ‖yi − x‖1 ≤ (q − p)| log(q − p)|

}
.

Let x ∈ Sd−1 and yi such that ‖yi − x‖1 ≤ (q − p)| log(q − p)|. Using inequality
(17), we get

|µp(x)− µq(x)|
≤ |µp(x)− µp(yi)|+ |µp(yi)− µq(yi)|+ |µq(yi)− µq(x)|
≤ µp(e1)‖yi − x‖1 + η′′d‖yi‖1(q − p)| log(q − p)|+ µq(e1)‖yi − x‖1
≤ (2µp0(e1) + η′′d ) (q − p)| log(q − p)| .

This yields the result.

Proof of Corollary 1.1. Let p0 > pc(d). We consider the constant κd appearing
in the Theorem 1.1. Let p ≤ q in [p0, 1]. We recall the following definition of
the Hausdorff distance between two subsets E and F of Rd:

dH(E,F ) = inf
{
r ∈ R+ : E ⊂ F r and F ⊂ Er

}
where Er = {y : ∃x ∈ E, ‖y − x‖2 ≤ r}. Thus, we have

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∥∥∥∥ y

µp(y)
− y

µq(y)

∥∥∥∥
2

.

Note that y/µp(y) (resp. y/µq(y)) is in the unit sphere for the norm µp (resp.
µq). Let us define µminp = infx∈Sd−1 µp(x). As the map p → µp is uniformly

continuous on the sphere Sd−1 (see Theorem 1.2 in [10],) the map p→ µminp is

also continuous and µmin = infp∈[p0,1] µ
min
p > 0. Finally

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∣∣∣∣ 1

µp(y)
− 1

µq(y)

∣∣∣∣
≤ sup
y∈Sd−1

1

µq(y)µp(y)
|µp(y)− µq(y)|

≤ sup
y∈Sd−1

1

(µmin)2
|µp(y)− µq(y)|

≤ κd
(µmin)2

(q − p)| log(q − p)| .

This yields the result.

Remark 6.1. At this stage, we were not able to obtain Lipschitz continuity for
p→ µp. The difficulty comes from the fact that we do not know the correlation
between γ and the state of the boxes that γ visits. At first sight, it may seem
that the renormalization is responsible for the appearance of the log terms in
Theorem 1.1. However, when p is very close to 1, we can avoid renormalization
and bypass p-closed edges at a microscopic scale as in [5] but even in that case,
we cannot obtain Lipschitz continuous regularity with the kind of combinatorial
computations made in section 5. A similar issue arises, it is hard to deal with
the correlation between p-closed edges of γ and the length of the microscopic
bypasses.
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