On Exact Polya and Putinar's Representations

Abstract : We consider the problem of finding exact sums of squares (SOS) decompositions for certain classes of non-negative multivariate polynomials, relying on semidefinite programming (SDP) solvers. We start by providing a hybrid numeric-symbolic algorithm computing exact rational SOS decompositions for polynomials lying in the interior of the SOS cone. It computes an approximate SOS decomposition for a perturbation of the input polynomial with an arbitrary-precision SDP solver. An exact SOS decomposition is obtained thanks to the perturbation terms. We prove that bit complexity estimates on output size and runtime are both polynomial in the degree of the input polynomial and simply exponential in the number of variables. Next, we apply this algorithm to compute exact Polya and Putinar's representations respectively for positive definite forms and positive polynomials over basic compact semi-algebraic sets. We also compare the implementation of our algorithms with existing methods in computer algebra including cylindrical algebraic decomposition and critical point method.
Document type :
Conference papers
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01720612
Contributor : Victor Magron <>
Submitted on : Thursday, March 1, 2018 - 2:10:30 PM
Last modification on : Friday, July 5, 2019 - 3:26:03 PM

Links full text

Identifiers

Données associées

Citation

Victor Magron, Mohab Safey El Din. On Exact Polya and Putinar's Representations. ISSAC '18 International Symposium on Symbolic and Algebraic Computation, Jul 2018, New-York, United States. pp.279-286, ⟨10.1145/3208976.3208986⟩. ⟨hal-01720612⟩

Share

Metrics

Record views

194