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We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen
model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears
as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition
numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control:
this significantly improves the computational efficiency. Motivated by these numerical results, we
formulate an effective theory for the model in the vicinity of the phase transition, which accounts
quantitatively for the observed behavior. We discuss potential applications of the numerical method and the
effective theory in a range of more general contexts.
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Introduction.—Systems far from equilibrium display a
wide spectrum of complex behavior [1,2]. For example,
thermodynamic phase transitions are usually forbidden in
one-dimensional systems, but a variety of dynamical phase
transitions are still observed [3–7]. Such transitions can
appear in far-from-equilibrium states that are defined by
restricting (or conditioning) trajectories so that time-
averaged observables take nontypical values [8]. They can
be related to physical properties of systems where metasta-
bility is important, especially glassy systems [7,9–16].
In some cases these transitions can be studied analyti-

cally [5–7,17,18], but in practical applications one must
often resort to numerical methods: these access the relevant
far-from-equilibrium states by rare-event sampling algo-
rithms [13,19–22], employing, for instance, population
dynamics or path sampling. Such methods tend to perform
poorly in the vicinity of dynamical phase transitions, just
as conventional sampling methods tend to fail close to
equilibrium phase transitions. For the equilibrium case,
advanced methods exist that solve this problem, including
finite-size scaling analysis [23,24] and multicanonical
sampling [25–27]. For dynamical phase transitions, some
progress has been made in this direction [16,21,28] but
accurate calculations are numerically expensive and suffer
from significant finite-size effects.
Here, we analyze a dynamical phase transition [7] in the

Fredrickson–Andersen (FA) model [29]. We combine a
state-of-the-art numerical approach [30] with a theoretical
analysis. We show that numerical results and theoretical
predictions for finite-size scaling near the phase transition
agree quantitatively. By combining these ingredients we

obtain a full description of the transition, at a modest
computational cost. The phase transition is a prototype for
transitions in a range of systems [7,13,16,31], so we argue
that these new methods and insights have broad potential
application in this field.
Model.—The 1D FA model [29] is a kinetically con-

strained model that consists of L spins on a periodic lattice.
The ith spin takes values ni ¼ 0 (down) or ni ¼ 1 (up)
and the configuration is C ¼ ðniÞLi¼1. We define an
operator Fi that flips the state of spin i, so that
F i½C� ¼ ðn1; n2;…; 1 − ni;…; nLÞ. The kinetic constraint
of the model is that spin i can flip only if at least one of its
neighbors is up. The transition rates between configurations
reflect this constraint; they are

wðC → F i½C�Þ ¼ ½cð1 − niÞ þ ð1 − cÞni�fiðCÞ; ð1Þ
where fi ¼ ni−1 þ niþ1 enforces the kinetic constraint and
c is a parameter that depends on the temperature in the
model [29]. The rates obey detailed balance and the
model’s equilibrium distribution follows a Bernoulli law

peqðCÞ ∝ c
P

i
nið1 − cÞL−

P
i
ni . Despite this trivial distribu-

tion, the kinetic constraint in the model leads to rich
behavior, related to dynamical heterogeneity in glassy
systems [13,14,32].
Dynamical phase transitions.—We define the dynamical

activity KðτÞ ¼ NKðτÞ=τ, where NKðτÞ is the total number
of spin flips during the time interval ½0; τ�. The phase
transitions that we consider take place in ensembles of
trajectories that are restricted to a given value of the activity.
In the limit τ → ∞, the activity converges to its equilibrium
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value Keq: to estimate the probability of rare trajectories
with KðτÞ ≠ Keq, we consider the cumulant generating
function

GðsÞ ¼ lim
τ→∞

1

τ
loghe−sτKðτÞi; ð2Þ

where h·i denotes an ensemble average. Dynamical phase
transitions are associated with singularities in GðsÞ: they
are analogous to thermodynamic phase transitions, with G
corresponding to the thermodynamic free energy [11] and s
corresponding to an intensive thermodynamic field that is
used to drive the system through its phase transition. We
also define

hKis ≡ −
dGðsÞ
ds

¼ lim
τ→∞

hKðτÞe−sτKðτÞi
he−sτKðτÞi ; ð3Þ

which specifies the dependence of the mean activity on the
field s, analogous to the dependence of the order parameter
on its conjugate field in thermodynamics.
The dynamical phase transition that occurs in the FA

model separates a high-activity state [with hKis ¼ OðLÞ]
from an inactive (glass) state [with hKis ¼ oðLÞ�. It is
defined in a joint limit of large time τ and large system size
L. In this work, we first take τ → ∞ and then take L → ∞.
The phase transition is first order, and the order parameter
K∞ðsÞ ¼ limL→∞ð1=LÞhKis exhibits a discontinuous jump
at s ¼ 0 [7]. However, the large-L limit is not accessible
numerically, and for finite L the activity is a smooth
function of s, whose representative behavior is shown in
Fig. 1. The crossover sharpens as L increases: to analyze
the transition, one must consider the finite-size scaling
of hKis.
Cloning algorithm with feedback.—To perform this

finite-size scaling, we require a numerical method that
provides accurate results for a range of system sizes. To this
end, we generalize a recently proposed adaptive method
[30] to Markov jump processes. The method is based on a
cloning algorithm [19,33] that uses a population of Nc
clones (or copies) of the system. We fix a time interval Δt
and the dynamics of the model are propagated over
intervals of length Δt, such that the total time is τ. For
each interval, one calculates a weighting factor for clone a:

γa ¼ expf−s½NK
a ðtþ ΔtÞ − NK

a ðtÞ�g; ð4Þ
where NK

a ðtÞ is the number of spin flips for clone a,
evaluated over the whole time interval ½0; t�; also one
defines KaðtÞ≡ NK

a ðtÞ=t. After each time interval, clones
are duplicated or removed, to enforce the conditioning on
the activity. In this step, each clone a generates a number of
offspring proportional to its weight γa. The mean activity
hKis can then be obtained as the average of KaðτÞ over the
final population [30].
This algorithm provides accurate results when Nc is

sufficiently large [34], but in practice this may require a

very large number of clones, which is computationally
expensive. To avoid this issue, we combine the existing
cloning algorithm [13,19–22,33,34] with a modification of
the dynamics [35–38], following Ref. [30]. In order to aid
sampling of trajectories with nontypical activity, we modify
the transition rates of the model as

wmodðC → F i½C�Þ ¼ e−swðC → F i½C�Þe1
2
½UðCÞ−UðF i½C�Þ�; ð5Þ

where UðCÞ is an effective potential or control potential
[39]. The weight factors γa are also modified, by replacing
−sNK in Eq. (4) with

Kmod ¼
Z

τ

0

dt½kmodðCtÞ − kðCtÞ�; ð6Þ

where kðCÞ ¼ P
iwðC → Fi½C�Þ is the escape rate from

configuration C, and kmod is obtained in the same way but
using the modified rates (5).
In the limit of large Nc, the results of the algorithm are

independent of the choice of U. However, an appropriate
choice can dramatically improve the accuracy of results
obtained with finite populations. In particular, there exists
an optimal control potential for which a population of
Nc ¼ 1 is already sufficient for convergence. This optimal
potential is given (up to an arbitrary constant) by
U�ðCÞ ¼ 2 log½peqðCÞ=pendðCÞ�, where pendðCÞ is the prob-
ability of observing configuration C within the steady state
of the cloning algorithm [30]. Calculating this optimal
control directly is not feasible in practice: instead we
restrict to control potentials that involve interactions

FIG. 1. The average activity hKis for L ¼ 36 as a function of
sL, estimated using the feedback method described in the text.
As the number of copies Nc increases, the estimators of hKis
converge to the correct result. The solid black line is the analytical
form (11). The parameters A, B, κ, sLc in Eq. (11) are determined
by fitting the data outside of the coexistence region
(sL ¼ 0.06–0.08, 0.12–0.15) for Nc ¼ 400, where the method
converges rapidly. The inset shows a comparison between the
results obtained from the feedback method (blue dashed line) and
from the standard method (blue dotted line) for Nc ¼ 100.

PRL 118, 115702 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

17 MARCH 2017

115702-2



between each spin and its nearest neighbors at a distance
≤ d, so that the change in the effective potential on flipping
spin i is

UðF i½C�Þ −UðCÞ ¼ udðni−d;…; ni;…; niþdÞ ð7Þ
for some function ud. To obtain the most suitable values
for these potentials, we use a feedback scheme: we run the
cloning algorithm, estimate the probabilities of particular
local arrangements of the spins, and update the effective
potential based on that choice. By repeating this procedure,
one can optimize the choice of the control potential (see
Refs. [30] and [40] for details).
Results.—Figure 1 shows the performance of the algo-

rithm, close to the dynamical phase transition. We plot hKis
as a function of sL, as obtained from the cloning algorithm,
using the feedback method to determine suitable effective
interactions. The interaction range is d ¼ 4, and we take Nc
between 50 and 800. We set τ ¼ 15 000, which is suffi-
ciently large to converge to the large-τ limit. As Nc
increases, the estimates of hKis converge to a smooth
curve, indicating that these clone populations are large
enough to achieve accurate results. By contrast, the inset
to Fig. 1 shows that the original cloning method (with
U ¼ 0) deviates significantly from the correct result,
compared with the feedback method for the same number
of copies. This tendency is observed throughout the whole
range of s, irrespective of the presence of the dynamical
coexistence [41].
The results of Fig. 1 show the expected crossover from

high to low activity, consistent with the existence of a
dynamical phase transition near s ¼ 0. To analyze the
finite-size scaling of this transition, we define κ as the
maximal susceptibility

κ ≡ 1

L2
max
s

���� ∂hKis
∂s

����: ð8Þ

Let the finite-size transition point sLc be the value of s at
which this maximum occurs. For large systems, we expect
κ → ∞ and sLc ¼ OðL−1Þ [7,43]. Figure 2 shows the
dependence of κ on the system size L: the results are
consistent with an exponential divergence of κ as L → ∞,
in contrast to traditional finite-size scaling at thermody-
namic transitions, where κ scales as a power of L [24,31].
To gain insight into these phase transitions and explain the
numerical results in Figs. 1 and 2, we now present some
theoretical arguments.
Analogy with a two-dimensional thermodynamic system

on a cylinder.—These dynamical phase transitions in one
dimension can be mapped to thermodynamic transitions
in two dimensions (2D) [31,35]. Recalling that we have
taken the limit τ → ∞ before taking L → ∞, the relevant
geometry for the 2D system is a long cylinder, with the
system size L in the dynamical system corresponding to the
perimeter of the cylinder. For equilibrium systems in such

geometries, the behavior near phase coexistence is sketched
in Fig. 3 [44,45]: the two phases form domains arranged
along the cylinder. The typical domain length scales
exponentially in L: the reason is that these 2D domains
are separated by domain walls of length L that run around
the cylinder, and the associated interfacial free-energy cost
scales as αL, so the density of domain walls is of order
e−αL. From Eq. (8), κ is analogous to a susceptibility in the
thermodynamic transition; it is also equal to a time integral
of the autocorrelation function of kðCtÞ=L [11]. Hence, κ
scales with the relaxation time of the system. Identifying
this relaxation time with the domain size in Fig. 3, the
susceptibility therefore diverges as κ ¼ OðeαLÞ for large L.
The numerical data in Fig. 2 are consistent with such a
divergence, indicating that the thermodynamic analogy can
predict properties of the dynamical transition.
Effective interfacial model of the dynamical phase

transition.—We now introduce a simplified effective model
for the domains in Fig. 2. Following Sec. IV 1 of Ref. [46],

FIG. 2. Exponential divergence of the dynamical susceptibility
κ, defined in Eq. (8). We plot log κ as a function of L, as obtained
from the feedback method (points) together with the theoretical
prediction (10) (straight lines).

FIG. 3. Schematic picture of the domain wall dynamics at
dynamical phase coexistence, which is analogous to equilibrium
phase coexistence on the (2D) surface of a long cylinder [44,45]
(in this latter case the horizontal axis is a spatial coordinate).
In the effective model, the fluctuating variable x ∈ f1; 2;…; Lg
represents the width of the active phase.
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we assume that typical configurations in the model include
a single active domain of size x (Fig. 3). Within this
domain, the system is close to its active (equilibrium) state;
in the remainder of the system, the system is inactive and
there are no up spins. The system contains at least one up
spin so 1 ≤ x ≤ L. We will show that this simplified model
makes quantitatively accurate predictions for the dynamical
phase transition. (For thermodynamic transitions, similar
results may be available via spectral properties of the
transfer matrix [44,45]: our analysis here is different, and is
based on the dynamical nature of the phase transition.)
The dynamical rules of the FA model mean that the value

of x increases with rate 2cð1 − cÞ and decreases with rate
2c [46]. We take reflecting boundary conditions at x ¼ 1,
L. [For systems that are predominately active, we interpret
(L − x) as the size of the largest inactive domain in the
system, which has a typical value of order 1=c.] The
activity in this effective model is obtained by assuming that
the spins in the active domain flip with typical rate
k̄ ¼ 4c2ð1 − cÞ, but there are no spin flips outside this
region, due to the kinetic constraint. Hence, the analog of
KðτÞ is ðk̄=τÞ R τ

0 xðtÞdt.
The result is an effective model where x undergoes a

random walk whose hop rates are biased to the right
(positive x), but conditioned on a relatively small time-
averaged position. In the limit of large L, the model can be
solved exactly, as shown in the Supplemental Material [47].
We summarize the main results: there is a dynamical phase
transition at a field s� ¼ μ3=ðL

ffiffiffī
k

p
Þ, where μ solves

1

2
μ3=2 þ FðcÞ ¼ 4c2 − k̄þ 2c

ffiffiffī
k

p
Ψðc; μÞ

4c2 þ k̄ − 2c
ffiffiffī
k

p
Ψðc; μÞ

: ð9Þ

Here, FðcÞ ¼ ð1=2Þ log ½c=ð1 − cÞ� and Ψðc; μÞ ¼ −μ3 þ
2½coshFðcÞ − 1�. Also, the susceptibility κ diverges as

κ ∝ eαL; α ¼ 2

3
μ3=2: ð10Þ

Finally, the scaling form of the activity near the phase
transition is

hKis
L

∼ A −
κLðs − sLc Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Bκ2L2ðs − sLc Þ2
p ; ð11Þ

where A and B are specified in Ref. [47]. This last result is
similar to that obtained in a mean-field FA model [48] and
that for 2D equilibrium phase coexistence of ferromagnets
on a cylinder geometry [45]. These similarities indicate that
the scaling function (11) might be a general property of first-
order phase transitions with exponentially diverging suscep-
tibilities. We also remark that our effective model yields the
interfacial free-energy cost α (9), (10), which is not available
from the 2D equilibrium approach of Refs. [44,45].
The theoretical predictions (9)–(11) are shown in Figs. 1

and 2, together with the numerical results. The agreement

is excellent, despite the simplicity of the model. The
conclusion is that the finite-size scaling of the phase
transition is dominated by the dynamical properties of
the interface between the active and inactive regions, and
this interface is accurately described by the effective model.
Moreover, in the analogy with the classical phase transition
on a cylinder, we can interpret the parameter α in terms of
an interfacial tension between the active and inactive
domains shown in Fig. 2.
Discussion.—There are two key outcomes of this work.

First, we have shown that the cloning-with-feedback
algorithm used here allows accurate characterization of
dynamical phase transitions for a range of system sizes,
with much greater computational efficiency than the
original cloning scheme. Second, we have shown how
the finite-size scaling of first-order dynamical phase tran-
sitions can be understood qualitatively by mapping them to
classical phase transitions in cylindrical geometries; it can
also be analyzed quantitatively by mapping to the effective
interfacial model.
We expect both the numerical and theoretical methods to

apply generally for dynamical phase transitions of this type:
for example, application to other kinetically constrained
models [7,31] should be straightforward. We also anticipate
application to atomistic systems that support similar phase
transitions [13,16,20–22]. Moreover, the transitions consid-
ered here are directly related to quantum phase transitions in
spin chains, for which results similar to Eq. (9) have been
derived [49]. The effective interfacial model presented here
provides a clear physical interpretation of such results, whose
implications for quantum systems remain to be explored.
We also highlight several useful features of the numerical

algorithm used here. The computational cost of the cloning
algorithm scales linearly in the time τ. This allows the large-τ
limit to be converged numerically. Hence, the only parameter
in the finite size scaling is L, which allows direct comparison
with the theory presented here. This analysis is significantly
simpler than finite-size scaling via path sampling, where
both τ and L must be varied together [13,21]. The cloning
algorithm can also be applied in systems where detailed
balance is broken, where path-sampling methods are not
directly applicable. Cloning methods are also related to
diffusion quantum Monte Carlo calculations [50]; it would
be interesting to investigate how the cloning-with-feedback
method might be applied in that context [51].
Another advantage of this method is that the control

potential U determined numerically provides physical
insight into these dynamical phase transitions. In the active
phase close to the transition, the control potential acts to
suppress the number of up spins (reducing the activity), but
one also finds an effective attraction between up spins [52].
This attraction is weak but decays slowly in space, which
acts to stabilize the large spatial domains shown in Fig. 3
[53,54]. Based on the effective model, we expect that the
optimal control potential U� should depend primarily on
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these domain sizes, so it naturally includes long-range
interactions. It would be interesting to obtain a better
understanding of optimal control potentials close to
dynamical phase transitions, especially since incorporating
such information into numerical methods now has the
potential to significantly improve their performance. For
example, one might consider transitions in other spin
models [11] as well as exclusion processes [6,54,55]. In
any case, we stress that while the ansatz (7) is much simpler
than the optimal control, it still results in a significant
improvement of the computational efficiency.
In conclusion, we have shown how a combination of

numerical and theoretical methods provide a detailed insight
into thedynamical phase transition in theFAmodel. Thebasic
ideas of themethod are quite general, such as themodification
of the cloning algorithm with a feedback procedure to
determine the optimal force, or the interfacial model as a
coarse-grained description of systems near coexistence. For
first-order dynamical transitions, we believe that effective
interfacial models should apply rather generally. The numeri-
cal method has even broader potential application, although
the choice of a suitable control potential will depend on the
problem of interest—this remains to be explored.
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