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Abstract: This paper deals with air-fuel ratio control for a gasoline combustion engine. The
proposed approach is based on tracking of fuel mass flow reference using a nonlinear model of air
and fuel path dynamics in cylinder. To maintain the model accuracy while keeping its complexity
on an acceptable level, we propose to employ an optimal piecewise affine approximation of the
derived nonlinear model, covering the entire operating range of the real system. The resulting
hybrid model is subsequently used for model predictive control synthesis, where the formulated
optimization problem is solved online by mixed-integer quadratic programming. To evaluate the
tradeoff between complexity and performance of the obtained controller, it is compared with
the one obtained by nonlinear programming exploiting the full nonlinear model. The simulation
results show that even a relatively low-complex approximation leads to a satisfactory air-fuel
ratio control performance while allowing for potential practical implementation on a real engine.

Keywords: gasoline engine, air-fuel ratio control, piecewise affine model, hybrid model
predictive control

1. INTRODUCTION

Over the last few decades the ever-decreasing cost/power
ratio of micorcontroller units and memory chips has en-
abled the car manufacturers to implement more and more
advanced and computationally demanding control strate-
gies. Starting with the most basic ones—using static maps
and PID feedback loops from sensors—to optimal, model-
based control strategies, on all levels of hierarchical control
system with the aim to increase comfort, reliability, safety,
and decrease energy consumption and thus safe cost and
environment. The problem of air-fuel ratio (AFR) control
plays an important role in the complex problem of emission
reduction for combustion engines. Quality of the air-fuel
mixture is essential for the efficiency of a three-way cat-
alytic converter, and therefore suitable control techniques
are needed to fulfil the emission legislations.

The highest efficiency of a three way catalytic conversion is
achieved for fuel mixture with AFR on stoichiometric level.
Only for a very narrow band of AFR around stoichiometric
level, three main pollutant species in exhaust gas, namely
hydrocarbon (HC), carbon monoxide (CO) and nitrogen
oxide (NOx), can be almost completely converted to the

⋆ The authors gratefully acknowledge the contribution of the Slo-
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innocuous components, water (H2O) and carbon dioxide
(CO2)(Guzzella and Onder, 2010).

Conventional feedback control loops taking measurements
of AFR using the lambda sensor in exhaust manifold do
not provide satisfying control performance due to the pre-
sence of transport delay. To overcome this problem, AFR
control strategies tend to employ open-loop observers in
order to determine the amount of fuel which needs to be in-
jected, proportionally to the air mass entering the cylinder.
These observers can be implemented using either maps or
models, and their action is corrected by an appropriately
designed feedback loop, typically PID, in order to reject
steady-state errors possibly occurring in presence of model
uncertainties, parameter variations caused by engine ag-
ing, and/or changes of ambient conditions (Guzzella and
Onder, 2010; Eriksson and Nielsen, 2014).

Apart from the air charge estimation problem, Shen et al.
(2015) comprehensively describe the problem of fuel path
dynamics compensation. The authors also propose a Lyap-
unov-based adaptive control method allowing to address
the problem with inaccuracies in the air charge estimation
and the fuel path dynamics compensation, resulting from
the wide operating range of the engine, the inherent non-
linearities of the combustion process, the large modeling
uncertainties, and the parameter variations. Another inter-
esting AFR control approach was proposed e.g. in Rupp



and Guzzella (2010), where authors designed an internal
model controller with adaptation to aging lambda sensor.
Since the air and fuel path dynamics of a gasoline combus-
tion engine are varying with dependency on engine speed
and throttle position, linear parameter-varying techniques
are very often sought for the design of an AFR controller.
In Zope et al. (2010), the authors propose a parameter-de-
pendent state feedback controller using Lyapunov stability
approach. A different approach, utilizing model predictive
control based on a parameter-dependent weighting of local
linear models was proposed in Wojnar et al. (2013).

Model predictive control (MPC) has experienced a growing
success since the middle of the 1980’s for complex plants
with rather slow dynamics, mainly in chemical and process
industry. It has become a very popular optimization-based
control strategy due to its ability to guarantee optimal per-
formance while taking constraints into account. Applica-
bility of MPC based strategies for automotive applications
has been extensively studied in del Re et al. (2009). Fast
nonlinear MPC (NMPC) schemes have been adopted for
several AFR control applications, as it is reported in Wang
et al. (2006); Zhai et al. (2007, 2011). Recently, in Honek
et al. (2015) the authors proposed a design methodology
to obtain a low-complexity explicit MPC for AFR control
in the vicinity of one operating regime. Validity of such
controller could be potentially extended by devising a suit-
able switching strategy among neighboring controllers.

In order to cover the entire operating range of a gasoline
combustion engine in a more systematic manner, we herein
focus on design of hybrid MPC for AFR control. Instead
of using the complex full nonlinear model of air and fuel
path dynamics in cylinder, we propose to employ an opti-
mal piecewise affine approximation (PWA) of the derived
nonlinear model, as outlined in Kvasnica et al. (2011). The
obtained PWA model is subsequently used for synthesis
of an MPC controller, where the underlying optimization
problem is solved online with mixed-integer quadratic pro-
gramming (miQP). To assess the tradeoff between com-
plexity and performance of the resulting AFR controller,
we compare it with the one obtained with nonlinear pro-
gramming (NLP) exploiting the full nonlinear model, and
illustrate the control concept via simulation results.

2. NONLINEAR ENGINE MODEL

The naturally aspired gasoline engine represents a strongly
nonlinear system. The air flow is controlled by position
of the electronic throttle’s plate, αref , and the fuel flow
by fuel injector’s opening time, tinj. This kind of engine
is usually equipped with a mass (air) flow sensor (MAF)
that enables to directly measure the air mass flow through
the throttle, ṁth, and/or with intake manifold pressure
and temperature sensors where measurements taken from
these sensors can be used for estimation of air mass flow
into the cylinder, ṁac. Information of AFR measured by
the λ-sensor, located in the confluence point of exhaust
manifold, is usually used for feedback AFR control loop.
The above concepts are illustrated in Fig. 1.

The mean value engine model (MVEM) of a gasoline en-
gine, presented in this section, is adopted from Hendricks
and Sorenson (1990); Manzie et al. (2002); Eriksson and
Nielsen (2014). In particular, it describes a naturally as-
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Fig. 1. Engine setup with input/output relations; dashed
arrows – inputs, solid arrows – outputs

pired engine with port fuel injection system. As depicted
in Fig. 2, three dynamic phenomena have to be considered
when modeling this kind of engine. Dynamics of the air
path is given by dynamics of the electronic throttle and
intake manifold filling dynamics, see Eqs. (1) and (4)
(Eriksson and Nielsen, 2014). On the other hand, presence
of the fuel path dynamics stems from the fact that fuel
is injected on closed inlet valves of cylinders, which gives
rise to the wall wetting effect, see Eqs. (8) (Manzie et al.,
2002). Another dynamic effect occurs while the gas travels
from the cylinder to the λ-sensor located in the confluence
point of exhaust manifold. As the gases mix along the pipe,
it smooths out variations in the exhaust gases.
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Fig. 2. Block scheme of an SI combustion engine

2.1 Air path dynamics

The first modelled subsystem of the air path, describing re-
lation between the reference, αref , and the actual position,
α, of the throttle plate is given by the first order system
(1). Time constant τth amounts to 0.03 s which is given by
the requirement on the settling time of the throttle plate’s
position control.

α̇(αref , α) =
1

τth
(αref − α) (1)

Under the assumptions that the area of throttle plate shaft
is neglected, the throttle plate is infinitely thin, the pipe
of the throttle body is circular with diameter Dth, throttle
is fully closed at α = 0◦ and fully opened at α = 90◦, the
throttle area Ath can be simply determined by the follow-
ing equation:

Ath(α) =
πD2

th

4
(1 − cos α), (2)

i.e. as the difference between area of a circle and an ellipse.
The model of the isentropic compressible flow suitable for



modeling of air mass flow through throttle ṁth is given by
following system of equations:

Π

(
pim

pamb

)
= max

(
pim

pamb

,

(
2

γair + 1

) γair

(γair − 1)

)
, (3a)

Ψ0 (Π) =

√√√√ 2γair

γair − 1

(
Π

2

γair − Π

γair + 1

γair

)
, (3b)

Ψlin(Π) =

{
Ψ0 (Π) if Π ≤ Πlin,

Ψ0 (Πlin)
1 − Π

1 − Πlin

otherwise,
(3c)

ṁth(pim, Ath) = Ath
pamb√
RTamb

Ψlin(Π

(
pim

pamb

)
), (3d)

where the linear region is defined by
pim

pamb
∈ 〈Πlin, 1〉 and

symbols R, pamb, Tamb, pim, and γair denote constant of
ideal gas, ambient pressure, ambient temperature, intake
manifold pressure, and ratio of the specific heats for air,
respectively. The value of Πlin can be chosen according
to suggestions given in Eriksson and Nielsen (2014), such
that if oscillations are present in the simulated mass flow
operated at the steady state and thus should be smooth,
then a linear region is needed or it should be made larger.
The intake manifold pressure dynamics can be described
by the isotermal model given by the following equation:

ṗim(ṁth, ṁac) =
RTim

Vim
(ṁth − ṁac). (4)

The air mass flow passing through the engine inlet valves
ṁac is

ṁac(pim, N) = ηvol
VDNpim

nrRTim
, (5)

where Tim denotes intake manifold temperature, Vim is
intake manifold volume, VD is displacement volume for
whole engine, N is engine speed, nr equals to number of
revolutions per one engine cycle and volumetric efficiency,
ηvol, determines the effectiveness of the induction process
of the engine. The model for volumetric efficiency (6) has
been adopted from Hendricks and Sorenson (1990) and is
given by:

ηvol(pim, N) = η0,N + η1,N N + η2,N N2 + η1,pimpim, (6)
where η0,N , η1,N , η2,N , and η1,pim are constant coefficients.

2.2 Fuel path dynamics

The wall wetting is a nonlinear dynamic effect that occurs
in case of engines with port fuel injection. In this case,
the whole amount of injected fuel minj does not enter the
cylinder directly. This means that a portion of the injected
fuel flow, Xṁinj, is deposited as a fuel film on the wall of
the intake manifold. Only the evaporated portion of the
injected fuel mfv = (1−X)minj enters the cylinder directly
and another portion comes from the fuel film. Hence, the
fuel flow which enters the cylinder, ṁfc, equals ṁfv + ṁff

which represents the mixture of evaporated flow, ṁfv, and
flow from the fuel film, ṁff . The authors in Manzie et al.
(2002) claim that it was experimentally verified that the
wall wetting effect for a warmed engine operated under a
constant temperature can be modeled with a time-varying
second order system, with its parameters X and τf de-
pending only on engine speed. Therefore, for the purposes

of this paper, it is possible to utilize this relatively simple
model, where the following equation:

ṁinj(tinj, N) = NC(tinj − t0), (7)
represents model of the fuel injector with its flow capacity
C and offset t0 and the wall wetting model is given by

ṁfv(tinj, N) = (1 − X)ṁinj, (8a)

m̈ff(tinj, N, ṁff) =
1
τf

(Xṁinj − ṁff), (8b)

ṁfc(t) = ṁfv(t) + ṁff(t), (8c)
X(N) = aXN + bX , (8d)

τf(N) = aτf N
nτf . (8e)

Typical values of parameters for this model are reported
in Tab. 1. For these values, the time constant τf can vary
within the range of 〈0.45, 0.12〉 s for the engine speed of
N ∈ 〈800, 6000〉 rpm, and approximately 30 % of ṁinj enter
cylinders directly.

2.3 Air-fuel ratio

The normalized AFR in the cylinder is defined as

λc(t) =
ṁac(t)
ṁfc(t)

1
Lth

, (9)

where Lth is a value that amounts to the theoretical mass
of air necessary for the ideal combustion of a unit mass
of fuel. In other words this value represents the so-called
stoichiometric AFR.

2.4 Gas Transport and Mixing Effect

Finally, the evolution of λ in the exhaust manifold is given
by dynamics of gas mixing effect described as follows:

Table 1. Parameters of nonlinear MVEM.

Parameter Value Unit

τth 0.03 s

Dth 46 × 10−3 m

R 280 J kg−1 K−1

γair 1.4 −

Tamb 303.15 K
pamb 101.661 × 103 Pa

VD 1.390 × 10−3 m3

Vim 3.475 × 10−3 m3

Tim 333.15 K
nr 2 −

η0,N 0.3 −

η1,N 5 × 10−3 −

η2,N −0.65 × 10−4 −

η1,pim
0.5 × 10−5 −

C 0.05 kg s−1

t0 5 × 10−4 s

aX 2π × 10−5 −

bX 0.7236 −

nτf −0.63 −

aτf (2π)
nτf 7.27 −

Lth 14.64 −

τmix 0.157 s



d
dt

λem(t) =
1

τmix
(λc(t − τd(N)) − λem(t)), (10)

where τmix denotes the time constant and

τd(N) =
180 + 180 + 180

360N
(11)

is the varying transport delay occurring as the air-fuel mix-
ture is drawn into the engine, compressed and expanded.
Parameters of the particular subsystems, namely the air
path, fuel path, AFR and gas mixing effect, are reported
in Tab. 1 in the order as they have appeared in respective
subsections.

3. OPTIMAL PWA APPROXIMATION

The authors in Kvasnica et al. (2011) address the diffi-
culties that arise when identifying a nonlinear system in
the form of PWA model directly from input-output data
and propose an optimization-based approach to derive
PWA approximations of nonlinear systems whose vector
field is an a priori known function of multiple variables.
Accordingly, the nonlinear model of the fuel path described
in Subsection 2.2 can be approximated as follows. After
substitution of X and τf into (8a) and (8b), the system of
Eqs. (8) takes the following form:

ṁfv(tinj, N) =

1/4(f4 − f5)︷ ︸︸ ︷
tinj(CN − bX CN − aXCN2)
︸ ︷︷ ︸

f1

− t0 (CN − bX CN − aX CN2)︸ ︷︷ ︸
f1

, (12a)

m̈ff(tinj, N, ṁff) =

1/4(f6 − f7)︷ ︸︸ ︷
tinj

(
aXC

aτf

N(2 − nτf ) +
bX C

aτf

N(1 − nτf )
)

︸ ︷︷ ︸
f2

− t0

(
aX C

aτf

N
(2 − nτf )

+
bX C

aτf

N
(1 − nτf )

)

︸ ︷︷ ︸
f2

−

1/4(f8 − f9)︷ ︸︸ ︷
ṁff

1

aτf

N(−nτf )

︸ ︷︷ ︸
f3

, (12b)

ṁfc = ṁfv + ṁff . (12c)

Both nonlinear functions (12a) and (12b) can be converted
into a separable form by applying a simple change of the
variables. The first function ṁfv(tinj, N) is defined over a
two-dimensional domain and may be rewritten into the
following form:

ṁfv(tinj, N) = 1/4((tinj + f1(N))2 − (tinj − f1(N))2)
+ t0f1(N)
= 1/4(f4(tinj + f1(N)) − f5(tinj + f1(N)))
+ t0f1(N),

where t0 is a constant, f4(tinj + f1(N)) = (tinj + f1(N))2

and f5(tinj − f1(N)) = (tinj − f1(N))2 represent quadratic
functions of arguments (tinj+f1(N)) and (tinj−f1(N)) that
are addition and subtraction of the original independent
variable tinj and a polynomial function f1(N) = (CN −

bXCN − aXCN2), respectively. Then, it is possible to ap-
proximate each nonlinear function f1(N), f4(tinj + f1(N))
and f5(tinj − f1(N)) defined over a closed domain in R

individually, by solving the nonlinear program

min
ai,ci,{r1,...,rS−1}

S∑

i=1

(∫ ri

ri−1

(f(z) − (aiz + ci))
2 dz

)
(13a)

s.t. r0 ≤ r1 ≤ . . . ≤ rS−1 ≤ rS , (13b)

airi + ci = ai+1ri + ci+1, i = 1, . . . , S − 1. (13c)

where f(z) is a given nonlinear function to be approxi-
mated by S line segments. The closed domain of the func-
tion f1(N) is given by a minimum and a maximum value
of the engine speed, Nmin and Nmax, respectively. The
domains of f4(tinj + f1(N)) and f5(tinj − f1(N)) are given
as:

rf4,0 = min{tinj + f1(N)|tinj ∈ 〈t0, tinj,max〉

∧ f1(N) ∈ 〈f1(Nmin), f1(Nmax)〉}
rf4,S4 = max{tinj + f1(N)|tinj ∈ 〈t0, tinj,max〉

∧ f1(N) ∈ 〈f1(Nmin), f1(Nmax)〉}
rf5,0 = min{tinj − f1(N)|tinj ∈ 〈t0, tinj,max〉

∧ f1(N) ∈ 〈f1(Nmin), f1(Nmax)〉}
rf5,S5 = max{tinj − f1(N)|tinj ∈ 〈t0, tinj,max〉

∧ f1(N) ∈ 〈f1(Nmin), f1(Nmax)〉}.

Since the function f1(N) ∈ 〈Nmin, Nmax〉 is monotonically
increasing on its domain, then it follows that rf4,0 = t0 +
f1(Nmin), rf4,S4 = tinj,max + f1(Nmax), rf5,0 = t0 −
f1(Nmax) and rf5,S5 = tinj,max + f1(Nmin). A similar
procedure of converting to separable form and subsequent
optimal approximation of f2(N), f6(tinj +f2(N)), f7(tinj −
f2(N)), f3(N), f8(ṁff + f3(N)) and f9(ṁff − f3(N)) in
one dimension can be applied for function (12b) as well.
The graphs of all nine nonlinear functions fi and their
respective PWA approximations f̃i are depicted in Fig. 3.

Finally, the overall optimal PWA approximations of (12a)
and (12b) are given as follows:

˜̇mfv(tinj, N) =
1

4

(
f̃4

(
tinj + f̃1(N)

)
− f̃5

(
tinj − f̃1(N)

))
,

− t0f̃1(N),

(14)

˜̈mff(tinj, N, ṁff) =
1

4

(
f̃6

(
tinj + f̃2(N)

)
− f̃7

(
tinj − f̃2(N)

))

−
1

4

(
f̃8

(
ṁff + f̃3(N)

)
− f̃9

(
ṁff − f̃3(N)

))

− t0f̃2(N).

(15)

To validate obtained approximations, open-loop simula-
tions were performed and results are shown in Fig. 4. The
open-loop response of a very precise approximation ˜̇mfc

of ṁfc, with the following numbers of segments of each
approximated function S1 = 3, S2 = 25, S3 = 25, S4 = 25,
S5=25, S6=25, S7=25, S8=15 and S9=25 is represented
by the solid blue line. Let us denote the total number of
line segments as S =

∑
i Si and the associated model by

˜̇m, S = 193 for the referring purposes in the further text.
As can be seen from this result, open-loop response of this
approximation perfectly matches the open-loop response
of nonlinear model represented by the solid red line. Nat-
urally, approximations of lower complexity provide open-
loop response of lower accuracy, e.g. open-loop response of
approximation with following segmentation: S1=1, S2=3,
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Fig. 3. Nonlinear functions (blue) and their PWA approximations (red)

S3 =3, S4 =3, S5 =5, S6 =3, S7 =5, S8 =3 and S9 =5, is
depicted by the dashed blue line in Fig. 4. Similarly, let us
denote this model as ˜̇m, S = 31. Nevertheless, due to the
closed-loop nature of MPC strategy using even approxima-
tions with lower accuracy can provide satisfactory control
performance, as will be shown in Section 5.

4. CONTROLLER FORMULATION

The best achievable performance of air-fuel ratio control
in terms of the highest efficiency of the three way catalytic
conversion is when λc is kept on the stoichiometric level.
Therefore, it is sensible to track the reference trajectory
given by ṁac(t)/Lth and for AFR MPC controller syn-
thesis, as proposed in this paper, the model of air path
dynamics is used in order to predict the evolution of
air mass flow into the cylinder ṁac(t), where referenced
throttle position αref together with engine speed N are
treated as measured disturbances. The model of the fuel
path dynamics is incorporated into the MPC scheme in
order to predict optimal trajectories of fuel injection time
t⋆

inj(·) as manipulated variable and fuel mass flow ṁ⋆
fc(·)

as controlled variable. The given optimal control problem
(16) is solved at each sampling instant t = kT , where
only the first element of the optimizer, t⋆

inj(0), is applied
to the controlled plant. The constraints in (16b)-(16g) are
imposed ∀k = 0, . . . , Nc − 1 with Nc denoting prediction
horizon. The objective is to minimize the weighted square
of tracking error , accompanied with integral action, to re-
ject the unmodeled effects. The tradeoff between obtaining
an aggressive tracking performance and a smooth profile of

the manipulated variable can be achieved by appropriately
adjusting tuning parameters Q, Qi, and R.

min
tinj(·)

Nc−1∑

k=0

Q

(
ṁact|t+kT

Lth
− ṁfct|t+kT

)2

+ Qid
2
t|t+kT

+ R
(

tinjt|t+kT
− tinjt|t+(k−1)T

)2
(16a)

s.t. Nt|t+kT = Nt|t+(k−1)T + (Nt − Nt−T ), (16b)

ṁfft|t+kT
= ṁfft|t+(k−1)T

+ T ˜̈mfft|t+(k−1)T
, (16c)

ṁfct|t+kT
= ˜̇mfvt|t+kT

+ ṁfft|t+kT
, (16d)

dt|t+kT = dt|t+(k−1)T +

(
ṁact|t+kT

Lth
− ṁfct|t+kT

)
, (16e)

t0 ≤ tinjt|t+kT
≤ 5 ms (16f)

elb ≤
(

ṁac
t|t+kT /Lth − ṁfct|t+kT

)
≤ eub, . (16g)

The optimal control problem (16) was formulated using
YALMIP (Löfberg, 2004) and subsequently solved on-
line as a mixed-integer quadratic problem (MIQP) with
the GUROBI solver (Gurobi Optimization, Inc., 2015).
The terms ˜̇mfvt|t+kT

and ˜̈mfft|t+(k−1)T
in constraints (16d)

and (16c) denote predictions using the PWA approxi-
mations given by (14) and (15), with dependencies on
arguments, i.e. ˜̇mfvt|t+kT

= ˜̇mfv(tinjt|t+kT
, Nt|t+kT ) and

˜̈mfft|t+(k−1)T
= ˜̈mff(tinjt|t+(k−1)T

, Nt|t+(k−1)T , ṁfft|t+(k−1)T
).

The symbol dt|t+kT in (16a) and (16e) stands for pre-
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Fig. 4. PWA model validation, response of nonlinear model (red) and PWA approximations (solid/dashed blue)

dictions of integral variable. The constraint (16b) deter-
mines the evolution of engine speed over the prediction
horizon with a constant rate. Finally, the inequalities in
(16f) and (16g) correspond to constraints imposed on the
manipulated and the controlled (using appropriate bounds
elb, eub) variable, respectively, so as to achieve their
smoother profiles. . . .

As a reference, the same optimization problem was solved
to obtain an NMPC controller, yet by exploiting the fully
nonlinear fuel path dynamics model in (16c) and (16d). To
achieve this, the underlying control problem was solved
as an NLP using the technique of sequential quadratic
programming (SQP) implemented in MATLAB’s fmincon
featuring warm-start initialization.

5. SIMULATION RESULTS

In order to keep the computation effort low, let us quantify
the control performance for both NMPC and the hybrid
MPC assuming the prediction horizon of Nc = 2 steps
and the sample time of T = 10 ms. Note that this value
is sufficient since the controlled variable ṁfc is directly
dependent on the manipulated variable tinj, due to the
fact that approximately one third of the injected fuel mass
flow ṁinj enters the cylinder directly. The performance can
be assessed in terms of achievable tracking performance
by evaluating an integral criterion in the form of Jṁ =∫ t

0 (ṁac(τ)/Lth − ṁfc(τ))2dτ or the ability to keep λ close

to 1 by evaluating the criterion Jλ =
∫ t

0
(λem(τ) − 1)2dτ .

Accordingly, the performance of three equivalently tuned
controllers, Nc = 2, Q = 10, Qi = 10, R = 1, are shown in
Fig. 5, where both disturbance signals, throttle position

α(t) and engine speed N(t) vary in predefined intervals
to excite the engine within its entire operating range. All
the three controllers exhibit a very good performance, i.e.
only small deviations of λem from 1, less than ±0.3 are
present and persist only for a short time, except for larger
deviations at the beginning of the simulation caused by
starting the computations from specific initial conditions.

The best performance is clearly achieved when employing
the proposed hybrid MPC using optimal PWA approxi-
mation of a relatively high complexity, represented by the
solid blue lines depicting the manipulated variable tinj and
controlled variable λem, which comes at a price of higher
values of the task execution time (TET). Let us denote this
hybrid MPC as hMPC˜̇m,S=193

, referring to utilizing the

model previously denoted as ˜̇m, S = 193. The performance
of a similarly denoted hybrid MPC controller hMPC˜̇m,S=31

and NMPC are represented by dashed blue lines and solid
red lines, respectively.

The above performance indicators are reported in Tab. 2.
As it can be seen from the results, the hybrid MPC con-
troller hMPC˜̇m,S=31

, using optimal PWA approximation
with a rather modest segmentation, exhibits comparable
tracking performance as NMPC while achieving a lower
average task execution time TETavg. Overall, the com-
putation times of the investigated hMPC variants scale
as expected, while offering a reasonable tradeoff between
performance accuracy and runtime effort, with respect to a
desired complexity of the employed optimal PWA approx-
imation. We remark that the simulations were performed
on a machine equipped with Intel i5-3317U CPU and 8GB
of RAM.
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Table 2. Control performance assessment

Jṁ×10−9 [−] Jλ×10−4 [−] TETavg [ms]

hMPC˜̇m,S=193
1.0154 4.6648 19.2

hMPC˜̇m,S=163
1.0220 4.6666 16.1

hMPC˜̇m,S=132
1.0225 4.6735 14.1

hMPC˜̇m,S=80
1.0393 4.7647 10.8

hMPC˜̇m,S=51
1.4915 5.1514 9.4

hMPC˜̇m,S=31
2.9070 6.9379 8.4

NMPC 2.2535 5.2828 9.8

6. CONCLUSION

This paper presented an optimal PWA approximation of
the nonlinear fuel path model of a gasoline combustion en-
gine, enabling to design an online hybrid MPC for the air-
fuel ratio control. Specifically, the underlying MPC prob-
lem was formulated to track the fuel mass flow reference
in cylinder so as to keep the AFR as close as possible to
the stoichiometric value. The controller performance was
evaluated using several optimal PWA approximations of
a different complexity. It was shown that the resulting
MIQP-based hybrid MPC controller using a more precise
approximation allows for a better control performance
than an NLP-based NMPC controller, yet at a price of
a higher computation time. Nevertheless, it was shown

that a comparable runtime complexity and AFR control
performance can be achieved even for a very coarse PWA
approximation. This makes the proposed approach a pos-
sible alternative to NMPC strategies, with potential to be
exploited in embedded control applications, explicit MPC
framework etc.
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