Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model

Abstract : We analyze large deviations of the time-averaged activity in the one-dimensional Fredrickson-Andersen model, both numerically and analytically. The model exhibits a dynamical phase transition, which appears as a singularity in the large deviation function. We analyze the finite-size scaling of this phase transition numerically, by generalizing an existing cloning algorithm to include a multicanonical feedback control: this significantly improves the computational efficiency. Motivated by these numerical results, we formulate an effective theory for the model in the vicinity of the phase transition, which accounts quantitatively for the observed behavior. We discuss potential applications of the numerical method and the effective theory in a range of more general contexts.
Liste complète des métadonnées

Littérature citée [48 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01720325
Contributeur : Vivien Lecomte <>
Soumis le : jeudi 1 mars 2018 - 10:01:40
Dernière modification le : vendredi 4 janvier 2019 - 17:33:38
Document(s) archivé(s) le : mercredi 30 mai 2018 - 12:34:51

Fichier

prl_118_115702.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

Citation

Takahiro Nemoto, Robert Jack, Vivien Lecomte. Finite-Size Scaling of a First-Order Dynamical Phase Transition: Adaptive Population Dynamics and an Effective Model. Physical Review Letters, American Physical Society, 2017, 118 (11), pp.115702. 〈https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.115702〉. 〈10.1103/PhysRevLett.118.115702〉. 〈hal-01720325〉

Partager

Métriques

Consultations de la notice

160

Téléchargements de fichiers

55