Regularity of the time constant for a supercritical Bernoulli percolation

Abstract : We consider an i.i.d. supercritical bond percolation on Z^d , every edge is open with a probability p > p_c (d), where p_c (d) denotes the critical parameter for this percolation. We know that there exists almost surely a unique infinite open cluster C_p [11]. We are interested in the regularity properties of the chemical distance for supercritical Bernoulli percolation. The chemical distance between two points x, y ∈ C_p corresponds to the length of the shortest path in C_p joining the two points. The chemical distance between 0 and nx grows asymptotically like nμ_p (x). We aim to study the regularity properties of the map p → μ_p in the supercritical regime. This may be seen as a special case of first passage percolation where the distribution of the passage time is G_p = pδ_1 + (1 − p)δ_∞ , p > p c (d). It is already known that the map p → μ_p is continuous (see [10]).
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01721917
Contributeur : Barbara Dembin <>
Soumis le : lundi 24 décembre 2018 - 09:58:40
Dernière modification le : lundi 18 mars 2019 - 16:03:48

Fichiers

Regularity of the time constan...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01721917, version 2
  • ARXIV : 1803.03141

Citation

Barbara Dembin. Regularity of the time constant for a supercritical Bernoulli percolation. 2018. 〈hal-01721917v2〉

Partager

Métriques

Consultations de la notice

26

Téléchargements de fichiers

20