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Regularity of isoperimetric and time constants for

a supercritical Bernoulli percolation ∗

Barbara Dembin †

Abstract: We consider an i.i.d. supercritical bond percolation on Zd, every
edge is open with a probability p > pc(d), where pc(d) denotes the critical pa-
rameter for this percolation. We know that there exists almost surely a unique
infinite open cluster Cp [18]. We are interested in the regularity properties of two
distinct objects defined on this infinite cluster: the isoperimetric (or Cheeger)
constant, and the chemical distance for supercritical Bernoulli percolation. The
chemical distance between two points x, y ∈ Cp corresponds to the length of the
shortest path in Cp joining the two points. The chemical distance between 0 and
nx grows asymptotically like nµp(x). We aim to study the regularity properties
of the map p → µp on the supercritical regime. This may be seen as a special
case of first passage percolation where the distribution of the passage time is
Gp = pδ1 + (1 − p)δ∞, p > pc(d). It is already known that the map p → µp is
continuous (see [15]). We prove here that p → µp satisfies stronger regularity
properties, this map is almost Lipschitz continuous up to a logarithmic factor
in [p0, 1] for any p0 > pc(d). We prove an analog result for the Cheeger constant
in dimension 2 for all intervals [p0, p1] ⊂ (1/2, 1). For d ≥ 3, we prove that the
modified Cheeger constant defined in [16] is Lipschitz continuous on all intervals
[p0, p1] ⊂ (pc(d), 1).

AMS 2010 subject classifications: primary 60K35, secondary 82B43.
Keywords: Regularity, percolation, time constant, isoperimetric constant.

1 Introduction

In this section, we give informal definitions in order to present the back-
ground and state our results. More rigorous definitions will be given in section
2.

1.1 Isoperimetric constant of the infinite cluster in dimen-
sion 2

In this section we gather definitions and notations presented in [15], see
section 1.1. For a finite graph G = (V (G), E(G)), the isoperimetric constant is
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defined as

ϕG = min

{
|∂GA|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|
2

}
where ∂GA is the edge boundary of A in G, ∂GA = {e = (x, y) ∈ E(G) : x ∈
A, y /∈ A}, and |B| denotes the cardinal of the finite set B.

We consider the isoperimetric constant ϕn(p) of Cp∩[−n, n]d, the intersection
of the infinite component of i.i.d. supercritical percolation of parameter p with
the box [−n, n]d

ϕn(p) = min

{ |∂Cp∩[−n,n]dA|
|A|

: A ⊂ Cp ∩ [−n, n]d, 0 < |A| ≤ |Cp ∩ [−n, n]d)|
2

}
.

In several papers (e.g. [2], [24], [25], [3]), it was shown that there exist constants
c, C > 0 such that c < nϕn(p) < C, with probability tending rapidly to 1. This
led Benjamini to conjecture the existence of limn→∞ nϕn(p). In [27], Rosen-
thal and Procaccia proved that the variance of nϕn(p) is smaller than Cn2−d,
which implies nϕn(p) is concentrated around its mean for d ≥ 3. In [4], Biskup,
Louidor, Procaccia and Rosenthal proved the existence of limn→∞ nϕn(p) for
d = 2. This constant is called Cheeger constant. In addition, a shape theo-
rem was obtained: any set yielding the isoperimetric constant converges in the
Hausdorff metric to the normalized Wulff shape Ŵp, with respect to a specific

norm given in an implicit form (see (1) for precise definition of Wp and Ŵp). For
additional background and a wider introduction on Wulff construction in this
context, the reader is referred to [4]. In [15], Garet, Marchand, Procaccia and
Théret proved the continuity of the Cheeger constant and of the Wulff shape
with regard to the parameter p of the percolation in dimension d = 2. In this
article, we obtain better regularity properties.

Theorem 1.1 (Regularity of the Cheeger constant in dimension 2). Let pc(2) <
p0 < p1 < 1. There exits a constant ν, depending on p0 and p1, such that for
all p ≤ q in [p0, p1]

lim
n→∞

n|ϕn(p)− ϕn(q)| ≤ ν(q − p)| log(q − p)| .

Theorem 1.2 (Regularity of the associated Wulff crystal in dimension 2). Let
pc(2) < p0 < p1 < 1. There exits a constant ν′ depending on p0 and p1, such
that for all p ≤ q in [p0, p1]

dH(Wp,Wq) ≤ ν′(q − p)| log(q − p)| ,

where Wp (resp. Wq) denotes the Wulff shape associated with parameter p (resp.
q) and dH is the Hausdorff distance between non empty compact sets of R2.

1.2 Isoperimetric constant in higher dimension

As introduced by Gold in [16], we define the modified Cheeger constant
ϕ̂n(p) for p > pc(d) by

ϕ̂n(p) = min

{ |∂CpA|
|A|

: A ⊂ Cp ∩ [−n, n]d, 0 ≤ |A| ≤ |Cp ∩ [−n, n]d|
d!

}
,
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where ∂CpA denotes the open edges boundary of A within all of Cp as opposed to
the definition of ϕn(p) where we looked at the open edges boundary of A within
Cp ∩ [−n, n]d. The d! on the volume upper bound ensures that there exists a set
A that satisfies the volume upper bound and does not touch the boundary of the
box [−n, n]d. Therefore, the subgraphs A are treated as subgraphs of Cp. In [16],
Gold has shown that the limit limn→∞ nϕ̂n(p) exists for all p > pc(d) for d ≥ 3,
this is what we call the modified Cheeger constant. As in dimension 2, a shape
theorem is obtained in [16]. Any set yielding the infimum in the definition of
the isoperimetric constant converges in a weaker sense to the normalized Wulff
shape Ŵp, with respect to a specific norm βp given in an implicit form (see (4)

for precise definition of Wp and Ŵp).
The idea behind the modified Cheeger constant is the same than in dimen-

sion 2, we are trying to minimize the energy of the surface represented by the
boundary of A. We obtain the following results.

Theorem 1.3 (Regularity of the modified Cheeger constant in higher dimen-
sion). Let d ≥ 3. Let pc(d) < p0 < p1 < 1. There exits a constant νd depending
only on d, p0 and p1, such that for all p, q ∈ [p0, p1],

lim
n→∞

n|ϕ̂n(q)− ϕ̂n(p)| ≤ νd|q − p| .

Theorem 1.4 (Regularity of the associated Wulff crystal in higher dimension).
Let d ≥ 3. Let pc(d) < p0 < p1 < 1. There exits a constant ν′d depending only
on d, p0 and p1, such that for all p, q ∈ [p0, p1],

dH(Wp,Wq) ≤ ν′d|q − p| ,

where Wp (resp. Wq) denotes the Wulff shape associated with parameter p (resp.
q) and dH is the Hausdorff distance between non empty compact sets of Rd.

Remark 1.1. Actually, the Cheeger constant is also continuous at 1, this is not a
consequence of Theorem 1.3 but it comes from the fact that the function p→ βp
is continuous, see subsection 1.3 for more details.

1.3 Flow constant

The proof of Theorems 1.3 and 1.4 rely on the study of the norm βp which
is interesting in itself. In this section, we give a precise definition of this norm
and state some results concerning the regularity of the map p→ βp.

We consider a bond percolation on Zd of parameter p > pc(d) with d ≥ 3.
We introduce now many notations used for instance in [28] concerning flows
through cylinders, and in [16] concerning the modified Cheeger constant. Let
A be a non-degenerate hyperrectangle, that is to say a rectangle of dimension
d− 1 in Rd. Let −→v be one of the two unit vectors normal to A. Let h > 0, we
denote by cyl(A, h) the cylinder of basis A and height 2h defined by

cyl(A, h) = {x+ t−→v : x ∈ A, t ∈ [−h, h]} .

The set cyl(A, h) \ A has two connected components, denoted by C1(A, h) and
C2(A, h). For i = 1, 2, we denote by C ′i(A, h) the discrete boundary of Ci(A, h)
defined by

C ′i(A, h) =
{
x ∈ Zd ∩ Ci(A, h) : ∃y /∈ cyl(A, h), 〈x, y〉 ∈ Ed

}
.
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We say that the set of edges E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h) if
any path γ from C ′1(A, h) to C ′2(A, h) in cyl(A, h) contains at least one edge of
E. We call such a set a cutset. For any cutset E, let |E|o,p denote the number
of p-open edges in E. We shall call it the capacity of E. Define

τp(A, h) = min {|E|o,p : E cuts C ′1(A, h) from C ′2(A, h) in cyl(A, h)} .

Note that it is a random quantity as |E|o,p is random, and that the cutsets in
this definition are anchored at the border of A.

Proposition 1.1 (Definition of the norm βp). Let d ≥ 3, p > pc(d), A be a
non-degenerate hyperrectangle and −→v one of the two unit vectors normal to A.
Let h an height function such that limn→∞ h(n) =∞. The limit

βp(
−→v ) = lim

n→∞

E[τp(nA, h(n))]

Hd−1(nA)

exists and is finite. Moreover, the limit is independent of A and h and βp is a
norm.

This is a corollary of Proposition 3.5 in [28]. This was also shown in Propo-
sition 3.4 in [16], where the author used the same arguments for a specific A
and h: he took for A a square isometric to [−1, 1]d−1 × {0} and h(n) = n (i.e.
cyl(nA, h(n) is a cube of size 2n). As the limit does not depend on A and h, in
the following for simplicity, we will take h(n) = n and A = S(−→v ) where S(−→v ) is
a square isometric to [−1, 1]d−1×{0} normal to −→v . We will denote by B(n,−→v )
the cube cyl(nS(−→v ), n) and by τp(n,

−→v ) the quantity τp(nS(−→v ), n).
The norm βp is called the flow constant. A straightforward application of

Theorem 3.8 in [28] gives the existence of the following almost sure limit:

lim
n→∞

τp(nA, h(n))

Hd−1(nA)
= βp(

−→v ) .

In [29], Rossignol and Théret studied the map p→ βp and proved its continuity
on (pc(d), 1] (see Theorem 4 in [29]). We prove in this paper the following result.

Theorem 1.5 (Regularity of the flow constant). Let pc(d) < p0 < p1 < 1.
There exists a constant κd depending only on d, p0 and p1, such that for all
p ≤ q in [p0, p1]

sup
x∈Sd−1

|βp(x)− βq(x)| ≤ κd|q − p| .

1.4 Chemical distance for supercritical Bernoulli percola-
tion

We consider a supercritical independent and identically distributed Bernoulli
bond percolation of parameter p > pc(d) on Zd. Let C′p be the subgraph of

Zd whose edges are opened for the Bernoulli percolation of parameter p. For
x, y ∈ Zd, we denote by DC

′
p(x, y) the length of the shortest p-open path joining

x and y. This is called the chemical distance. If x and y are not in the same
cluster of C′p, DC

′
p(x, y) = +∞. Actually, when x and y are in the same cluster,
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DC
′
p(x, y) is of order ‖y−x‖1. In [1], Antal and Pisztora obtained the following

large deviation upper bound:

lim sup
‖y‖1→∞

1

‖y‖1
logP[0↔ y,DC

′
p(0, y) > ρ] < 0 .

This result implies that there exists a constant ρ depending on the parameter
p and the dimension d such that

lim sup
‖y‖1→∞

1

‖y‖1
DC
′
p(0, y)10↔y ≤ ρ, Pp a.s.

These results were proved using renormalization arguments. It was improved
later in [12] by Garet and Marchand, for the more general case of a stationary

ergodic field. They proved that DC
′
p(0, x) grows linearly in ‖x‖1. More precisely,

for each y ∈ Zd \ {0}, they proved the existence of a constant µp(y) such that

lim
n→∞
0↔ny

DC
′
p(0, ny)

n
= µp(y), Pp a.s. .

The constant µp is a called the time constant. The map p→ µp can be extended
to Qd by homogeneity and to Rd by continuity. It is a norm on Rd. This con-
vergence holds uniformly in all directions, this is equivalent of saying that an
asymptotic shape emerges. Indeed, the set of points that are at a chemical dis-
tance from 0 smaller than n asymptotically looks like nBµp , where Bµp denotes
the unit ball associated with the norm µp.

In another paper [13], they studied the fluctuations ofDC
′
p(0, y)/µp(y) around

its mean and obtained the following large deviations result:

∀ε > 0, lim sup
‖x‖1→∞

lnPp
(

0↔ x, D
C′p (0,y)
µp(y) /∈ (1− ε, 1 + ε)

)
‖x‖1

< 0 .

In the same paper, they showed another large deviation result that, as a corol-
lary, proves the continuity of the map p → µp in p = 1. In [14], Garet and

Marchand obtained moderate deviations of the quantity |DC
′
p(0, y)− µp(y)|. In

[15], Garet, Marchand, Procaccia and Théret work on the continuity of a more
general time constant. A corollary of their work was the continuity of the map
p → µp in (pc(d), 1]. Our paper is in the continuity of [15], our aim is to ob-
tain better regularity properties for the map p→ µp than just continuity. The
following theorem is the heart of the paper.

Theorem 1.6 (Regularity of the time constant). Let p0 > pc(d). There exists
a constant κd depending only on d and p0, such that for all p ≤ q in [p0, 1]

sup
x∈Sd−1

|µp(x)− µq(x)| ≤ κd(q − p)| log(q − p)| .

We recall that Bµp denotes the unit ball associated with the norm µp. From
the previous theorem we can easily deduce the following regularity of the asymp-
totic shapes.
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Corollary 1.1 (Regularity of the asymptotic shapes). Let p0 > pc(d). There
exists a constant κ′d depending only on d and p0, such that for all p ≤ q ∈ [p0, 1],

dH(Bµq ,Bµp) ≤ κ′d(q − p)| log(q − p)|

where dH is the Hausdorff distance between non-empty compact sets of Rd.

1.5 Background on first passage percolation

Most of the previous results concerning the chemical distance DC
′
p were actu-

ally obtained in the more general case of first passage percolation. First passage
percolation was first introduced by Hammersley and Welsh [19] as a model for
the spread of a fluid in a porous medium. Let us consider the lattice Zd, with
each edge e we associate a non negative random variable t(e) that models the
time needed for the fluid to cross the edge e. If all the t(e) are independent
and identically distributed with a law G, then for all x ∈ Zd \ {0}, there ex-
ists a constant µG(x) that may be seen as the inverse of the speed of spread
of the fluid in the direction of x. Under some assumptions on the moments of
the variables (t(e)), the time needed for the fluid to go from 0 to nx is close
to nµG(x) for large n. This result was proved by Cox and Durrett in [9] in
dimension 2 under some integrability conditions on G, they also proved that µG
is a semi-norm. Kesten extended this result to any dimension d ≥ 2 in [21], and
he proved that µG is a norm if and only if G({0}) < pc(d). In the study of first
passage percolation, µG is usually called the time constant.

It is possible to extend this model by doing first passage percolation on a
random environment, for instance on the infinite cluster Cp of a supercritical
Bernoulli percolation of parameter p. To do so, we attribute an infinite value
to all p-closed edges, thus G is a probability measure on [0,+∞] and Cp can be
seen as the infinite cluster of a supercritical Bernoulli percolation of parameter
G([0,∞)) = p. The existence of a time constant was first obtained in the context
of stationary integrable ergodic field by Garet and Marchand in [12] and was
later shown for an independent field without any integrability condition by Cerf
and Théret in [6]. Note that in the case of Gp = pδ1 + (1− p)δ∞, p > pc(d), the
travel time coincides with the chemical distance. The results for the chemical
distance may be seen as a corollary of the results for general laws G on [0,+∞].

The study of the continuity of the map G→ µG started in dimension 2 with
the article of Cox [8]. He showed the continuity of this map under the hypothesis
of uniform integrability: if Gn weakly converges toward G and if there exists
an integrable law F such that for all n ∈ N, F stochastically dominates Gn,
then µGn → µG. In [10], Cox and Kesten prove the continuity of this map in
dimension 2 without any integrability condition. Their idea was to consider a
geodesic for truncated passage times min(t(e),M), and along it to avoid clusters
of bad edges, that is to say edges with a passage time larger than some M > 0,
by bypassing them with a short path in the boundary of this cluster. Note
that by construction, the edges of the boundary have passage time smaller than
M . Thanks to combinatorial considerations, they were able to obtain a precise
control on the length of these bypasses. This idea was later extended to all the
dimensions d ≥ 2 by Kesten in [21], by taking a M large enough such that the
percolation of the edges with a passage time larger than M is highly sub-critical:
for such a M , the size of the clusters of bad edges can be controlled. This idea
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does not work anymore when we allow passage time to take infinite value. In
[15], Garet, Marchand, Procaccia and Théret proved the continuity of the map
G → µG for general laws on [0,+∞] without any moment condition. More
precisely, let (Gn)n∈N, and G probability measures on [0,+∞] such that Gn

weakly converges toward G (we write Gn
d→ G), that is to say for all continuous

bounded functions f : [0,+∞]→ [0,+∞), we have

lim
n→+∞

∫
[0,+∞]

fdGn =

∫
[0,+∞]

fdG .

Equivalently, we say that Gn
d→ G if and only if limn→+∞Gn([t,+∞]) =

G([t,+∞]) for all t ∈ [0,+∞] such that x → G([x,+∞]) is continuous at t.
If moreover for all n ∈ N, Gn([0,+∞)) > pc(d) and G([0,+∞)) > pc(d), then

lim
n→∞

sup
x∈Sd−1

|µGn(x)− µG(x)| = 0

where Sd−1 is the unit sphere for the Euclidean norm.
There is another interpretation of first passage percolation: suppose that

the variable t(e) associated with an edge e represents the maximal amount of
water that can cross the edge e per second. It follows a natural definition of the
maximal flow through Ω, a finite subset of Zd, from a collection of sources to
a collection of sinks. In this paper, we are not going to define properly what a
maximal flow is in this more general context, for precise definitions and results
we refer to [29]. However, we want to enlight the fact that the study of maximal
flows, that has been initiated by Grimmett and Kesten [17] and Kesten [22],
may be interpreted as a higher dimensional version of classical first passage
percolation. Indeed, by the max-flow min-cut theorem, the study of maximal
flows is equivalent to the study of the minimal weights of sets of edges, called
cutsets, that cut the sources from the sinks in Ω. These cutsets can be seen
as (d − 1)-dimensional objects, whereas geodesics in the study of classical first
passage percolation are one-dimensional objects.

We have explained that the time constant µp associated with the chemical

distance DC
′
p can be seen as the time constant µG associated with first passage

percolation where the distribution of the passage times is Gp = pδ1 + (1 −
p)δ∞. Similarly, the flow constant βp can be seen as the flow constant νG
associated with first passage percolation (see [29] for a precise definition) where
the distribution of the (t(e))e∈Ed is G′p = pδ1 + (1− p)δ0.

In [29], Rossignol and Théret proved in fact the continuity of the map G→
νG in this more general setting.

1.6 Idea of the proof

To study the regularity of the map p→ µp, our aim is to control the difference
between the chemical distance in the infinite cluster Cp of a Bernoulli percolation
of parameter p > pc(d) with the chemical distance in Cq where q ≥ p. The
key part of the proof lies in the modification of a path. We couple the two
percolations such that a p-open edge is also q-open but the converse does not
necessarily hold. We consider a q-open path for some q ≥ p > pc(d). Some of
the edges of this path are p-closed, we want to build upon this path a p-open
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path by bypassing the p-closed edges. In order to bypass them, we use the
idea of [15] and we build our bypasses at a macroscopic scale. This idea finds its
inspiration in the works of Antal and Pisztora [26] and Cox and Kesten [10]. We
have to consider an appropriate renormalization and we obtain a macroscopic
lattice with good and bad sites. Good and bad sites correspond to boxes of size
2N in the microscopic lattice. We will do our bypasses using good sites at a
macroscopic scale that will have good connectivity properties at a microscopic
scale. The remaining of the proof consists in getting probabilistic estimates of
the length of the bypass. In this article we improve the estimates obtained in
[15]. We get an explicit expression of the appropriate size of a N -box. We use
the idea of corridor that appeared in the work of Cox and Kesten [10] to have a
better control on combinatorial terms and derive a more precise control of the
length of the bypasses than the one obtained in [15]. The same construction
of bypasses can be used to study both the chemical distance for d ≥ 2 and the
Cheeger constant in dimension 2.

For d ≥ 3, thanks to the simpler definition of the norm βp, we can avoid the
renormalization procedure. We will control the difference between the maximal
flow for percolations of parameter p and q with p < q by considering an appro-
priate coupling of these two percolations and considering the number of q-open
edges in a minimal cutset for the percolation of parameter p.

Here is the structure of the paper. In section 2, we introduce some definitions
and preliminary results that are going to be useful in the following. The section
3 presents the renormalization process and how we modify a q-open path to
turn it into a p-open path and how we can control the length of the bypasses.
In section 4 and 5, we get probabilistic estimates on the length of the bypasses.
Finally, in section 6 we prove the main theorem for the time constant Theorem
1.6 and Corollary 1.1. In section 7, we prove the two main theorems for the
Cheeger constant in dimension 2, Theorem 1.1 and Theorem 1.2. In section 8 we
prove Theorems 1.3 and 1.4, which are the two main theorems for the modified
Cheeger constant for d ≥ 3, and the corresponding result for the flow constant,
Theorem 1.5.

The section 3 is a simplified version of the renormalization process that was
already present in [15]. The simplification comes from the fact that we are not
interested in general distributions but only on distributions Gp for p > pc(d)
which have the advantage of taking only two values 1 or +∞. The sections
4 and 5 are the most original part of this paper. In section 4, we rewrite an
adaptation of several existing proofs for the paper to be self-contained. Except
the use of a new coupling and the integration of the results obtained in sections
4 and 5, the sections 6 and 7 are very similar to sections 4 and 6 in [15]. Except
the subsection 8.1, which is an adaptation of an existing proof, the section 8 is
a generalization of arguments that were already present in section 7 for higher
dimensions.

2 Definitions and preliminary results

In this section we give a formal definition of the time constant and of the
Cheeger constant.

8



2.1 Regularized chemical distance and time constant

Let d ≥ 2, we here consider the graph whose vertices are the points of Zd,
and the set of edges Ed: if two points of Zd are neighbors (at Euclidean distance
1) we put an edge between them. We denote by 0 the origin of the graph. Let
us recall the different distances in Rd. Let x = (x1, . . . , xd) ∈ Rd, we define

‖x‖1 =
∑d
i=1 |xi|, ‖x‖2 =

√∑d
i=1 x

2
i and ‖x‖∞ = max{|xi|, i = 1, . . . , d}. For

x, y ∈ Zd, p > pc(d) and C a subgraph of Zd. A path γ = (v0, e1, . . . , en, vn)
is a path from x to y if v0 = x, vn = y and for all i ∈ {1, . . . , n} the edge
ei = 〈vi−1, vi〉 ∈ Ed, we write by |γ| = n the length of γ. We define

DC(x, y) = inf{|r| : r is a path from x to y in C}

the chemical distance between x and y in C. If x and y are not connected in C,
DC(x, y) = ∞. In the following, C will be C′p the subgraph of Zd whose edges
are opened for the Bernoulli percolation of parameter p > pc(d).

To get round the fact that the chemical distance can take infinite value we
introduce regularized chemical distance. Let C ⊂ C′ be a connected cluster, we
define x̃C as the vertex of C which minimizes ‖x− x̃C‖1 with a deterministic rule
to break ties. Thus, DC

′
(x̃C , ỹC) ≤ DC(x̃C , ỹC) <∞. Typically, C is going to be

the infinite cluster for Bernoulli percolation with a parameter small enough to
get C ⊂ C′.

We can define the regularized time constant as in [14] or as a special case of
[6].

Proposition 2.1. Let p > pc(d). There exists a deterministic function µp :
Zd → [0,+∞), such that for every p′ ∈ (pc(d), p]:

∀x ∈ Zd lim
n→∞

DCp(0̃Cp′ , ñx
Cp′ )

n
= µp(x) a.s. and in L1.

It is important to check that µp does not depend on Cp′ , the cluster we use
to stabilize. This is done in Lemma 2.11 in [15]. As a corollary, we obtain the
monotonicity of the map p → µp which is non increasing, see Lemma 2.12 in
[15].

Corollary 2.1. For all pc(d) < p ≤ q and for all x ∈ Zd,

µp(x) ≥ µq(x) .

2.2 Definition of the Cheeger constant in supercritical
percolation on Z2

In this section we define properly the Cheeger constant and state some results
obtained in [4].

Let us fix p > pc(2). For a path r = (x0, . . . , xn) and for 2 ≤ i ≤ n − 1,
an edge e = (xi, z) is a right-boundary edge if z is a neighbor of xi between
xi+1 and xi−1 in the clockwise direction. The right boundary ∂+r is the set
of right-boundary edges. A path is called right-most if each edge is used at
most once in every orientation and it does not contain right-boundary edges.
See Figure 1, the solid lines represent a right-most path and the dashed lines

9



Figure 1 – A right-most path

correspond to the right boundary edges, the curly line shows the orientation of
this path. For x, y ∈ Z2, we denote by R(x, y) the set of right-most paths from
x to y. Note that this set is deterministic and does not depend on the state of
the edges. For a path r ∈ R(x, y), define bp(r) = |{e ∈ ∂+r : e is p-open}|,
the number of p-open edges in the right-boundary ∂+r of the path r. Let Cp be
the infinite cluster for the Bernoulli percolation of parameter p. For x, y ∈ Cp,
we can find a p-open self-avoiding path which is also a right-most path, thus
the right boundary distance bp(x, y) = inf{bp(r) : r ∈ R(x, y), r is p-open} is
finite. This distance converges uniformly to a norm on R2:

Proposition 2.2 (Lemma 2.13. in [15]). For any p > pc(2), there exists a
norm βp on R2, such that for any p0 ∈ (pc(2), p], x ∈ R2,

βp(x) := lim
n→∞

bp(0̃
Cp0 , ñx

Cp0 )

n
Pp-a.s. and in L1(Pp).

Moreover, the convergence is uniform on S1.

We will need in what follows a control on the length of the right-most paths
and a control on the amount of right boundary edges:

Lemma 2.1 (Proposition 2.9 in [4]). There exist C, C ′, α > 0 depending on p
such that for all n ∈ N,

P

∃γ ∈ ⋃
x∈Zd

R(0, x) : |γ| > n , bp(γ) ≤ αn

 ≤ Ce−C′n .
Lemma 2.2 (Lemma 2.5 in [4]). For every right-most path γ,

|γ|
3
− 2 ≤ |∂+γ| ≤ 3|γ| .

We can make a connection between the Cheeger constant and the norm βp
by considering a continuous isoperimetric problem. Let us first introduce some

10



important notions. Let λ : [0, 1]→ R2 be a continuous curve and ρ a norm, we
define the ρ-length of λ to be

lenρ(λ) = sup
N≥1

sup
0≤t0<···<tN≤1

N∑
i=1

ρ

(
λ(ti)− λ(ti−1)

‖λ(ti)− λ(ti−1)‖2

)
‖λ(ti)− λ(ti−1)‖2 .

We say λ is a Jordan curve if λ is rectifiable (i.e. for any norm ρ, lenρ(λ) <∞)
λ(0) = λ(1) (i.e. λ ends where it started) and λ is injective on [0, 1) (i.e. λ
is self-avoiding). For any Jordan curve λ, we can define its interior int(λ) as
the unique finite component of R2 \ λ([0, 1]). We denote by Leb the Lebesgue
measure on R2. The Cheeger constant can be represented as the solution of the
following continuous isoperimetric problem:

Theorem 2.1 (Theorem 1.6 in [4]). For every p > pc(2),

lim
n→∞

nϕn(p) = (
√

2θp)
−1 inf{lenβp(λ) : λ is a Jordan curve, Leb(int(λ)) = 1} ,

where θp = P[0 ∈ Cp].

Moreover one obtains a limiting shape for the sets that achieve the minimum
in the definition of ϕn(p). This limiting shape is given by the Wulff construction
[31]. Define

Wp =
⋂

n̂:‖n̂‖2=1

{x ∈ R2 : n̂ · x ≤ βp(n̂)} and Ŵp =
Wp√

Leb(Wp)
(1)

where · denotes the Euclidean inner product. The set Ŵp is a minimizer for the
isoperimetric problem associated with the norm βp, and it gives the asymptotic
shape of minimizer sets in the definition of ϕn(p). We define β∗p the dual norm
associated with βp, we have for x ∈ R2

β∗p(x) = sup{x · y : βp(y) ≤ 1} . (2)

The Wulff cristal Wp corresponds to the unit ball Bβ∗p for the norm β∗p .

2.3 Definition of the modified Cheeger constant in super-
critical percolation on Zd

The connection between the modified Cheeger constant and the norm βp,
defined in Proposition 1.1, goes as in dimension 2 through a continuous isoperi-
metric problem. Let E ⊂ Rd with Lipschitz boundary, let τ be a norm on Rd.
We define the τ -size of the boundary of E by

Iτ (E) =

∫
∂E

τ(νE(x))Hd−1(x) , (3)

where ∂E denotes the boundary of E, νE(x) the unit exterior vector normal to
E at the point x ∈ ∂E, which is defined for Hd−1- almost every point of ∂E.
We denote by Ip the function defined in (3) for τ = βp. The function Ip may
be seen as a surface energy functional. This kind of functional was first widely
studied in the context of the Ising model in dimension d ≥ 3 (see for instance
[5]).
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As in dimension 2, we define the Wulff crystal associated with the norm βp
by

Wp =
⋂
−→v ∈S1

{
x ∈ Rd : x · −→v ≤ βp(−→v )

}
and Ŵp =

2dWp

d!Ld(Wp)
. (4)

We define β∗p the dual norm associated to βp as in dimension 2 (see (2)), we

have for all x ∈ Rd:

β∗p(x) = sup{x · y : βp(y) ≤ 1} .

The Wulff crystal Wp corresponds to the unit ball Bβ∗p for the norm β∗p . As in

dimension 2 the set Ŵp is a minimizer for the isoperimetric problem associated
with the norm βp.

Theorem 2.2 (Theorem 1.3. in [16]). Let d ≥ 3, p > pc(d) and let βp be the

norm defined in Proposition 1.1 and Ŵp defined in (4). Then,

lim
n→∞

nϕ̂n(p) =
Ip(Wp)

θp(d)Ld(Wp)

holds Pp-almost surely. Moreover, the Wulff shape is a solution of the following
isoperimetric problem:

minimize
Ip(E)

Ld(E)
subject to Ld(E) ≤ 1 .

Remark 2.1. Note that in Theorem 1.3, we obtain a better regularity in p for the
modified Cheeger constant for d ≥ 3 than for the Cheeger constant in dimension
2. The difference is due to the fact that the definition of the norm βp is simpler
than the definition of the norm βp in dimension 2. In dimension d ≥ 3, right-
boundaries of right-most paths are replaced by cutsets. In dimension 2, we have
to consider only p-open right-most paths whereas we do not have an equivalent
restriction in dimension d ≥ 3. Thus, we can avoid the renormalization step in
dimensions greater than 3. However, the author of [16] pays the price of this
simpler definition of the norm by a very technical proof that uses renormalization
arguments.

3 Renormalization

In this section we present the renormalization process. We are here at a
macroscopic scale, we define good boxes to be boxes with useful properties to
build our modified paths.

3.1 Definition of the renormalization process

Let p > pc(d) be the parameter of an i.i.d Bernoulli percolation on the edges
of Zd. For a large integerN , that will be chosen later, we set BN = [−N,N ]d∩Zd
and define the following family of N -boxes, for i ∈ Zd,

BN (i) = τi(2N+1)(BN )

12



where τb denotes the shift in Zd with vector b ∈ Zd. Zd is the disjoint union of
this family: Zd = ti∈ZdBN (i). We need to introduce larger boxes that will help
us to link N -boxes together. For i ∈ Zd, we define

B′N (i) = τi(2N+1)(B3N ).

A connected cluster C is crossing for a box B, if for all d directions, there is
an open path in C ∩ B connecting the two opposite faces of B. We define the
diameter of a finite cluster C as

Diam(C) := max
i=1,...,d
x,y∈C

|xi − yi| .

Let C′p be the subgraph of Zd whose edges are opened for the Bernoulli percola-
tion of parameter p. We recall that Cp is the infinite cluster of C′p, and we have

DCp(x, y) = DC
′
p(x, y) for every vertices x and y in Cp, and DCp(x, y) =∞ if x

or y are not in Cp.
To define what a good box is, we have to list properties that a good box

should have to ensure that we can build a modification of the path as we have
announced in the introduction. We have to keep in mind that all the properties
must occur with probability 1 when N goes to infinity.

Definition 3.1. We say that the macroscopic site i is p-good if the following
events occur:

(i) There exists a unique p-cluster C in B′N (i) with diameter larger than N ;

(ii) This p-cluster C is crossing for each of the 3d N -boxes included in B′N (i);

(iii) For all x, y ∈ B′N (i), if x and y belong to C then DC
′
p(x, y) ≤ 12βN , for

an appropriate β that will be defined later.

C is called the crossing p-cluster of the p-good box BN (i).

Let us define a percolation by site on the macroscopic grid given by the state
of the boxes. Note that the state of the boxes are not independent, there is a
short range dependence.

On the macroscopic grid Zd, we consider the standard definition of closest
neighbor, that is to say x and y are neighbors if ‖x − y‖1 = 1. Let C be a
connected set of macroscopic sites, we define its exterior vertex boundary

∂vC =

{
i ∈ Zd \ C : i has a neighbour in C and is connected

to infinity by a Zd-path in Zd \ C

}
.

For a bad macroscopic site i, let us denote by C(i) the connected cluster
of bad macroscopic sites containing i. If C(i) is finite, the set ∂vC(i) is not
connected in the standard definition but it is with a weaker definition of neigh-
bors. We say that two macroscopic sites i and j are ∗-neighbors if and only if
‖i− j‖∞ = 1. Therefore, ∂vC(i) is an ∗-connected set of good macroscopic sites
see for instance Lemma 2 in [30]. We adopt the convention that ∂vC(i) = {i}
when i is a good site.
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3.2 Modification of a path

Let us consider pc(d) < p ≤ q, we fix N in this section. Let us consider a
q-open path γ. We consider a coupling of the two percolations of parameter p
and q, that we will specify later, such that a p-open edge is q-open. Thus, some
edges in γ are p-closed. We denote by γo the set of good edges in γ , i.e., the
edges that are p-open, and by γc the set of p-closed edges in γ. Our aim is to
build a bypass for each edge in γc using only p-open edges. The proof will follow
the proof of Lemma 3.2 in [15] up to some adaptations.

As the bypasses are going to be made at a macroscopic scale, we need to
consider the N -boxes that γ crosses. We denote by Γ ⊂ Zd the connected set of
all the N -boxes visited by γ. Γ is a connected set in the standard definition.

We denote by Bad the random set of bad connected components on the
macroscopic percolation given by the states of the N -boxes.

Lemma 3.1. Let us consider y, z ∈ Cp such that the N -boxes of y and z belong
to an infinite cluster of p-good boxes. Let us consider a q-open path γ joining y
to z. Then there exists a p-open path γ′ between y and z that has the following
properties:

(1) γ′ \ γ is a set of disjoint self avoiding p-open paths that intersect γ′ ∩ γ at
their endpoints;

(2) |γ′ \ γ| ≤ ρdN

( ∑
C∈Bad:C∩Γ6=∅

|C|+ |γc|

)
, where ρd is a constant depending

only on the dimension d.

Remark 3.1. Note that here we don’t need to introduce a parameter p0 and
require that the bypasses are p0 open as in [15]. Indeed, this condition was
required because finite passage time of edges were not bounded. This is the
reason why it was needed in [15] to bypass bad edges with p0-open edges. These
p0-open edges were precisely edges with passage time smaller than some constant
M0. In our context, we can get rid of this technical aspect because passage time
when finite may only take the value 1.

Before proving Lemma 3.1, we need to prove the following lemma that gives
a control on the length of a path between two points in a ∗-connected set of
good boxes.

Lemma 3.2. Let I be a set of n ∈ N∗ macroscopic sites such that (BN (i))i∈I
is a ∗-connected set of p-good N -boxes. Let x ∈ BN (j) be in the p-crossing
cluster of BN (j) with j ∈ I and y ∈ BN (k) be in the p-crossing cluster of BN (k)
with k ∈ I. Then, we can find a p-open path joining x and y of length at most
12βNn.

Proof of Lemma 3.2. Since I is a ∗-connected set of macroscopic sites, there
exists a self-avoiding macroscopic ∗-connected path (ϕi)1≤i≤r ⊂ I such that
ϕ1 = j, ϕr = k. Thus, we get that r ≤ |I| = n. As all the sites in I are good,
all the N -boxes of the path (ϕi)1≤i≤r are good.

For each 2 ≤ i ≤ r − 1, we define xi to be a point in the p-crossing cluster
of the box BN (ϕi). We define x1 = x and xr = y. For each 1 ≤ i < r, xi and
xi+1 both belong to B′N (ϕi). Using property (iii) of a p-good box, we can build
a p-open path γ(i) from xi to xi+1 of length at most 12βN .
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By concatenating the paths γ(1), . . . , γ(r − 1) in this order, we obtain a
p-open path joining x to y of length at most 12βNn.

Proof of Lemma 3.1. Let ϕ0 = (ϕ0(j))1≤j≤r0 be the sequence of N -boxes γ
visits. From the sequence ϕ0, we can extract the sequence of N -boxes containing
at least one p-closed edge of γ. We only keep the indices of the boxes containing
the smallest extremity of a p-closed edge of γ for the lexicographic order. We
obtain a sequence ϕ1 = (ϕ1(j))1≤j≤r1 . Notice that r1 ≤ r0 and r1 ≤ |γc|.

We want to bypass all the bad edges. Let us consider a bad edge e and
BN (i) its associated N -box. There are two different cases:

— If BN (i) is a good box, we can build a bypass of e by staying in B′N (i).
We will use the third property of good boxes to control the length of the
bypass that will be at most 12βN .

— If BN (i) is a bad box, we must build a bypass in the exterior vertex
boundary ∂vC(i) that is an ∗-connected component of good boxes. We
will use Lemma 3.2 to control the length of this bypass.

Before building our bypasses, we have to get rid of some pathological cases
such as ∂vC(ϕ1(j)) coincide or is nested one in another or overlap. We are going
to proceed to further extractions. From the sequence of ∗-connected component

y

x

γ

: the boxes (ϕ1(j))1≤j≤r1

: the sets of good boxes (Sϕ4(j))1≤j≤r4

: the sets of good boxes (Sϕ2(j))1≤j≤r2 that do not belong to (Sϕ4(j))1≤j≤r4

Figure 2 – Construction of the path γ′ - First step

(∂vC(ϕ1(j)))1≤j≤r1 , we obtain a sequence of connected components such that
each component appears only once. Note that two ∗-connected components of
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(∂vC(ϕ1(j)))1≤j≤r1 can be ∗-connected together, in that case they count as a
unique connected component. We set ϕ2(1) = 1 and Sϕ2(1) =

⋃
{∂vC(ϕ1(j)) :

∂vC(ϕ1(j))
∗∼ ∂vC(ϕ1(1))} where A

∗∼ B means that the components A and B
are ∗-connected. Assume ϕ2(1), . . . , ϕ2(k) and (Sϕ2(j))1≤j≤k are constructed,

we set ϕ2(k + 1) = inf{ϕ2(k) < j ≤ r1 : ∂vC(ϕ1(j)) 6⊂ ∪ki=1Sϕ2(i)}. If such a

j exists we set Sϕ2(k+1) =
⋃
{∂vC(ϕ1(i)) : ∂vC(ϕ1(i))

∗∼ ∂vC(ϕ1(ϕ2(k + 1)))},
otherwise we stop the process. We obtain a sequence (Sϕ2(j))1≤j≤r2 where
r2 ≤ r1. Next, we consider the case of nesting, that is to say when there exist
j 6= k such that Sϕ2(j) is in the interior of Sϕ2(k). In that case, we only keep
the largest connected component: we obtain another subsequence (Sϕ3(j))1≤j≤r3
with r3 ≤ r2. Finally, we want to exclude a last case, when between the moment
we enter for the first time in a given connected component and the last time we
leave this connected component, we have explored other connected components
of (Sϕ3(j))1≤j≤r3 . That is to say we want to remove the macroscopic loops γ
makes between different visits of the same ∗-connected components Sϕ3(j) (see
Figure 2). We iteratively extract from (Sϕ3(j))1≤j≤r3 a sequence (Sϕ4(j))1≤j≤r4
in the following way: Sϕ4(1) = Sϕ3(1), assume (Sϕ4(j))1≤j≤k is constructed
ϕ4(k + 1) is the smallest indice ϕ3(j) such that γ visits Sϕ3(j) after its last
visit to Sϕ4(k). We stop the process when we cannot find such j. Of course,
r4 ≤ r3. (Sϕ4(j))1≤j≤r4 is a sequence of sets of good N -boxes that are all visited
by γ.

Let us introduce some notations (see Figure 3), we denote by Ψin(1) =
min{j ≥ 1, γj ∈ Sϕ4(1)}, Ψout(1) = max{j ≥ Ψin(1), γj ∈ Sϕ4(1)}. Assume
Ψin(1), . . . ,Ψin(k) and Ψout(1), . . . ,Ψout(k) are constructed then Ψin(k + 1) =
min{j ≥ Ψout(k), γj ∈ Sϕ4(k+1)}, Ψout(k + 1) = max{j ≥ Ψin(k + 1), γj ∈
Sϕ4(k+1)}. Let Bin(j) be the N -box in Sϕ4(j) containing γΨin(j), Bout(j) be the
N -box in Sϕ4(j) containing γΨout(j). Let γ(j) be the section of γ from γΨout(j)

to γΨin(j+1) for 1 ≤ j < r4, let γ(0) (resp γ(r4)) be the section of γ from y to
γΨin(1) (resp. from γΨout(r4) to z).

We have to study separately the beginning and the end of the path γ. Note
that as the N -boxes of y and z both belong to an infinite cluster of good boxes,
their box cannot be nested in a bigger ∗-connected components of good boxes
of the collection (Sϕ4(j))1≤j≤r4 . Thus, if BN (k), the N -box of y, contains a
p-closed edge of γ, necessarily Sϕ4(1) contains BN (k), Bin(1) = BN (k) and
γΨin(1) = y. Similarly, if BN (l), the N -box of z, contains a p-closed edge of γ,
necessarily Sϕ4(r4) contains BN (l), Bout(r4) = BN (l) and γΨout(r4) = z.

In order to apply Lemma 3.2, let us show that for every j ∈ {1, . . . , r4},
γΨin(j) (resp. γΨout(j)) belongs to the p-crossing cluster ofBin(j) (resp. Bout(j)).
Let us study separately the case of γΨin(1) and γΨout(r4). If γΨin(1) = y then
γΨin(1) belongs to the p-crossing cluster of Bin(j). Suppose that γΨin(1) 6= y.
As y ∈ Cp and y is connected to γΨin(1) by a p-open path, γΨin(1) is also in Cp.
By the property (i) of a good box applied to Bin(1), we get that γΨin(1) is in the
p-crossing cluster of Bin(1). We study the case of γΨout(r4) similarly. To study
γΨin(j) (resp. γΨout(j))) for j ∈ {2, . . . , r4 − 1}, we use the fact that by con-
struction, thanks to the extraction ϕ2, two different elements of (Sϕ4(j))1≤j≤r4
are not ∗-connected. Therefore, for 1 ≤ j < r4, ‖γΨin(j+1) − γΨout(j)‖1 ≥ N
and γ(j), the section of γ from γΨout(j) to γΨin(j+1), has a diameter larger than
N and contains only p-open edges. As Bout(j) and Bin(j + 1) are good boxes,
we obtain, using again property (i) of good boxes, that γΨout(j) and γΨin(j+1)
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γ

: Sϕ4(j)

γlink(j)γψin(j)

Bin(j)

B′in(j)

B′out(j)

Bout(j) γψout(j)

Figure 3 – Construction of the path γ′ - Second step

belong to the p-crossing cluster of their respective boxes.
Finally, by Lemma 3.2, for every j ∈ {1, . . . , r4}, there exists a p-open path

γlink(j) joining γΨin(j) and γΨout(j) of length at most 12βN |Sϕ4(j)|.
We obtain a p-open path γ′ joining y and z by concatenating γ(0), γlink(1),

γ(1), . . . , γlink(r4), γ(r4) in this order. Up to cutting parts of these paths, we can
suppose that each γlink(j) is a self-avoiding path, that all the γlink(j) are disjoint
and that each γlink(j) intersects only γ(j − 1) and γ(j) at their endpoints.

Let us estimate the quantity |γ′ \ γ|, as γ′ \ γ ⊂ ∪r4i=1γlink(i), we obtain:

|γ′ \ γ| ≤
r4∑
j=1

|γlink(j)|

≤
r4∑
j=1

12βN |Sϕ4(j)|

≤ 12βN |γc|+ 12βN
∑

C∈Bad:C∩Γ6=∅

|∂vC|

where the last inequality comes from the fact that each Sϕ4(j) is the union of
elements of {∂vC : C ∈ Bad;C ∩ Γ 6= ∅} and of good boxes that contain edges
of γc. We conclude by noticing that |∂vC| ≤ 2d|C|.
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3.3 Deterministic estimate

When q − p is small, we want to control the probability that the bypass of
bad edges γ′ \γ is big. We can notice in Lemma 3.1 that we need to control the
bad connected components. This will be done in section 5. We will also need a
deterministic control on |Γ| which is the purpose of the following Lemma (this
Lemma is an adaptation of Lemma 3.4 of [15]).

Lemma 3.3. For every path γ of Zd, for every N ∈ N∗, there exists a ∗-
connected macroscopic path Γ̃ such that

γ ⊂
⋃
i∈Γ̃

B′N (i) and |Γ̃| ≤ 1 +
|γ|+ 1

N
.

Proof. Let γ = (γi)1≤i≤n be a path of Zd where γi is the i-th vertex of γ. Let
Γ be the set of N -boxes that γ visits. We are going to define iteratively the
macroscopic path Γ̃.

Let p(1) = 1 and i1 be the macroscopic site such that γ1 ∈ BN (i1). We
suppose that i1, . . . , ik and p(1), . . . , p(k) are constructed. Let us define p(k +
1) = min {j > p(k) : γj /∈ B′N (ik)}. If this set is not empty, we set ik+1 to be
the macroscopic site such that γp(k+1) ∈ BN (ik+1). Otherwise, we stop the
process, and we get that for every j ∈ {p(k), . . . , n}, γj ∈ B′N (ik). As n is
finite, the process will eventually stop and the two sequences (p(1), . . . , p(r))

and (i1, . . . , ir) are finite. We define Γ̃ = (i1, . . . , ir). By construction,

γ ⊂
⋃
i∈Γ̃

B′N (i) .

Notice that for every 1 ≤ k < r, ‖γp(k+1)−γp(k)‖1 ≥ N , thus p(k+1)−p(k) ≥ N .
This leads to N(r − 1) ≤ p(r)− p(1) ≤ n, and finally,

|Γ̃| ≤ 1 +
|γ|+ 1

N
.

Remark 3.2. This Lemma implies that if Γ is the set of N -boxes that γ visits
then

|Γ| ≤ 3d|Γ̃| ≤ 3d
(

1 +
|γ|+ 1

N

)
.

4 Control of the probability that a box is good

We need in what follows to control the quantity
∑
|C| where the sum is

over all C ∈ Bad such that C ∩ Γ 6= ∅. In the macroscopic grid, all the sites
are not independent from each other, there is a short range of dependence.
Thus, such quantities are hard to compute. That’s why we need to have a
stochastic comparison with an i.i.d field of Bernoulli random variables where
the independence make computations easier. For that purpose, we are going
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to use Liggett, Schonmann and Stacey’s result in [23]. Let us assume that the
probability that a box is good goes to 1 when N goes to infinity. Then, for any
given parameter p, we can always find a large enough N such that the field
(1{BN (i) is good})i∈Zd stochastically dominates a family of independent Bernoulli
random variables with parameter p. However, we will need in what follows to
have an explicit expression of N in terms of p. This section was not present in
[15] where they do not need an explicit control on N .

4.1 Explicit LSS

In this section, we want to find an explicit function ψ := ψ(p) such that if
N is such that P (BN is a good box) ≥ ψ(p), then the field (1{BN (i) is good})i∈Zd
stochastically dominates a family of independent Bernoulli random variables
with parameter p. We have to keep in mind that p is close to 1.

Proposition 4.1. Let us define by Yi = 1{BN (i) is good} and let p ≥ 1
4 . Let us

assume there exists a constant kd depending only on the dimension such that

P (BN is a good box) ≥ 1− (1−√p)
kd+1

.

Then the field (1{BN (i) is good})i∈Zd stochastically dominates a family of inde-
pendent Bernoulli random variables with parameter p.

Adaptation of the proof of Theorem 1.5 in [23]. Let 0 < δ < 1 such that we
have P (BN is a good box) ≥ δ. By construction, the family (Yi)i∈Zd is κ-
dependent and identically distributed where κ is a constant depending on β,
this dependence comes from property (iii) of a good box. Following the proof
of Liggett, Schonmann and Stacey in [23], if we find two functions α := α(δ)
and ρ := ρ(δ) satisfying:

0 < α(δ), ρ(δ) < 1 (5)

(1− α(δ))(1− ρ(δ))kd ≥ 1− δ (6)

(1− α(δ))α(δ)kd ≥ 1− δ (7)

lim
δ→1

α(δ)ρ(δ) = 1 (8)

where kd = |B(κ)| = (2κ + 1)d is the number of sites in a box of side 2κ,
then (Yi)i∈Zd stochastically dominates a family of independent Bernoulli random
variables with parameter π(δ) = α(δ)ρ(δ). Here, we want π(δ) = p and ψ(p) =
π−1(p). It is enough to assume that (1 − α(δ))(1 − ρ(δ))kd = 1 − δ to satisfy
(6). Next, we choose α and ρ such that

1− α = (1− δ)
1

kd+1

(1− ρ)kd = (1− δ)
kd
kd+1 .

Then, α(δ) = ρ(δ) = 1 − (1 − δ)
1

kd+1 and the conditions (5), (6) and (8) are
satisfied. The condition (7) is therefore equivalent to α(1−π/α)−1 ≥ 1, it holds
when π = p ≥ 1/4. As

π(δ) =
(

1− (1− δ)
1

kd+1

)2

,

we get π−1(p) = 1−
(
1−√p

)kd+1
when p ≥ 1/4.
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Remark 4.1. We did not try here to get an optimal condition on the probability
a box is good. Even though this condition is not optimal and it is very likely
that one can do better, this will be enough for our purpose.

4.2 Control of the probability of being a bad box

In this section, we want to prove that the probability of being a p-bad N -box
decays exponentially fast with N . The main difficulty of this section is to get
an exponential decay which is uniform in p. For that purpose, we are going to
introduce a parameter p0 > pc(d) and show that exponential decay is uniform
for all p ≥ p0. Indeed, the speed will only depend on p0.

Theorem 4.1. Let p0 > pc(d). There exist constants C0(p0), A(p0) and B(p0)
such that for all p ≥ p0 and for all N > C0

P(BN is p-bad) ≤ A(p0) exp(−B(p0)N) .

The property (ii) of the definition of p-good box is a non-decreasing event
in p. Thus, it will be easy to bound uniformly the probability that property (ii)
is not satisfied by something depending only on p0. However, for properties (i)
and (iii) a uniform bound is more delicate to obtain. Before proving Theorem
4.1, we need the two following lemmas that deal with properties (i) and (iii).

Let Tm,N (p) be the event that BN has a p-crossing cluster and contains some
other p-open cluster D having diameter at least m.

Lemma 4.1. Let p0 > pc(d), there exist µ = µ(p0, d) > 0 and κ = κ(p0, d) such
that for all p ≥ p0

P(Tm,N (p)) ≤ κN2d exp(−µm) . (9)

Lemma 4.2. Let p0 > pc(d), there exist β = β(p0) > 0, Â = Â(p0) and

B̂ = B̂(p0) > 0 such that for all p ≥ p0

∀x ∈ Zd,P(β‖x‖1 ≤ DC
′
p(0, x) < +∞) ≤ Â exp(−B̂‖x‖1) . (10)

Remark 4.2. Lemma 4.2 is an improvement of the result obtained in [26], as

the constants Â and B̂ are the same for all p ≥ p0. In the original result, the
constants depend on p. To show this result, we slightly modify the proof of
[26]. The proof is simplified by the use of the result of Liggett, Schonmann and
Stacey [23] that was not published at that time.

Before proving these two lemmas, we are first going to prove Theorem 4.1
thanks to them.

Proof of Theorem 4.1. Let us fix p0 > pc(d). Let us denote by (iii)′ the property
that for all x, y ∈ B′N (i), if ‖x−y‖∞ ≥ N and if x and y belong to the p-crossing

cluster C then DC
′
p(x, y) ≤ 6βN . Note that properties (ii) and (iii)′ imply

property (iii). Indeed, thanks to the second property, we can find z ∈ C∩B′N (i)
such that ‖x− z‖∞ ≥ N and ‖y − z‖∞ ≥ N . Therefore, by applying the third
property,

DC
′
p(x, y) ≤ DC

′
p(x, z) +DC

′
p(z, y)

≤ 12βN .
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Thus, we can bound the probability that a N -box is bad by the probability
that it does not satisfy one of the properties (i), (ii) or (iii)′. Since we want
to control the probability of BN being a p-bad box uniformly in p, we will
emphasize the dependence of (i), (ii) and (iii)′ in p by writing (i)p, (ii)p and
(iii)′p. First, let us prove that the probability that a N -box does not satisfy
property (ii)p, i.e., the probability for a box not to have a p-crossing cluster,
is decaying exponentially, see for instance Theorem 7.68 in [18] or [26]. There
exist constants κ1(p0) and κ2(p0) such that for all p ≥ p0

P(BN does not satisfies (ii)p) ≤ P(BN does not satisfies (ii)p0)

≤ κ1(p0) exp(−κ2(p0)Nd−1) . (11)

Next, let us bound the probability that a N -box does not satisfy property
(iii)′p. Using Lemma 4.2, for p ≥ p0,

P[BN does not satisfy (iii)′p]

≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥NP
[
6βN ≤ DC

′
p(x, y) < +∞

]
≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥NP
[
β‖x− y‖∞ ≤ DC

′
p(x, y) < +∞

]
≤
∑
x∈B′N

∑
y∈B′N

1‖x−y‖∞≥N Â exp(−B̂N)

≤ (6N + 1)2dÂ exp(−B̂N) .

Finally, by Lemma 4.1,

P(BN is p-bad)

≤ P[BN does not satisfies(ii)p] + P[BN satisfies (ii)p but not (i)p]

+ P[BN does not satisfy (iii)′p]

≤ κ1 exp(−κ2N
d−1) + 3dκN2d exp(−µ

2
N) + (6N + 1)2dÂ exp(−B̂N)

≤ A(p0)e−B(p0)N .

For the second inequality, we used inequality (11) and the fact that the event
that the 3d N -boxes of B′N are crossing and there exist another p-open cluster
of diameter larger than N in B′N is included in the event there exists a N -
box in B′N that has a crossing property and contains another p-open cluster
of diameter larger than N/2. The last inequality holds for N ≥ C0(p0), where
C0(p0), A(p0) > 0 and B(p0) > 0 depends only on p0 and on the dimension
d.

Proof of Lemma 4.1. In dimension d ≥ 3 , we refer to the proof of Lemma
7.104 in [18]. The proof of Lemma 7.104 requires the proof of Lemma 7.78. The
probability controlled in Lemma 7.78 is clearly non decreasing in the parameter
p. Thus, if we choose δ(p0) and L(p0) as in the proof of Lemma 7.78 for p0 >
pc(d), then these parameters can be kept unchanged for some p ≥ p0. Thanks
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to Lemma 7.104, we obtain

∀p ≥ p0, P(Tm,N (p)) ≤ d(2N + 1)2d exp

((
m

L(p0) + 1
− 1

)
log(1− δ(p0))

)
≤ d.3d

1− δ(p0)
N2d exp

(
−− log(1− δ(p0))

L(p0) + 1
m

)
.

We get the result with κ = d.3d

1−δ(p0) and µ = − log(1−δ(p0))
L(p0)+1 > 0.

In dimension 2, the result is obtained by Couronné and Messikh in the more
general setting of FK-percolation in Theorem 9 in [7]. We proceed similarly as
in dimension d ≥ 3, the constant appearing in this theorem first appeared in
Proposition 6. The probability of the event considered in this proposition is
clearly increasing in the parameter of the underlying percolation, it is an event
for the subcritical regime of the Bernoulli percolation. Let us fix a p0 > pc(2) =
1/2, then 1− p0 < pc(2) and we can choose the parameter c(1− p0) and keep it
unchanged for some 1 − p ≤ 1 − p0. In Theorem 9, we get the expected result
with c(1− p0) for a p ≥ p0 and g(n) = n.

Proof of Lemma 4.2. We follow the proof of Antal and Pisztora in [1]. We first
have to define a renormalization, we keep the same definition for boxes BN and
B′N . We say that the macroscopic site i is p-nice if the following events occur:

(i)p There exists a unique p-cluster C in B′N (i) with diameter larger than N ;

(ii)p This p-cluster C is crossing for each of the 3d N -boxes included in B′N (i).

C is called the crossing p-cluster of the p-nice box BN (i). Otherwise we say that
the site is p-wrong. Note that this definition of a p-nice site is slightly different
from the one used in [26]. They had to do additional work that required an
additional property due to the fact that Liggett, Schonmann and Stacey’s result
[23] was not written yet.

Let us fix p0 > pc(d). For all p ≥ p0, using Lemma 4.1, we have

P(BN is p-wrong)

≤ P(BN does not satisfies(ii)p) + P(BN satisfies (ii)p but not (i)p)

≤ κ1(p0) exp(−κ2(p0)Nd−1) + 3dP(TN
2 ,N

(p))

≤ κ1(p0) exp(−κ2(p0)Nd−1) + 3dκN2d exp(−µ
2
N) .

Using Liggett, Schonmann and Stacey’s result, we know that there exists
a function p(N) depending only on N and p0, such that limN→∞ p(N) = 1
and for all p ≥ p0, (1{BN (i) is good})i∈Zd stochastically dominates a family of
independent Bernoulli random variables with parameter p(N).

Next, we have to build a short path with a length that we can easily control.
We now consider 0 and y ∈ Zd. We assume that there exists a p-open path
joining 0 and y. Let us denote by a(y) the indice of the N -box containing y.
Let n = ‖a(y)‖1 and A = (a0, . . . ,an) be a macroscopic path joining a0 = 0 to
an = a(y). The different sites ai may be nice or wrong. We denote by Wrong
the set of all wrong connected components on the macroscopic percolation given
by the states of the N -boxes. For i ∈ Z, we denote by Ci the element of Wrong
containing i with the convention Ci = ∅ if i is nice. We recall that ∂vC denotes
the exterior vertex boundary and is ∗-connected.
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Let us consider γ a path joining 0 and y that lies in A. Some of its edges
may be p-closed. Using the modification of a path of Lemma 3.1, we know we
can build a p-open path γ′ joining 0 and y by bypassing p-closed edges of γ.
Here the hypothesis that 0 and y belong to the infinite cluster Cp is replaced
by the hypothesis that there exists a p-open path joining these two points. Of
course, as nice boxes do not have the property (iii) of good boxes, we cannot
hope to get a precise upper bound of the length of γ′, this is the purpose of this
section. However, we can include γ′ in a bigger set of boxes whose size can be
controlled, see Figure 4. By slightly modifying the proof of Lemma 3.1, it is
easy to see that γ′ is included in the following set:

WA :=
⋃
a∈A

( ⋃
b∈∂vCa

B′N (b)

)
. (12)

We recall the convention ∂vCa = a if a is nice. Actually, the construction of
such a path in the original article [26] is slightly different. Instead of taking
connected wrong components they took ∗-connected wrong components. How-
ever the spirit of the proof remains the same. Here, we made the choice of being
consistent with the previous section. As γ′ ⊂WA we obtain

y

γ ⊂ A

γ′

0

: nice boxes

: the set of nice boxes (∂vC)C∈Wrong:A∩C 6=∅

: the set of wrong connected components C such that
A ∩ C 6= ∅

WA

Figure 4 – Construction of a path γ′ included in WA

{
β‖y‖1 ≤ DCp(0, y) < +∞

}
⊂ {|WA| ≥ β‖y‖1} , (13)

where |WA| denotes the number of edges inside the boxes of WA (and not the
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number of N -boxes in WA). As |∂vC| ≤ 2d|C|,

|WA| ≤ 3d(2N + 1)d

|A|+ ∑
C∈Wrong:A∩C 6=∅

|∂vC|


≤ 3d(2N + 1)d

n+ 1 + 2d
∑

C∈Wrong:A∩C 6=∅

|C|


≤ cdNd

n+ 1 +
∑

C∈Wrong:A∩C 6=∅

|C|

 (14)

where cd > 0 only depends on the dimension d. Using the stochastic minoration,
we get

P(β‖y‖1 ≤ DCp(0, y) < +∞) ≤ P

n+ 1 +
∑

C∈Wrong:A∩C 6=∅

|C| ≥ β‖y‖1
cNd


≤ Pp(N)

n+ 1 +
∑

C∈Wrong:A∩C 6=∅

|C| ≥ β‖y‖1
cdNd

 ,

(15)

where under Pp(N) the field (1BN (i) is p-nice)i∈Zd is i.i.d. with Bernoulli law
of parameter p(N). In the spirit of the work of Fontes and Newman [11],

we introduce (C̃(i))0≤i≤n an independent and identically distributed family of
random sets of Zd with the same law as C0 under Pp(N). We have the following
stochastic domination: ∑

C∈Wrong:A∩C 6=∅

|C| �
n∑
i=0

|C̃(i)| . (16)

Therefore, the right hand side of (15) is smaller than

Pp(N)

(
1

n+ 1

n∑
i=0

(|C̃(i)|+ 1) ≥ c−1
d N−d

β‖y‖1
n+ 1

)
. (17)

For N large enough, and for some h > 0,

Ep(N) [exp(h(|C0|+ 1))] <∞ . (18)

We fix N = N(p0, d) such that (18) holds. For ‖y‖1 large enough, ‖y‖1/(n+
1) ≥ N . Finally, we choose β = β(p0, d) large enough such that:

Ep(N) [|C0|+ 1] < βc−1N−d+1 . (19)

By Cramer’s theorem, the probability in (15) has an exponential decay in n
with constants depending only on p0 and d. And as n = ‖a(y)‖1, n is of the
order of ‖y‖1/N , the probability in (15) also exponentially decays in ‖y‖1.
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4.3 Conclusion

In this section, we want to deduce from the previous results an explicit form
for N in order to have the expected stochastic comparison.

Proposition 4.2. Let pc(d) < p0 and psitec (d) be the critical parameter for inde-
pendent Bernoulli site percolation on Zd. We consider p = 1− α ∈ (psitec (d), 1)

where α > 0. There exist two positive constants Ĉ0 and Ĉ1 depending only on
p0 and the dimension d, such that for N(p0, d,p) = N(p) = Ĉ0| logα|+ Ĉ1, for
any p ≥ p0 the field (1{BN (i) is p-good})i∈Zd stochastically dominates a family of
independent Bernoulli random variables with parameter p.

Proof. By Proposition 4.1, in order to get the stochastic comparison with an
i.i.d. field of Bernoulli random variable of parameter p, we need

P(BN is p-bad) ≤ (1−√p)
kd+1

.

As the function x →
√
x is concave, its curve is below its tangent in 1, we get√

x ≤ (x+ 1)/2 and
√

1− x ≤ 1− x/2. Therefore,

(1−√p)
kd+1

=
(
1−
√

1− α
)kd+1 ≥

(α
2

)kd+1

.

Thanks to Theorem 4.1, it is sufficient to choose N > C0 and such that

A(p0)e−B(p0)N =
(α

2

)kd+1

that is to say

N =
kd + 1

B(p0)
| logα|+ (kd + 1) log 2 + logA(p0)

B(p0)
+ C0 . (20)

5 Probabilistic estimates

We can now use the stochastic minoration by a field of independent Bernoulli
variables to control the probability that the quantity

∑
|C| is big, where the

sum is over all C ∈ Bad such that C∩Γ 6= ∅. The proof of the following Lemma
is in the spirit of the work of Cox and Kesten in [10] and relies on combinatorial
considerations. These combinatorial considerations were not necessary in [15].

We consider a path γ and its associated lattice animal Γ. We need in the
proof of the following Lemma to define Γ as a path of macroscopic sites, that is
to say a path (ik)k≤r in the macroscopic grid such that ∪k≤rBN (ik) = Γ (this
path may not be self-avoiding). We can choose for instance the sequence of sites
that γ visits. However, it is difficult to control the size of this sequence by the
size of Γ. Therefore, we consider the path of the macroscopic grid Γ̃ that was
introduced in Lemma 3.3.

Lemma 5.1. Let pc(d) < p0, let 0 < ε < 1 − pc(d) and psitec (d) be the critical
parameter for independent Bernoulli site percolation on Zd. There exists p(ε) =
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1−α(ε) ∈ (psitec (d), 1) and Cε ∈ (0, 1) depending only on ε, such that if we choose
N(p0, d,p(ε)) as in Proposition 4.2, then for all p ≥ p0 , for every n ∈ N∗

P

{|Γ̃| ≤ n} ∩
 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn


 ≤ Cnε

where Γ is the associated lattice animal of a path γ and Γ̃ the macroscopic path
given by Lemma 3.3.

Moreover, α(ε) = αdε
r where αd and r are constants depending only on d.

Proof. Let us consider a path γ, its associated lattice animal Γ and its associated
path on the macroscopic grid Γ̃ = (Γ̃(k))0≤k≤r such that γ ⊂ ∪rk=0B

′
N (Γ̃(k)).

We first want to include Γ̃ in a subset of the macroscopic grid. Of course, Γ̃ is
included in the hypercube of side 2r centered at Γ̃(0), but we need to have a
more precise control. Let K ≥ 1 be an integer that we will choose later. Let v
be a site, we denote by S(v) = {w ∈ Zd : ‖w− v‖∞ ≤ K} the hypercube of side
2K centered at v and by ∂S(v) = {w ∈ Zd : ‖w−v‖∞ = K} its inner boundary.

Γ̃Γ̃(0) = v(0)

Γ̃(r)

v(1)

v(2)

∂S(v(0))
∂S(v(1))

v(τ)∂S(v(τ))

2K

2K

Figure 5 – Construction of v(0), . . . , v(τ)

We define v(0) = Γ̃(0), p0 = 0. If p0, . . . , pk and v(0), . . . , v(k) are con-
structed, we define if any

pk+1 = min
{
i ∈ {pk + 1, . . . , r} : Γ̃(i) ∈ ∂S(v(k))

}
and v(k + 1) = Γ̃(pk+1). If there is no such index we stop the process. Since
pk+1−pk ≥ K, there are at most 1+r/K such pk. Notice that 1+r/K ≤ 1+n/K

on the event {|Γ̃| ≤ n}. We define τ = 1 + n/K. Therefore, on the event

{|Γ̃| ≤ n}, Γ̃ is contained in the union of those hypercubes:

D(v(0), . . . , v(τ)) =

τ⋃
i=0

S(v(i)) .

26



If we stop the process for a k < τ , we artificially complete the sequence until
attaining τ by setting for k < j ≤ τ , v(j) = v(k). See figure 5, the corridor
D(v(0), . . . , v(τ)) is represented by the grey section.

Noticing that for all 1 ≤ k ≤ r, there exists a j ≤ τ such that Γ̃(k) is in the

strict interior of S(v(j)), we get that Γ ⊂ ∪rk=1{j, j is ∗-connected to Γ̃(k)} ⊂
D(v(0), . . . , v(τ)). Thus,

P

{|Γ̃| ≤ n} ∩
 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn




≤ P

 ⋃
v(0),...,v(τ)

 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn and Γ ⊂ D(v(0), . . . , v(τ))




≤
∑

v(0),...,v(τ)

P

 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn and Γ ⊂ D(v(0), . . . , v(τ))



≤
∑

v(0),...,v(τ)

P

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| ≥ εn



≤
∑

v(0),...,v(τ)

Pp

 ∑
C∈Bad:

C∩D(v(0),...,v(τ)) 6=∅

|C| ≥ εn



where the sum is over all sites v(0), . . . , v(τ) satisfying v(0) = Γ(1), v(k +
1) ∈ ∂S(v(k)) ∪ {v(k)} for all 0 ≤ k < τ . We use for the last inequality the
stochastic comparison with an independent field of Bernoulli random variable of
parameter p = p(ε). Since ∂S(v) ∪ {v} contains at most (cdK)d−1 sites where
cd ≥ 1 is a constant depending only on the dimension, the sum contains at most

(cdK)(d−1)τ ≤ (cdK)
2n(d−1)

K := Cn2 terms for n large enough.
Let us recall that for a bad macroscopic site i, C(i) denotes the connected

cluster of bad macroscopic sites containing i. Let us notice that the following
event 

∑
C∈Bad:

C∩D(v(0),...,v(τ))6=∅

|C| ≥ εn


is included in the event: there exist an integer ρ and distinct bad macroscopic
sites i1, . . . , iρ ∈ D(v(0), . . . , v(τ)), disjoint connected components C̄1, . . . , C̄ρ
such that for all 1 ≤ k ≤ ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| ≥ εn.

For any fixed v(0), . . . , v(τ), D(v(0), . . . , v(τ)) contains at most (τ+1)(2K+
1)d ≤ (n/K + 2)(2K + 1)d ≤ 2n(3K)d := C3n macroscopic sites, therefore

P

{|Γ̃| ≤ n} ∩
 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn


 ≤
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∑
v(0),...,v(τ)

∑
j≥εn

C3n∑
ρ=1

Pp


There exist distinct sites

i1, . . . , iρ ∈ D(v(0), . . . , v(τ)) and disjoint
connected components C̄1, . . . , C̄ρ such that for
all 1 ≤ k ≤ ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| = j


There are at most

(
C3n
ρ

)
ways of choosing the sites i1, . . . , iρ.

In order to count the connected components, we know that there are at
most (7d)l lattice animals containing a given site and of size l. Thus, if we fix
the sites i1, . . . , iρ the number of possible choices of the connected components
C̄1, . . . , C̄ρ such that for all 1 ≤ k ≤ ρ, C(ik) = C̄k and

∑ρ
k=1 |C̄k| = j is at

most: ∑
j1,...,jρ≥1
j1+···+jρ=j

(7d)j1 · · · (7d)jρ = (7d)j
∑

j1,...,jρ≥1
j1+···+jρ=j

1 .

Next we need to estimate, for given sites i1, . . . , iρ and disjoint connected
components C̄1, . . . , C̄ρ, the probability that for all 1 ≤ k ≤ ρ, C(ik) = C̄k. Let
us recall that the probability for a site of being bad is α = α(ε) = 1 − p(ε).
Therefore,

Pp

(
C(ik) = C̄k, 1 ≤ k ≤ ρ

)
≤ P

(
∀1 ≤ k ≤ ρ, ∀j ∈ C̄k, j is bad

)
= α

∑ρ
i=1 |C̄k| .

Finally,

Pp

 There exist distinct sites i1, . . . , iρ ∈ D(v(0), . . . , v(τ))
and disjoint connected components C̄1, . . . , C̄ρ such that

for all 1 ≤ k ≤ ρ, C(ik) = C̄k and
∑ρ
k=1 |C̄k| = j


≤
(
C3n

ρ

)
(7dα)j

∑
j1,...,jρ≥1
j1+···+jρ=j

1 .

This implies

P

({
|Γ̃| ≤ n

}
∩

 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn


)

≤ Cn2
∑
j≥εn

(7dα)j
C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 .

Notice that

C3n∑
ρ=1

(
C3n

ρ

) ∑
j1,...,jρ≥1
j1+···+jρ=j

1 =
∑

j1,...,jC3.n
≥0

j1+···+jC3.n
=j

1 =

(
C3n+ j − 1

j

)
.

To bound those terms we will need the following inequality, for r ≥ 3, N ∈ N∗
and a real z such that 0 < ez(1 + r

N ) < 1:

∞∑
j=N

zj
(
r + j − 1

j

)
≤ ν

(ez(1 + r
N ))N

1− ez(1 + r
N )

(21)
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where ν is an absolute constant. The proof of this inequality was not present
in [10]. To show this inequality, we need a version of Stirling’s formula with
bounds: for all n ∈ N∗, one has

√
2π nn+ 1

2 e−n ≤ n! ≤ e nn+ 1
2 e−n ,

thus,

∞∑
j=N

zj
(
r + j − 1

j

)
=

∞∑
j=N

zj
(r + j − 1)!

j!(r − 1)!

≤
∞∑
j=N

zj
e (r + j − 1)r+j−

1
2 e−(r+j−1)

2π jj+
1
2 (r − 1)r−

1
2 e−(r+j−1)

=

∞∑
j=N

e

2π
zj
(
r + j − 1

j

)j (
r + j − 1

r − 1

)r− 1
2

j−
1
2

≤
∞∑
j=N

e

2π
zj
(

1 +
r

N

)j (
1 +

j

r − 1

)r−1(
1

j
+

1

r − 1

) 1
2

≤
∞∑
j=N

e

2π
zj
(

1 +
r

N

)j
e(r−1) log(1+j/(r−1))

≤
∞∑
j=N

e

2π
(ez)j

(
1 +

r

N

)j
=

e

2π

(ez(1 + r
N ))N

1− ez(1 + r
N )

where we use in the last inequality the fact that for all x > 0, log(1 + x) ≤ x.
Using the inequality (21) and assuming 0 < e7dα(ε)(1 + C3

ε ) < 1, we get,

P

{|Γ̃| ≤ n} ∩
 ∑
C∈Bad:C∩Γ6=∅

|C| ≥ εn


 ≤ Cn2 ∑

j≥εn

(7dα)j
(
C3n+ j − 1

j

)

≤ νCn2

[
e7dα(ε)(1 + C3

ε )
]εn

1− e7dα(ε)(1 + C3

ε )
.

Let us recall that C2 = (cdK)2(d−1)/K and C3 = 2(3K)d. We have to choose
K(ε), α(ε) and a constant 0 < Cε < 1 such that C2

[
e7dα(ε)(1 + C3

ε )
]ε
< Cε

that is to say

(cdK)
2(d−1)
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
< Cε . (22)

Note that the condition (22) implies the condition 0 < e7dα(ε)(1 + C3

ε ) < 1.
We fix K the unique integer such that 1

ε ≤ K < 1
ε + 1 ≤ 2

ε . We recall that
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ε < 1. Thus,

(cdK)
2(d−1)
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
≤ (cdK)

2d
K

[
e7dα(ε)

4(3K)d

ε

]ε
≤ exp

[
2d

K
log(cdK) + ε log

(
e7dα(ε)

4(3K)d

ε

)]
≤ exp

[
2dε log

(
2cd
ε

)
+ ε log

(
e7dα(ε)

4(3 2
ε )d

ε

)]

≤ exp

[
− 2dε log ε+ dε log(2cd) + ε log

(
4e(42)dα(ε)

1

εd+1

)]
.

We set

α(ε) = (2cd)
d εr

4e(42)d

where r is the smallest integer such that r ≥ 3d+ 2. We obtain

(cdK)
d
K

[
e7dα(ε)(1 +

2(3K)d

ε
)

]ε
≤ exp((r − (3d+ 1))ε log ε)

≤ exp(ε log ε) < 1 .

Remark 5.1. In order to have the control of Lemma 5.1, we only require that
p(ε) goes polynomially fast to 1. This is an improvement of [15] that requires
that p(ε) goes exponentially fast to 1. This is a key step to prove the announced
regularity of the time constant.

6 Time constant

Lemma 6.1. Let pc(d) < p ≤ q. Let us consider y, z ∈ Zd. We denote by Ey,z
the event that y, z ∈ Cp and the N -boxes containing y and z are good and belong
to an infinite cluster of good boxes. Then, for δ > 0

P

 Ey,z∩{
DCp(y, z) > DCq (y, z)

(
1 + ρdN

(
q−p
q + δ

))
+ ρdN

∑
C∈Bad:C∩Γ6=∅

|C|

} 
≤ e−2δ2‖z−y‖1 .

where Γ is the lattice animal of N -boxes visited by an optimal path γ between y
and z in Cq.

Proof. As y, z ∈ Cp ⊂ Cq, there exists a q-open path joining y to z, let γ be an
optimal one. Necessarily, we have |γ| ≥ ‖y− z‖1. We consider the modification
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γ′ given by Lemma 3.1. As γ′ is p-open,

DCp(y, z) < |γ′| ≤ |γ ∩ γ′|+ |γ′ \ γ|

≤ |γ|+ ρd

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|


≤ DCq (y, z) + ρd

N |γc|+N
∑

C∈Bad:C∩Γ6=∅

|C|

 . (23)

We want to control the size of γc. For that purpose, we want to introduce
a coupling of the percolations q and p, such that if any edge is p is open then
it is q is open, and we want the random path γ, which is an optimal q-open
path between y and z, to be independent of the p-state of any edge, i.e., any
edge is p-open or p-closed independently of γ. This is not the case when we use
the classic coupling with a unique uniform random variable for each edge. Here
we introduce two sources of randomness to ease the computations by making
the choice of γ independent from the p-state of its edges. We proceed in the
following way: with each edge we associate two independent Bernoulli random
variables V and Z of parameters respectively q and p/q. Then W = Z.V is also
a Bernoulli random variable of parameter p. This implies

P[W = 0|V = 1] = P[Z = 0|V = 1]

= P[Z = 0]

= 1− p

q

=
q − p
q

.

Thus, we can now bound the following quantity by summing on all possible self-
avoiding paths for γ. For short, we use the abbreviation s.a. for self-avoiding.

P

[
|γc| ≥ |γ|

(
q − p
q

+ δ

)]

=

∞∑
k=‖y−z‖1

∑
|r|=k

r s.a. path

P
[
γ = r, |γc| ≥ |γ|

(
q − p
q

+ δ

)]

=

∞∑
k=‖y−z‖1

∑
|r|=k

r s.a. path

P
[
γ = r, |rc| ≥ k

(
q − p
q

+ δ

)]

=

∞∑
k=‖y−z‖1

∑
|r|=k

r s.a. path

P
[
γ = r, |{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

)]

=

∞∑
k=‖y−z‖1

∑
|r|=k

r s.a. path

P [γ = r]P
[
|{e ∈ r : Z(e) = 0}| ≥ k

(
q − p
q

+ δ

)]
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≤
∞∑

k=‖y−z‖1

∑
|r|=k

r s.a. path

P [γ = r] e−2δ2k

≤ e−2δ2‖y−z‖1 (24)

where we use Chernoff bound in the second to last inequality (see Theorem 1
in [20]).

On the event Ey,z ∩
{
|γc| < |γ|

(
q−p
q + δ

)}
, by (23), we get

DCp(y, z) ≤ DCq (y, z) + ρd

N |γ|(q − p
q

+ δ

)
+N

∑
C∈Bad:C∩Γ6=∅

|C|


= DCq (y, z)

(
1 + ρdN

(
q − p
q

+ δ

))
+ ρdN

∑
C∈Bad:C∩Γ6=∅

|C|

and the conclusion follows.

Lemma 6.2. Let pc(d) < p0 ≤ p ≤ q and ε > 0, we choose p(ε) as in Lemma 5.1
and we set N(ε) = N(p0, d,p(ε)) as in Proposition 4.2. There exists p1(ε) > 0
such that for all x ∈ Zd with ‖x‖1 large enough,

P
(
DCp(0̃Cp , x̃Cp) ≤ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdε‖x‖1

)
≥ p1(ε)

where ηd > 0 is a constant depending only on d.

Proof. Let us fix ε > 0 and N = N(ε) for short. Fix an x ∈ Zd such that
‖x‖1 ≥ 18dN . Let Fx be the following event: the N -boxes containing 0 and
x and all the adjacent boxes belong to an infinite cluster of good boxes. Note
that any point in the same 3N -box as 0 or x is in a good box that belongs to
an infinite cluster of good boxes.

For any y in the same 3N -box as 0, for any z in the same 3N -box as x, we
recall that Ey,z denote the event that y, z ∈ Cp and the N -boxes containing y
and z belong to an infinite cluster of good boxes. Thus, ‖y − z‖1 ≤ ‖y‖1 +

‖x‖1 + ‖x− z‖1 ≤ 9dN + ‖x‖1 ≤ 2‖x‖1 and ‖y − z‖1 ≥ ‖x‖1 − 9dN ≥ ‖x‖12 .
We obtain

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)

)
+ 6εβρd‖x‖1

)
≤P[F cx ]

+ P

(
Fx∩{

DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)
(

1 + ρd
q−p
q N(ε)

)
+ 6εβρd‖x‖1

} )
=P[F cx ]

+
∑
y,z

P

(
Fx ∩ {0̃Cp = y, x̃Cp = z}∩{

DCp(y, z) ≥ DCq (y, z)
(

1 + ρd
q−p
q N(ε)

)
+ 6εβρd‖x‖1

} )
≤P[F cx ]
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+
∑
y,z

P

(
Ey,z∩{

DCp(y, z) ≥ DCq (y, z)
(

1 + ρd
q−p
q N(ε)

)
+ 3εβρd‖y − z‖1

} )
(25)

where the sum is over every y, z respectively belonging to the same 3N -box than
0 and x.

Using the stochastic comparison and the FKG inequality, we get:

P(Fx) ≥ θ2.3d

site,p(ε) > 0 (26)

where θsite,p(ε) denotes the probability for a site to belong to the infinite cluster
of i.i.d. Bernoulli site percolation of parameter p(ε).

On the event Ey,z, y, z ∈ Cp ⊂ Cq, we can consider γy,z a geodesic in Cq, and
let Γy,z be the set of boxes that γy,z visits. By Lemma 6.1, we have for every
δ > 0

P
(
Ey,z ∩

{
DCp(y, z) ≥ DCq (y, z)

(
1 + ρd

q − p
q

N(ε)

)
+ 3εβρd‖y − z‖1

})

≤P

 Ey,z ∩ {|γy,z| ≤ β‖y − z‖1}∩{
ρdN(ε)

(
DCq (y, z)δ +

∑
C∈Bad:C∩Γy,z 6=∅

|C|

)
≥ 3εβ‖y − z‖1

} 
+ P

[
Ey,z∩{

DCp(y, z) > DCq (y, z)
(

1 + ρdN
(
q−p
q + δ

))
+ ρdN

∑
|C|
} ]

+ P (Ey,z ∩ {|γy,z| > β‖y − z‖1})

≤P

 Ey,z ∩ {|γy,z| ≤ β‖y − z‖1}∩{ ∑
C∈Bad:C∩Γy,z 6=∅

|C| ≥ 3εβ‖y−z‖1
N(ε) − δ|γy,z|

} + e−2δ2‖y−z‖1

+ P (Ey,z ∩ {|γy,z| > β‖y − z‖1})

≤P

 Ey,z ∩ {|γy,z| ≤ β‖y − z‖1}∩{ ∑
C∈Bad:C∩Γy,z 6=∅

|C| ≥ |γy,z|( 3ε
N(ε) − δ)

} + e−2δ2‖y−z‖1

+ P (Ey,z ∩ {|γy,z| > β‖y − z‖1}) .

We set δ = ε/N(ε). We know by Lemma 3.3 that |Γ̃y,z| ≤ 1 + (|γy,z|+ 1)/N ≤
1 + 2|γy,z|/N . It implies

P
(
Ey,z ∩

{
DCp(y, z) ≥ DCq (y, z)

(
1 + ρd

q − p
q

N(ε)

)
+ 3εβρd‖y − z‖1

})
≤ P (Ey,z ∩ {|γy,z| > β‖y − z‖1}) + e−2(ε/N(ε))2‖y−z‖1

+ P

|Γ̃y,z| ≤ 1 +
2β‖y − z‖1

N
,

∑
C∈Bad:C∩Γy,z 6=∅

|C| ≥ ε2β‖y − z‖1
N

 . (27)

Moreover,

P (Ey,z ∩ {|γy,z| > β‖y − z‖1}) ≤ P(β‖y − z‖1 ≤ DCq (y, z) < +∞)

≤ Â exp(−B̂‖y − z‖1) . (28)
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Finally, using Lemma 5.1,

P

 |Γ̃y,z| ≤
(

1 +
⌊

2β‖y−z‖1
N

⌋)
,∑

C∈Bad:C∩Γy,z 6=∅
|C| ≥ ε

(
1 +

⌊
2β‖y−z‖1

N

⌋)  ≤ C2β‖y−z‖1/N(ε)
ε (29)

where Cε < 1.

Combining (25), (26), (27), (28) and (29), we obtain that

P
(
DCp(0̃Cp , x̃Cp) ≥ DCq (0̃Cp , x̃Cp)

(
1 + ρd

q − p
q

N(ε)

)
+ 6εβρd‖x‖1

)
≤ 1− θ2.3d

site,p(ε) +
∑
y,z

(
C2β‖y−z‖1/N(ε)
ε + Âe−B̂‖y−z‖1 + e−2ε2‖y−z‖1/N(ε)2

)
≤ 1− θ2.3d

site,p(ε) + 2(6N(ε) + 1)d
(
Cβ‖x‖1/N(ε)
ε + Âe−B̂‖x‖1/2 + e−ε

2‖x‖1/N(ε)2
)

≤ 1− p1(ε)

for an appropriate choice of p1(ε) > 0 and for every x large enough.

Proof of Theorem 1.6. Let ε > 0, δ > 0, p0 > pc(d) and x ∈ Zd, consider p1(ε)
as in Lemma 6.2 and q ≥ p ≥ p0.

With the convergence of the regularized times given by Proposition 2.1, we
can choose n large enough such that

P

(
µp(x)− δ ≤ DCp(0̃Cp , ñx

Cp)

n

)
≥ 1− p1(ε)

3

P

(
DCq (0̃Cp , ñx

Cp)

n
≤ µq(x) + δ

)
≥ 1− p1(ε)

3

P
(
DCp(0̃Cp , ñx

Cp) ≤ DCq (0̃Cp , ñxCp)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdεn‖x‖1

)
≥ p1(ε) .

The intersection of these three events has positive probability, we obtain on this
intersection

µp(x)− δ ≤ (µq(x) + δ)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdε‖x‖1 .

By taking the limit when δ goes to 0 we get

µp(x) ≤ µq(x)

(
1 + ρd

q − p
q

N(ε)

)
+ ηdε‖x‖1 .

By Corollary 2.1, we know that the map p → µp is non increasing. We also
know that µp(x) ≤ ‖x‖1µp(e1) for e1 = (1, 0, . . . , 0), for any p > pc(d) and any
x ∈ Zd. Thus, for every ε > 0,

µp(x)− µq(x) ≤ µq(x)ρd
q − p
q

N(ε) + ηdε‖x‖1

≤ µp0(e1)‖x‖1ρd
q − p
pc(d)

N(ε) + ηdε‖x‖1

≤ η′d(p0)‖x‖1(N(ε)(q − p) + ε)
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where η′d(p0) is a constant depending on d and p0.
Using the result of Proposition 4.2,

µp(x)− µq(x) ≤ η′d‖x‖1
((
Ĉ0| logα(ε)|+ Ĉ1

)
(q − p) + ε

)
. (30)

Following the result of Lemma 5.1, we set α(ε) := αdε
r where αd > 0 and

r ≥ 3d + 2 are constants depending only on d. By setting ε = q − p in the
inequality (30), we get

µp(x)− µq(x) ≤ η′d‖x‖1
(
Ĉ ′0(q − p)| log(q − p)|+ Ĉ ′1(q − p)

)
.

Then, there exists a constant η′′d > 0 (depending on d and p0) such that

µp(x)− µq(x) ≤ η′′d‖x‖1(q − p)| log(q − p)| .

As µp(x)− µq(x) ≥ 0 by Corollary 2.1, we obtain

|µp(x)− µq(x)| ≤ η′′d‖x‖1(q − p)| log(q − p)| . (31)

By homogeneity, (31) also holds for all x ∈ Qd. Let us recall that for all x, y ∈ Rd
and p ≥ pc(d),

|µp(x)− µp(y)| ≤ µp(e1)‖x− y‖1 , (32)

see for instance Theorem 1 in [6].
There exists a finite set (y1, . . . , ym) of rational points of Sd−1 such that

Sd−1 ⊂
m⋃
i=1

{x ∈ Sd−1 : ‖yi − x‖1 ≤ (q − p)| log(q − p)|} .

Let x ∈ Sd−1 and yi such that ‖yi − x‖1 ≤ (q − p)| log(q − p)|, we get

|µp(x)− µq(x)|
≤ |µp(x)− µp(yi)|+ |µp(yi)− µq(yi)|+ |µq(yi)− µq(x)|
≤ µp(e1)‖yi − x‖1 + η′′d‖yi‖1(q − p)| log(q − p)|+ µq(e1)‖yi − x‖1
≤ (2µp0(e1) + η′′d ) (q − p)| log(q − p)|

where we use equation (32) in the second to last inequality and the monotonicity
of the map p→ µp in the last inequality.

Proof of Corollary 1.1. Let p0 > pc(d). We consider the constant κd appearing
in the Theorem 1.6. Let p ≤ q in [p0, 1]. We recall the following definition of
the Hausdorff distance:

dH(Bµp ,Bµq ) = inf{r ∈ R+ : Bµp ⊂ Brµq and Bµq ⊂ Brµp}

where Er = {y : ∃x ∈ E, ‖y − x‖2 ≤ r}. Thus, we have

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∥∥∥∥ y

µp(y)
− y

µq(y)

∥∥∥∥
2

.
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Note that y/µp(y) (resp. y/µq(y)) is in the unit sphere for the norm µp (resp.
µq) (see Figure 6). Let us define µminp = infx∈Sd−1 µp(x). As the map p → µp
is uniformly continuous on the sphere Sd−1 (see Theorem 1.2 in [15],) the map
p→ µminp is also continuous and µmin = infp∈[p0,1] µ

min
p > 0. Finally

dH(Bµp ,Bµq ) ≤ sup
y∈Sd−1

∣∣∣∣ 1

µp(y)
− 1

µq(y)

∣∣∣∣
≤ sup
y∈Sd−1

1

µq(y)µp(y)
|µp(y)− µq(y)|

≤ sup
y∈Sd−1

1

(µmin)2
|µp(y)− µq(y)|

≤ κd
(µmin)2

(q − p)| log(q − p)| . (33)

y

y
µp(y)

y
µq(y)

S1

Bµq
Bµp 0

Figure 6 – Representation of S1, Bµp and Bµq

Remark 6.1. At this stage, we were not able to obtain Lipschitz continuous
property for p → µp. When p is very close to 1, we can avoid renormalization
and bypass bad edges at a microscopic scale as in [9]. However, even in that case,
we cannot obtain Lipschitz continuous regularity with the kind of combinatorial
computations made in section 5 when we do our bypasses at a microscopic scale.

7 Cheeger constant in dimension 2

The main step in the proof of Theorem 1.1 is the following lemma:
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Lemma 7.1. For every pc(2) < p0 < p1 < 1, there exists a constant κ depending
on p0 and p1 such that for all p ≤ q in [p0, p1]

sup
x∈S1
|βp(x)− βq(x)| ≤ κ(q − p)| log(q − p)|

where S1 denotes the Euclidean sphere.

Remark 7.1. Unlike the proof of Theorem 1.6, we don’t have the monotonicity
of the map p → βp. That is why we have an extra step in the proof of this
Lemma that we did not have in the proof of Theorem 1.6.

Proof. Let pc(2) < p0 ≤ p ≤ q. Let x ∈ S1 and n ∈ N, we denote by bnxc
the point y in Z2 which minimizes ‖nx− y‖1(with a deterministic rule to break
ties). Let x, y ∈ Z2, we recall that R(x, y) is the set of right-most paths joining
x and y, and for a path r, ∂+r denotes the set of right boundary edges of r.
For a path r ∈ R(x, y), let us denote by bp(r) = |{e ∈ ∂+r : e is p-open}| and
if x, y ∈ Cp, bp(x, y) = inf{bp(r) : r ∈ R(x, y), r is p-open}.

Step (i). Let y ∈ Z2. Let Fp0 be the event that 0 and y belong to Cp0 . On
the event Fp0 , we have 0, x ∈ Cp0 ⊂ Cp. On the event Fp0 , we want to bound the
quantity bq(γ̃p) − bp(γ̃p) where γ̃p is a random p-open path that achieves the
infimum in bp(0, y). Thus, the idea is to introduce a coupling of the percolations
of parameter p and q such that if an edge is p-open then it is q-open and γ̃p
is independent of the q-state of any edge. Unfortunately, we cannot find such
a coupling but we can introduce a coupling that almost has this property. To
do so, for each edge we consider two independent Bernoulli random variables U
and V of parameters p and (q − p)/(1− p). We say that an edge e is p-open if
U(e) = 1 and that it is q-open if U(e) = 1 or V (e) = 1. Indeed,

P[{U = 1} ∪ {V = 1}] = p+ (1− p)q − p
1− p

= q .

The random path γ̃p depends only on (U(e))e∈E. We can now bound the fol-
lowing quantity:

P

[
Fp0 ,bq(γ̃p)− bp(γ̃p) ≥ |∂+γ̃p|

(
q − p
1− p

+ δ

)]

=

∞∑
k=‖y‖1

∑
|r|=k

r s.a. path

P
[
Fp0 , γ̃p = r,bq(r)− bp(r) ≥ |∂+r|

(
q − p
1− p

+ δ

)]

=
∑
k

∑
|r|=k

P

[
Fp0 , γ̃p = r,

|{e ∈ ∂+r : (U(e), V (e)) = (0, 1)}| ≥ |∂+r|
(
q−p
1−p + δ

) ]

≤
∑
k

∑
|r|=k

P
[
Fp0 , γ̃p = r, |{e ∈ ∂+r : V (e) = 1}| ≥ |∂+r|

(
q − p
1− p

+ δ

)]

≤
∑
k

∑
|r|=k

P [Fp0 , γ̃p = r]P
[
|{e ∈ ∂+r : V (e) = 1}| ≥ |∂+r|

(
q − p
1− p

+ δ

)]

≤
∞∑

k=‖y‖1

∑
|r|=k

r s.a. path

P [Fp0 , γ̃p = r] e−2δ2|∂+r|
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≤ e−2δ2(‖y‖1/3−2) (34)

where in the second to last inequality we use Chernoff bound, and in the last
inequality we use the inequality of Lemma 2.2.

By Lemma 2.1, there exist C,C ′, α > 0 (depending on p0) such that ∀p ≥
p0, ∀n,

P

∃γ ∈ ⋃
x∈Zd

R(0, x) : |γ| > n , bp(γ) ≤ αn

 ≤ Ce−C′n . (35)

Let n ∈ N∗. Let us now set y = bnxc. On the event Fp0 , by Lemma 2.2,
we have bp(0, bnxc) ≤ 3DCp(0, bnxc) ≤ 3DCp0 (0, bnxc), thus using the result of

Lemma 4.2, we know there exist positive constant β, Â, B̂ depending only on p0

such that for all p ≥ p0 and x ∈ S1,

P[Fp0 ∩ {bp(0, bnxc) ≥ 3βn}] ≤ P[βn ≤ DCp0 (0, bnxc) <∞]

≤ Âe−B̂‖bnxc‖1

≤ Âe−B̂(cn−2) (36)

where in the last inequality, we use the fact that since norms in R2 are equivalent,
there exists a c > 0 such that for all x ∈ R2, c‖x‖2 ≤ ‖x‖1. As ‖bnxc‖1 ≥
‖nx‖1 − 2, we get ‖bnxc‖1 ≥ cn− 2. By the FKG inequality, we get

P(Fp0) ≥ θ2
p0 (37)

where θp0 denotes the probability that 0 belongs to the infinite cluster of a
Bernoulli bond percolation of parameter p0 on Z2 (θp0 = P[0 ∈ Cp0 ]).

Finally, combining (34), (35), (36) and (37) and fixing α′ = 3β/α (that
depends only on p0), we obtain for all pc(2) < p0 ≤ p ≤ q, for all x ∈ S1,

P
[
bq(0̃

Cq , b̃nxc
Cq

) > bp(0̃
Cp , b̃nxc

Cp
) + 3α′n

(
q − p
1− p

+ δ

)]
≤P[F cp0 ] + Pp[Fp0 ∩ {bp(0, bnxc) > 3βn}]

+ P[Fp0 ∩ {∃γ ∈ R(0, bnxc) : |γ| > α′n , bp(γ) ≤ 3βn}]

+ P
[
Fp0 ∩

{
|γ̃p| ≤ α′n , bp(γ̃p)− bq(γ̃p) ≥ 3α′n

(
q − p
1− p

+ δ

)}]
≤(1− θ2

p0) + Âe−B̂(cn−2) + Ce−C
′α′n

+ P
[
Fp0 ∩

{
bp(γ̃p)− bq(γ̃p) ≥ |∂+γ̃p|

(
q − p
1− p

+ δ

)}]

≤(1− θ2
p0) + Âe−B̂(cn−2) + Ce−C

′α′n + e−2δ2(‖bnxc‖1/3−2)

≤(1− θ2
p0) + Âe−B̂(cn−2) + Ce−C

′α′n + e−2δ2((n−2)/3−2)

where we use Lemma 2.2 in the third to last inequality and in the last inequality
we use the inequality ‖bnxc‖1 ≥ n− 2.
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For all δ > 0, there exists p2(δ) > 0 such that for n large enough,

P
[
bq(0̃

Cq , b̃nxc
Cq

) > bp(0̃
Cp , b̃nxc

Cp
) + 3α′n

(
q − p
1− p

+ δ

)]
≤ 1− p2(δ) .

Thus, we have using Proposition 2.2

βq(x) < βp(x) + 3α′
(
q − p
1− p

+ δ

)
.

By letting δ go to 0,

βq(x) ≤ βp(x) + 3α′
q − p
1− p

. (38)

Step (ii). We set α′′ = 6β/α = 2α′ (that still depends only on p0) so that
we will be able to apply Lemma 2.1 later. Let ε > 0 and let us consider a
given q-open path. Some of its edges may not be p-open, we want to modify
this path in order to obtain a p-open path that does not gain too many extra
right-boundary edges. We choose p(ε) as in Lemma 5.1 and with this choice
of p, we set N = N(ε) = N(p0, d,p(ε)) as in Proposition 4.2. Let F ′ be the
following event: the N -boxes containing 0 and bnxc and all the adjacent boxes
belong to an infinite cluster of good boxes. We denote by Ey,z the event that
y, z ∈ Cp and the N -boxes containing y and z belong to an infinite cluster of
good boxes. As in equation (25), we have

P

[
bp(0̃

Cp ,b̃nxc
Cp

) > bq(0̃
Cp , b̃nxc

Cp
) + 4α′′nρdN

(
q − p
q

+
3ε

N

)]
≤P[F ′c]

+
∑
y,z

P
[
Ey,z ∩

{
bp(y, z) > bq(y, z) + 4α′′nρdN

(
q − p
q

+
3ε

N

)}]
(39)

where the sum is over every y, z respectively belonging to the same 3N -box than
0 and bnxc. Using the stochastic comparison and the FKG inequality, we get
as in equation (26)

P(F ′) ≥ θ18
site,p(ε) . (40)

Let y, z ∈ Z2. On the event Ey,z, let γy,z ∈ R(y, z) be a q-open right-most
path from y to z such that bq(y, z) = bq(γy,z) and let Γy,z be the set of N -boxes
γy,z visits. For short, we write γ for γy,z. We keep the same notations as in
Lemma 3.1. On the event Ey,z, there exists a p-open path γ′ given by Lemma
3.1, such that

|γ′ \ γ| ≤ ρdN

 ∑
C∈Bad:C∩Γy,z 6=∅

|C|+ |γc|

 .

By construction, γ′ is a self-avoiding path. Since a self-avoiding path is also a
right-most path, then γ′ ∈ R(y, z). Note that bp(γ

′) ≤ bq(γ
′) ≤ bq(γ)+3|γ′\γ|.
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We can bound γc as in the proof of Lemma 6.1 by using the same coupling of
the percolations of parameter p and q. We obtain as in equation (24)

P
[
Ey,z ∩

{
|γc| ≥ |γ|

(
q − p
q

+ δ

)}]
≤ e−2δ2‖y−z‖1 . (41)

For all x ∈ S1 and for all n large enough such that ‖y−z‖1 ≤ ‖bnxc‖1+18N ≤ 2n
and ‖y − z‖1 ≥ ‖bnxc‖1 − 18N ≥ n/2, we have for all δ > 0 and ε > 0

P
[
Ey,z ∩

{
bp(y, z) > bq(y, z) + 4α′′nρdN

(
q − p
q

+
3ε

N

)}]
≤ P[Ey,z ∩ {bq(y, z) > 6βn}]

+ P [Ey,z ∩ {∃γ ∈ R(y, z) : |γ| > α′′n , bq(γ) ≤ 6βn}]

+ P
[
Ey,z ∩

{
|γc| ≥ |γ|

(
q − p
q

+ δ

)}]

+ P

 Ey,z ∩ {|γ| ≤ α′′n}

∩

{
N

(
α′′nδ +

∑
C∈Bad:C∩Γy,z 6=∅

|C|

)
≥ 4α′′nε

}  . (42)

By Lemma 3.3, we know that |Γ̃y,z| ≤ 1 + (|γy,z|+ 1)/N ≤ 1 + 2|γy,z|/N , thus
by choosing δ = ε/N , we obtain

P

 Ey,z ∩ {|γ| ≤ α′′n}

∩

{
N

(
α′′nδ +

∑
C∈Bad:C∩Γy,z 6=∅

|C|

)
≥ 4α′′nε

} 
= P

Ey,z ∩ {|γ| ≤ α′′n} ∩
α′′n3ε

N
≤

∑
C∈Bad:C∩Γy,z 6=∅

|C|




≤ P

|Γ̃y,z| ≤ (1 +
2α′′n

N

)
,

(
1 +

2α′′n

N

)
ε ≤

∑
C∈Bad:C∩Γy,z 6=∅

|C|


≤ C2α′′n/N

ε (43)

where Cε < 1 is defined in Lemma 5.1.
On the event Ey,z, bq(y, z) ≤ 3DCq (y, z) as y, z ∈ Cp ⊂ Cq and |∂+γ| ≤ 3|γ|.

Thus,

P[Ey,z ∩ {bq(y, z) > 6βn}] ≤ P[β‖y − z‖1 ≤ 2βn ≤ DCq (y, z) <∞]

≤ Âe−B̂‖y−z‖1 (44)

where Â and B̂ are defined in Lemma 4.2 and depend only on p0.
Combining (35),(41),(42),(43) and (44), we get

P
[
Ey,z ∩

{
bp(y, z) > bq(y, z) + 4α′′nρdN

(
q − p
q

+
3ε

N

)}]
≤ Âe−B̂n/2 + Ce−C

′α′′n + e−ε
2n/N2

+ C2α′′n/N
ε . (45)
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Finally, combining equations (39), (40) and (45):

P

[
bp(0̃

Cp , b̃nxc
Cp

) > bq(0̃
Cp , b̃nxc

Cp
) + 4α′′nρdN

(
q − p
q

+
3ε

N

)]
≤ 1− θ18

site,p(ε)

+ 2(6N + 1)2
(
Âe−B̂n/2 + Ce−C

′α′′n + e−ε
2n/N2

+ C2α′′n/N
ε

)
≤ 1− p3(ε)

for an appropriate p3(ε) > 0 and n large enough. Using Proposition 2.2, for
every x ∈ S1, we obtain

βp(x) ≤ βq(x) + 3α′′ρdN(ε)

(
q − p
q

+
3ε

N(ε)

)
. (46)

Step (iii) By Proposition 4.2, we obtain N(p) = Ĉ0| logα| + Ĉ1. With
the choice α(ε) = α2ε

8 as in Lemma 5.1, we obtain N(ε) = N(p0, d,p(ε)) =

6Ĉ0| log ε|+ Ĉ ′1 where Ĉ ′1 is a constant. We fix pc(d) < p0 < p1 < 1. Let p ≤ q
in [p0, p1]. Combining equations (38) and (46), and setting ε = q− p as in (30),
we similarly deduce that for all x ∈ S1

|βp(x)− βq(x)| ≤ κ(q − p)| log(q − p)|

where κ is a constant depending on p0 and p1. The conclusion follows.

Remark 7.2. The choice of the coupling with V a Bernoulli random variable of
parameter (q−p)/(1−p) makes the term 1/(1−p) appear. Because of this term,
we have to consider a parameter p away from 1 in the statement of Theorem
1.1. That is the technical reason of the upper bound p1 that was not present
for the study of the time constant. We do not know if it is just a technical issue
or if the map p→ βp does not have nice regularity properties at 1.

Proof of Theorem 1.1. Let pc(2) < p0 < p1 < 1 and κ be the constant defined
in Lemma 7.1. Let p < q ∈ [p0, p1] and λ be a rectifiable Jordan curve, with
Leb(int(λ)) = 1. Recall that

lenβp(λ) = sup
N≥1

sup
0≤t0<···<tN≤1

N∑
i=1

βp

(
λ(ti)− λ(ti−1)

‖λ(ti)− λ(ti−1)‖2

)
‖λ(ti)− λ(ti−1)‖2 .

Thus

lenβp(λ)− lenβq (λ)

≤ sup
N≥1

sup
0≤t0<···<tN≤1

N∑
i=1

(
βp

(
λ(ti)− λ(ti−1)

‖λ(ti)− λ(ti−1)‖2

)
− βq

(
λ(ti)− λ(ti−1)

‖λ(ti)− λ(ti−1)‖2

))
× ‖λ(ti)− λ(ti−1)‖2

≤ sup
x∈S1
|βp(x)− βq(x)| len‖.‖2(λ)

≤ κ(q − p)| log(q − p)| len‖.‖2(λ)
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where we use Lemma 7.1 in the last inequality. We proceed similarly for
lenβq (λ)− lenβp(λ), we obtain

| lenβq (λ)− lenβp(λ)| ≤ κ(q − p)| log(q − p)| len‖.‖2(λ) . (47)

The infimum in Theorem 2.1 is achieved (by compactness of the set of Lip-
schitz curves), so let us denote by λp (respectively λq) a rectifiable Jordan
curve such that Leb(int(λp)) = 1 and lenβp(λp) =

√
2θp limn→∞ nϕn(p) (re-

spectively Leb(int(λq)) = 1 and lenβq (λq) =
√

2θq limn→∞ nϕn(q)). As βp and
βq are norms and all the norms in R2 are equivalent, from lenβp(λp) < ∞ and
lenβq (λq) < ∞, we can deduce that len‖.‖2(λp) < ∞ and len‖.‖2(λq) < ∞. We
have

lim
n→∞

nϕn(p) =
lenβp(λp)√

2θp

≥
lenβq (λp)− κ(q − p)| log(q − p)| len‖.‖2(λp)√

2θp

≥
lenβq (λq)√

2θq
−
κ(q − p)| log(q − p)| len‖.‖2(λp)√

2θp0

≥ lim
n→∞

nϕn(q)−
κ(q − p)| log(q − p)| len‖.‖2(λp)√

2θp0
(48)

where we use equation (47), that λq is a minimizer for lenβq and that the map
p→ θp is non decreasing.

The map p → θp is infinitely differentiable, see for instance Theorem 8.92
in [18]. As θp is positive for p in [p0, p1], the map p→ 1/θp is differentiable on
the compact [p0, p1] and therefore is also Lipschitz on [p0, p1]. There exists a
constant L depending on p0, p1 such that for all p ≤ q in [p0, p1]∣∣∣∣ 1

θp
− 1

θq

∣∣∣∣ ≤ L(q − p) . (49)

Thus,

lim
n→∞

nϕn(p) ≤
lenβp(λq)√

2θp

≤
lenβq (λq) + κ(q − p)| log(q − p)| len‖.‖2(λq)√

2θp

≤
lenβq (λq)√

2θp
+
κ(q − p)| log(q − p)| len‖.‖2(λq)√

2θp0

≤
lenβq (λq)√

2θq
+

L√
2

(q − p) lenβq (λq) +
κ(q − p)| log(q − p)| len‖.‖2(λq)√

2θp0

≤ lim
n→∞

nϕn(q) +

(
L√
2

lenβq (λq) +
κ len‖.‖2(λq)√

2θp0

)
(q − p)| log(q − p)| .

(50)

Let βminq = infx∈S1 βq(x). By Lemma 7.1, the map q → βminq is continuous.

We denote by βmin > 0 its infimum on the compact [p0, p1]. By definition
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of the length, len‖.‖2(λq) ≤ lenβq (λq)/β
min. Moreover, by Theorem 1.1 in

[15], we know that the map q → lenβq (λq) is continuous. Thus, the quantity
supu∈[p0,p1] lenβu(λu) is finite. Finally,

lim
n→∞

nϕn(p) ≤ lim
n→∞

nϕn(q)

+

(
sup

u∈[p0,p1]

lenβu(λu)

)(
L+

κ

βmin
√

2θp0

)
(q − p)| log(q − p)| .

(51)

From equation (48), we obtain

lim
n→∞

nϕn(p) ≥ lim
n→∞

nϕn(q)−
κ(q − p)| log(q − p)| len‖.‖2(λp)√

2θp0

≥ lim
n→∞

nϕn(q)−
κ(q − p)| log(q − p)| lenβp(λp)

βmin
√

2θp0

≥ lim
n→∞

nϕn(q)−
κ
(

supu∈[p0,p1] lenβu(λu)
)

βmin
√

2θp0
(q − p)| log(q − p)| .

(52)

Thus, combining (51) and (52), we deduce the existence of a constant ν
depending only on p0 and p1, such that

lim
n→∞

n|ϕn(p)− ϕn(q)| ≤ ν(q − p)| log(q − p)| .

Proof of Theorem 1.2. Let pc(2) < p0 < p1 < 1 and let p ≤ q in [p0, p1]. We
consider β∗p the dual norm of βp, defined by

∀x ∈ R2, β∗p(x) = sup{x · z : βp(z) ≤ 1} .

Then β∗p is a norm. The Wulff crystal associated with βp is in fact the unit ball
associated with β∗p .

Note that the supremum is always achieved for a z such that βp(z) = 1. Let
x ∈ R2. Let y ∈ S1 be the direction that achieves the supremum for β∗p(x), thus
we have

β∗p(x) = x · y

βp(y)

and

β∗p(x)− β∗q (x) ≤ x · y

βp(y)
− x · y

βq(y)

= x ·
(

y

βp(y)
− y

βq(y)

)
≤ ‖x‖2‖y‖2
βp(y)βq(y)

|βp(y)− βq(y)|

≤ ‖x‖2
(βmin)2

sup
z∈S1
|βp(z)− βq(z)|

≤ ‖x‖2
(βmin)2

κ(q − p)| log(q − p)|
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where βmin was defined in the proof of Theorem 1.2 and where we use the
Lemma 7.1. We proceed similarly for β∗q (x)− β∗p(x), we obtain

|β∗p(x)− β∗q (x)| ≤ ‖x‖2
(βmin)2

κ(q − p)| log(q − p)|

and finally

sup
x∈S1
|β∗p(x)− β∗q (x)| ≤ κ

(βmin)2
(q − p)| log(q − p)| . (53)

As the Wulff crystal is the unit ball associated with β∗p , we can deduce the
following result for the Wulff crystal Wp as in equation (33)

dH(Wp,Wq) ≤
κ

(βmin)4
(q − p)| log(q − p)| . (54)

8 Modified Cheeger constant in dimension d ≥ 3

In order to prove Theorems 1.3 and 1.4, we need to first adapt a proof of
Zhang in [33] and to prove that the function p → βp is uniformly Lipschitz
continuous on any interval included in (pc(d), 1) (see Theorem 1.5). Except the
subsection 8.1, this section is very similar to section 7, it uses the same kind of
arguments but for higher dimension.

8.1 Adaptation of the Theorem 2 in [33]

In [33], Zhang obtained a control on the size of smallest minimal cutset
corresponding to maximal flows in general first passage percolation, but his
control depends on the distribution G of the variables (t(e))e∈Ed associated
with the edges. We only consider probability measures G′p = pδ1 + (1− p)δ0 for
p > pc(d), but we need to adapt Zhang’s proof in this particular case to obtain
a control that does not depend on p anymore. More precisely, let us denote by
Nn,p the size of the smallest cutset that achieves the infimum in τp(n,

−→v ). We
have the following control on Nn,p.

Theorem 8.1 (Adaptation of Theorem 2 in [33]). Let p0 > pc(d). There exist
constants C1, C2 and α that depend only on d and p0 such that for all p ∈ [p0, 1],
for all n ∈ N∗,

Pp
[
Nn,p > αnd−1

]
≤ C1 exp(−C2n

d−1) .

Remark 8.1. The proof is going to be simpler than the proof of Theorem 2 in
[33], because passage times in our context can take only values 0 or 1. We recall
that we say that an edge is closed if its passage time is 0, otherwise we say it is
open.

Let us first explain the idea behind that theorem. We can extend the notion
of cutset defined in section 1.3 to sets that cut a given set from infinity. The
capacity of a cutset E corresponds to |E|o,p, i.e., the number of p-open edges
in E. We say that a cutset is a minimal cutset if it is a cutset of minimal
capacity. We want to bound the size of the smallest minimal cutset that cuts a
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given set of vertices V from infinity. Let us consider C(V ) the set that contains
all the vertices that are connected to V by an open path. On the event that
there exists a cutset of null capacity that cuts S to infinity, the set C(V ) is finite
and its edge boundary is a cutset of null capacity. However, this cutset may
be very big and may contain too many extra edges. From this cutset, we want
to build a ”smoother” and so smaller one. We do renormalization at a scale t
to be defined later, and we exhibit a set of boxes Γt that contain the exterior
edge boundary of C(V ) and contain a cutset of null capacity. By construction,
each box of Γt has at least one ∗-neighbor in which an atypical event occurs (an
event of probability that goes to 0 when t goes to infinity). As these events are
atypical, we expect that Γt does not contain too many boxes.

As we are in a supercritical Bernoulli percolation, there is a set of measure
close to 1 such that for any configuration ω in this set, a minimal cutset E has
positive capacity, i.e., contains open edges. To be able to do the construction
of Γt even so, we slightly modify the configuration ω by closing all the open
edges in E. This modification of ω allow us to build Γt and when we reopen
the edges we have closed, some boxes of Γt remain unchanged, atypical events
still occur. The number of boxes in Γt that change is upperbounded by the
number of edges we have closed. As it is easy to bound this number of edges we
have closed, we can obtain an upper bound on Γt by doing some combinatorial
considerations on the number of boxes where an atypical event occurs. We can
deduce an upperbound on the size of the minimal cutset Γ that belongs to Γt.

As the original proof is very technical, the adaptation of the proof is also
technical. This proof is independent of the remaining of the paper, the reader
may very well skip this proof.

Adaptation of the proof of Theorem 2 in [33] to get Theorem 8.1. We keep the
same notations as in [33]. The following adaptation is not self-contained Let
p0 > pc(d) and −→v ∈ Sd−1. First notice that the construction of a linear cutset
in section 2 of [33] is not specific to the set B(k,m) and can be defined in
the same way for any set of vertices. In particular we can replace B(k,m)
by C ′1(nS(−→v ), n) and ∞ by C ′2(nS(−→v ), n). We denote by C(n) the set that
corresponds to C(k,m) defined in Lemma 1 in [33]:

C(n) = {v ∈ Zd : v is connected by an open path to C ′1(nS(−→v ), n)} .

We denote by G(n) the event that C(n) ∩ C ′2(nS(−→v ), n) = ∅ (it corresponds to
G(k,m) in [33]). On this event, there exists a closed cutset that cuts C ′1(nS(−→v ), n)
from C ′2(nS(−→v ), n).

Thanks to the work we did in section 4.2 and in particular in Lemmas 4.1
and 4.2, the constants in Lemma 6 and 7 in [33] can be chosen such that they
only depend on p0 and d. The collection (Bt(u))u∈Zd is a partition of Zd into
boxes of size t, B̄t(u) =

⋃
v∼uBt(u) and the t-cubes in B̄t(u) are precisely Bt(u)

and Bt(v) for v ∼ u. Let p ≥ p0, we say that Bt(u) has a p-disjoint property
if there exist two disconnected p-open clusters in B̄t(u), both with vertices in
Bt(u) and in the boundary of B̄t(u). We say that Bt(u) has a p-blocked property
if there is a p-open cluster in B̄t(u) with vertices in Bt(u) and in the boundary
of B̄t(u), but without vertices in a t-cube of B̄t(u). Note that if Bt(u) has a
p-disjoint property and B̄t(u) has a p-crossing cluster, then there is a p-open
cluster of diameter greater than t different from the p-crossing cluster, so there
is a t-cube in B̄t(u) where the event Tt/2,t(p) (as defined in [18] Lemma 7.104)
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occurs. Similarly, if Bt(u) has a p-blocked property and B̄t(u) has a p-crossing
cluster, then there is a t-cube in B̄t(u) where the event Tt/2,t(p) occurs. Thus,

P[Bt(u) has a p-disjoint property] ≤ P[B̄t(u) does not have a p-crossing cluster]

+ P
[

Bt(u) has a p-disjoint property
and B̄t(u) has a p-crossing cluster

]
≤ κ1(p0) exp(−κ2(p0)td−1) + 3dP[Tt/2,t(p)]

≤ κ1(p0) exp(−κ2(p0)td−1)

+ κ(p0)3dt2d exp(−µ(p0)t/2)

and

P[Bt(u) has a p-blocked property] ≤ P[B̄t(u) does not have a p-crossing cluster]

+ P
[

Bt(u) has a p-blocked property
and B̄t(u) has a p-crossing cluster

]
≤ κ1(p0) exp(−κ2(p0)td−1) + 3dP[Tt/2,t(p)]

≤ κ1(p0) exp(−κ2(p0)td−1)

+ κ(p0)3dt2d exp(−µ(p0)t/2) .

Let p > p0, as we only focus here on the edges inside B(n,−→v ), we can use
the probability measure Pp,n(·) which is the product measure on the edges of
B(n,−→v ). As a corollary of Lemma 4.1 in [28], there exists a deterministic cutset
E that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) such that |E| ≤ cd(2n)d−1 where
cd depends only on d but not on −→v . Thus, we obtain that τp(n,

−→v ) ≤ |E| ≤
cd(2n)d−1. We denote by En,p the cutset that achieves the infimum in τp(n,

−→v )
and such that |En,p| = Nn,p (En,p corresponds to W (k,m) in [33]).

For a configuration ω, we denote by e1, . . . , eJ(ω) the p-open edges in En,p.

We have J(ω) = τp(n,
−→v )(ω) ≤ cd(2n)d−1. Assume that all the edges outside

B(n,−→v ) are closed, it will not affect the probability measure Pp,n. We denote
by σ(ω) the configuration which coincides with ω except in edges e1, . . . , eJ(ω)

where the passage time is equal to 0. Thus, the set En,p(σ(ω)) is a p-closed (for
the configuration σ(ω)) cutset that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n). Note
that the set of edges En,p(σ(ω)) is determined by the configuration ω whereas
we consider its capacity for σ(ω). The event G(n) occurs in the configuration
σ(ω) and we can use the construction of section 2 in [33]: Γt contains a p-closed
(for σ(ω)) cutset Γ that cuts C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) and is contained
in B(n,−→v ) (see Lemma 4 in [33]). We write Γ(ω) when we consider the edge
set Γ with its edges capacities determined by the configuration ω.

We now change σ(ω) back to ω, the passage time of ei changes from 0 to 1.
Γ(ω) as a vertex set exists, it is still a cutset but it is no longer closed, all edges
in Γ(ω) except the ei are closed. Therefore, |Γ(ω)|o,p ≤ J(ω), but by definition
of En,p, we have J(ω) = |En,p(ω)|o,p ≤ |Γ(ω)|o,p ≤ J(ω) and |Γ(ω)|o,p = J(ω).
Moreover, for each ω, by definition of Nn,p(ω), we get that |Γ(ω)| ≥ Nn,p(ω).

Any cube Bt(u) that intersects the boundary of nA belongs to Γt as it also
intersects ∂eC(n). Thanks to this remark, we avoid the part of Zhang’s proof
where he tries to find a vertex z in the intersection between the cutset W (k,m)
and a line L in order to find a cube that is in Γt. Thus, the term exp(β−1n) in
(6.19) is not necessary.
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Note that for the t-cubes Bt(u) in the boundary of B(n,−→v ), we cannot be
sure that there exists a t-cube in B̄t(u) with a blocked or disjoint property,
but the number of boxes that intersect the boundary of B(n,−→v ) is bounded by
Cd,tn

d−1 where Cd,t depends only on d and t. Thus, if the number of t-cubes
in Γt is greater than βnd−1, then the number of t-cubes in Γt that does not
intersect the boundary and that does not contain any edge among e1, . . . , eJ is
greater than (β − Cd,t − 2d−1cd)n

d−1. All these t-cubes have at least one ∗-
neighbor with a blocked or disjoint property. This leads to small modifications
of constants in the proof of [32]. The remaining of the proof is the same.

8.2 Regularity of the norm βp

In this section, we prove Theorem 1.5. We are going to use a proof quite
similar to what we have done in section 7. Note that an important difference
between βp and the definition of the norm in dimension 2 is that we do not
require the cutsets we consider to be open. In dimension 2, we require that the
right-most paths in the definition of the norm are open, this is the reason why
we need to perform a renormalization step. The proof is easier in dimension
d ≥ 3.

Our strategy is the following, we easily get that βp ≤ βq by properly coupling
the percolations of parameters pc(d) < p < q. The second inequality requires
more work.

We denote by En,p the random cutset of minimal size that achieves the
minimum in the definition of τp(n,

−→v ). By definition, as En,p is a cutset, we can
upperbound τq(n,

−→v ) by the number of edges in En,p that are q-open, which we
expect to be at most τp(n,

−→v ) +C(q− p)|En,p| where C is a constant. We next
need to get a control of |En,p| which is uniform in p of the kind cd(2n)d−1 where
cd does not depend on p. We can only hope a uniform control for all p ∈ [p0, 1]
with p0 > pc(d). This uniform control is given by Theorem 8.1.

Proof of Theorem 1.5. Let pc < p0 < p1 < 1,−→v ∈ Sd−1, and p, q such that
p0 < p < q < p1. First, we fix a cube B(n,−→v ) and we couple the percolations
of parameters p and q in the standard way, i.e., we consider the i.i.d. family
(U(e))e∈Ed distributed according to the uniform law on [0, 1] and we say that
an edge e is p-open (resp. q-open) if U(e) ≥ p (resp. U(e) ≥ q). Thanks to this
coupling, we easily obtain that τp(

−→v , n) ≤ τq(−→v , n) and by dividing by (2n)d−1

and letting n go to infinity we conclude that

βp(
−→v ) ≤ βq(−→v ) . (55)

Let En,p be a random cutset of minimal size that achieves the minimum in the
definition of τp(n,

−→v ). We take the same coupling as in Lemma 7.1 step (i). Let
δ > 0. We have,

P
[
τq(n,

−→v ) > τp(n,
−→v ) +

(
q − p
1− p

+ δ

)
αnd−1, Nn,p < αnd−1

]
≤ P

[
τq(n,

−→v )− τp(n,−→v ) >

(
q − p
1− p

+ δ

)
|En,p|

]
≤
∑
E

P
[
En,p = E , #{e ∈ E : (U(e), V (e)) = (0, 1)} >

(
q − p
1− p

+ δ

)
|E|
]
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≤
∑
E

P[En,p = E ]P
[
#{e ∈ E : V (e) = 1} >

(
q − p
1− p

+ δ

)
|E|
]

≤ exp(−2δ2nd−1) (56)

where the sum is over all sets E that cut C ′1(nS(−→v ), n) from C ′2(nS(−→v ), n) in
B(n,−→v ) and where we use in the last inequality Chernoff bound and the fact
that |En,p| ≥ nd−1 (uniformly in −→v ).

Finally, using inequality (56) and Theorem 8.1, we get

E[τq(n,
−→v )] ≤ E[τq(n,

−→v )1Nn,p<αnd−1 ] + E[τq(n,
−→v )1Nn,p≥αnd−1 ]

≤ E[τp(n,
−→v )] +

(
q − p
1− p

+ δ

)
αnd−1

+ |B(n,−→v )|
(
exp(−2δ2nd−1) + C1 exp(−C2n

d−1)
)

≤ E[τp(n,
−→v )] +

(
q − p
1− p

+ δ

)
αnd−1

+ Cd(2n)d
(
exp(−2δ2nd−1) + C1 exp(−C2n

d−1)
)
,

where Cd is a constant depending only on d. Dividing by (2n)d−1 and by letting
n go to infinity, we obtain

βq(
−→v ) ≤ βp(−→v ) +

(
q − p
1− p

+ δ

)
α

2d−1
(57)

and by letting δ goes to 0,

βq(
−→v ) ≤ βp(−→v ) + κ(q − p) (58)

where κ = α/((1− p1)2d−1).
Combining inequalities (55) and (58), we obtain that

sup
−→v ∈Sd−1

|βq(−→v )− βp(−→v )| ≤ κ|q − p| . (59)

8.3 Proof of Theorem 1.3

This proof uses the same arguments as in section 7. In the following Wp

denotes the Wulff crystal for the norm βp such that Ld(Wp) = 2d/d!. First,
let us compute some useful inequalities. For any set E ⊂ Rd with Lipschitz
boundary, by Theorem 1.5, we have

|Ip(E)− Iq(E)| =
∣∣∣∣∫
∂E

(βp(νE(x))− βq(νE(x)))Hd−1(dx)

∣∣∣∣
≤
∫
∂E

|βp(νE(x))− βq(νE(x))|Hd−1(dx)

≤ κ|q − p|Hd−1(∂E) . (60)

Thanks to Theorem 1.5, we know that the function p → βp is uniformly
continuous on [p0, p1]. We denote by βmin and βmax its minimal and maximal
value, i.e., for all −→v ∈ Sd−1 and p ∈ [p0, p1], we have

βmin ≤ βp(−→v ) ≤ βmax .
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Using this inequality and the fact that the Wulff crystal is a minimizer for an
isoperimetric problem, we get

Ip(Wp) ≤ Ip(Wp0)

=

∫
∂Wp0

βp(νWp0
(x))Hd−1(dx)

≤
∫
∂Wp0

βmaxHd−1(dx)

≤ Hd−1(∂Wp0)βmax . (61)

We also have

Hd−1(∂Wp) =

∫
∂Wp

Hd−1(dx)

≤
∫
∂Wp

βp(νWp(x))

βmin
Hd−1(dx)

≤ Ip(Wp)

βmin

≤ Ip(Wp0)

βmin

≤ H
d−1(∂Wp0)βmax

βmin
. (62)

Finally, we obtain combining (60), (61), (62) and (49),

lim
n→∞

nϕ̂n(p) =
Ip(Wp)

θp(d)Ld(Wp)

≥ Iq(Wp)− κ|q − p|Hd−1(∂Wp)

θp(d)Ld(Wp)

≥ Iq(Wq)

θq(d)Ld(Wq)
− κ|q − p|Hd−1(∂Wp)

θp(d)Ld(Wq)

≥ lim
n→∞

nϕ̂n(q)− κ d!βmaxHd−1(∂Wp0)

2dθp0(d)βmin
|q − p| , (63)

and,

lim
n→∞

nϕ̂n(p) =
Ip(Wp)

θp(d)Ld(Wp)

≤ Ip(Wq)

θp(d)Ld(Wp)

≤ Iq(Wq) + κ|q − p|Hd−1(∂Wq)

θp(d)Ld(Wq)

≤ Iq(Wq)

Ld(Wq)

(
1

θq(d)
+ L|q − p|

)
+
κ d!Hd−1(∂Wq)

2dθp0(d)
|q − p|

≤ lim
n→∞

nϕ̂n(q) +

(
LIq(Wq)d!

2d
+
κ d!Hd−1(∂Wq)

2dθp0(d)

)
|q − p|
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≤ lim
n→∞

nϕ̂n(q) +
d!Hd−1(∂Wp0)βmax

2d

(
L+

κ

θp0(d)βmin

)
|q − p|.

(64)

Thus combining (63) and (64), we get

lim
n→∞

n|ϕ̂n(q)− ϕ̂n(p)| ≤ νd|q − p| (65)

where νd = d!Hd−1(∂Wp0)βmax
(
L+ κ/(θp0(d)βmin)

)
/2d.
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