Twisted Flato-Fronsdal Theorem for Higher-Spin Algebras

Abstract : We explore the relation between the singleton and adjoint modules of higher-spin algebras via so(2, d) characters. In order to relate the tensor product of the singleton and its dual to the adjoint module, we consider a heuristic formula involving symmetrization over the variables of the character. We show that our formula reproduces correctly the adjoint-module character for type-A (and its high-order extensions) and type-B higher-spin gravity theories in any dimension. Implications and subtleties of this symmetrization prescription in other models are discussed.
Type de document :
Article dans une revue
JHEP, 2018, 07, pp.009. 〈10.1007/JHEP07(2018)009〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01719627
Contributeur : Inspire Hep <>
Soumis le : mercredi 28 février 2018 - 12:11:42
Dernière modification le : mardi 19 mars 2019 - 23:29:50

Lien texte intégral

Identifiants

Collections

Citation

Thomas Basile, Xavier Bekaert, Euihun Joung. Twisted Flato-Fronsdal Theorem for Higher-Spin Algebras. JHEP, 2018, 07, pp.009. 〈10.1007/JHEP07(2018)009〉. 〈hal-01719627〉

Partager

Métriques

Consultations de la notice

36