A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of the Mechanics and Physics of Solids Année : 2017

A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method

Résumé

Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture descriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria derived from the effective interaction potentials between mass points are shown to exhibit a scaling commensurable with the energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states associated with minimum potential energy states analogous to Griffith’s approach. It is found that this global approach has much in common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means of evaluating the energy release rate. Finally, by application of the method to a textbook example of fracture propagation in a heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening mechanisms related to fracture energy contrast, elasticity contrast and crack deflection in the considered two-phase layered composite material.
Fichier principal
Vignette du fichier
Art_Radjai_al_JMPS_2_2017.pdf (1.04 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01720479 , version 1 (21-10-2019)

Identifiants

Citer

Hadrien Laubie, Farhang Radjai, Roland Pellenq, Franz-Josef Ulm. A potential-of-mean-force approach for fracture mechanics of heterogeneous materials using the lattice element method. Journal of the Mechanics and Physics of Solids, 2017, 105, pp.116 - 130. ⟨10.1016/j.jmps.2017.05.006⟩. ⟨hal-01720479⟩
104 Consultations
133 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More