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Parameter Estimation in Block Term Decomposition
for Noninvasive Atrial Fibrillation Analysis

Vicente Zarzoso
Université Côte d’Azur, CNRS, I3S Laboratory, CS 40121, 06903 Sophia Antipolis Cedex, France

Abstract—Atrial fibrillation (AF) is the most common sus-
tained cardiac arrhythmia encountered in clinical practice. Re-
cently, a tensor decomposition approach has been put forward
for noninvasive analysis of AF from surface electrocardiogram
(ECG) records. Multilead ECG data are stored in tensor form
and factorized via the block term decomposition (BTD). An
accurate selection of parameters, including the number of block
terms and the rank of the Hankel matrix factors, is necessary to
guarantee physiologically significant results by this approach. The
present work proposes to estimate the matrix rank by exploiting
the characteristics of atrial activity during AF, which can be
approximated by an autoregressive (AR) model in short records.
To test this idea, three AR model order estimates are considered:
Akaike’s information criterion, minimum description length and
partial autocorrelation function. The quality of the resulting
tensor decompositions is evaluated in terms of both computa-
tional and physiologically related indices. Numerical experiments
demonstrate that these model order estimation methods can find
matrix rank values leading to accurate BTD approximations of
the AF ECG tensor and physiologically plausible results.

I. INTRODUCTION

Held responsible of up to 25% of strokes, atrial fibrillation
(AF) is the most prevalent cardiac arrhythmia, especially af-
fecting the elderly [1]. The mechanisms underlying its genesis
and self-perpetuation are not yet fully understood, making the
management of this challenging condition unsatisfactory. For
these reasons AF is considered as the last great frontier of
cardiac electrophysiology. The noninvasive analysis of AF can
be performed with the aid of the surface electrocardiogram
(ECG), a widespread clinical tool due to its safety and cost-
effectiveness. During AF the electrical wavefront propagation
across the atria becomes disorganized, so that the P wave
of normal atrial activation is replaced by rapidly oscillating
f waves occurring all throughout the recording but masked
by the QRST complex of ventricular activity (VA) at each
heartbeat. Features such as amplitude and frequency of the
atrial activity (AA) signal in the ECG reflect AF complexity
and are linked to the probability of spontaneous cardioversion
(return to normal sinus rhythm) and therapeutic success [2]–
[5]. An accurate computation of such features requires the
estimation of AA and the suppression of VA in surface ECG
records.

The multi-sensor nature of the standard ECG, composed
of 12 leads, can be exploited to perform AA extraction.
The ECG data can be arranged in a space-time matrix and
then decomposed using suitable matrix methods for blind
source separation, e.g., principal and independent component
analysis [6]–[8]. For matrix decompositions to be unique, con-
straints are necessary such as orthogonality of spatial and/or
temporal factors (sources) or statistical independence between
the sources. These constraints, however, may not always be
coherent with physiological considerations.

To surmount this limitation, a tensor approach has recently
been put forward for AF analysis [9]–[11]. The main advantage
of tensor decompositions is their uniqueness under quite mild
structural conditions, thus avoiding additional constraints that
may lack physiological grounds. The block term decomposi-
tion (BTD) presented in [12] is chosen for its adequacy with
the characteristics of AA during AF. Indeed, atrial signals
may be approximated by all-pole models and can be mapped
onto Hankel matrices with ranks matching the number of
poles. Accordingly, the Hankel matrices associated with the
ECG leads are stored in a third-order tensor, which is then
processed by BTD. Experimental results show the pertinence
of this approach and its potential superiority to matrix de-
compositions, especially in short data records and limited
spatial diversity [9]–[11]. However, an accurate selection of
parameters including the number of block terms and the rank
of the Hankel matrix factors is crucial to BTD’s satisfactory
performance. The optimal choice of model parameters is a
challenging open issue not only in BTD [12], [13] but also in
other tensor decompositions.

The present contribution proposes to take advantage of the
atrial signal characteristics to estimate the rank of the matrix
factors in the BTD of AF ECG tensors. In short time intervals,
the atrial signal admits an autoregressive (AR) model, whose
order is linked to the number of poles and the rank of the
associated Hankel matrix. Three popular AR model order
estimation methods, namely, Akaike’s information criterion,
minimum description length and partial autocorrelation func-
tion, are applied to real AF ECG data in observation segments
free from VA. Their model order estimates are used as matrix
rank parameter in BTD. Parameter selection quality is assessed
by computational as well as physiological indices measuring
tensor approximation and atrial signal estimation performance,
showing the appropriateness of the proposed approach.

II. BLOCK TERM DECOMPOSITION

AA extraction in AF ECG records can be formulated as
the blind source separation problem:

X = MS (1)

where each row of X 2 IR

K⇥N contains the N time samples
of one ECG lead, S 2 IR

R⇥N contains the source signals and
M 2 IR

K⇥R denotes the mixing matrix. Matrix S contains
the atrial and ventricular sources as well as other artifacts
and interference contributing to the ECG. Only matrix X is
observed in the above model, and the goal is to estimate the
two matrix factors in eqn. (1) from the observation of X. The
value of K depends on the number of leads considered. When
processing a standard ECG record, we have K = 12 leads.
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In [12], BTD is put forward to solve the BSS problem
using a tensor decomposition approach. The idea behind BTD
is to map the kth row of X, denoted xk, onto a Hankel matrix,
denoted H

xk , with entries:

[H
xk ]i,j = [xk]i+j�1

(2)

which is then stacked along the mode-3 of a third-order tensor
X 2 IR

I⇥J⇥K :

X
:,:,k = H

xk k = 1, 2, . . . ,K. (3)

Hankel matrix H
xk is of dimensions (I⇥J), where I = N/2,

J = N/2 + 1 if N is even, and I = J = (N + 1)/2 if N is
odd. According to model (1), tensor X admits the following
decomposition in R block terms:

X =

RX

r=1

H
sr �mr (4)

where mr denotes the rth column of M and the source Hankel
matrix H

sr is defined as in eqn. (2). If the matrix factor H
sr

has rank Lr, the rth block term in model (4) has multilinear
rank-(Lr, Lr, 1). Sufficient conditions for the uniqueness of
BTD model (4) are given in [12]:

C1) Matrices A = [A
1

,A
2

, . . . ,AR] and B =

[B
1

,B
2

, . . . ,BR] with dimensions
�
I ⇥

PR
r=1

Lr

�

and
�
J⇥

PR
r=1

Lr

�
, respectively, are full column rank,

where H
sr = ArB

T

r , r = 1, 2, . . . , R.

C2) Mixing matrix M does not contain collinear columns.

Condition C1 requires in particular that I, J �
PR

r=1

Lr,
which would impose a theoretical lower bound on the sample
size N . This condition, however, is sufficient but not necessary.

AA in AF presents a narrowband power spectrum, typically
concentrated around a peak frequency in the 3 to 9 Hz band.
As a result, the atrial sources accept the all-pole or exponential
model:

[S]r,n
def

= sr(n) =
LrX

`=1

cr,`z
(n�1)

r,` n = 1, 2, . . . , N (5)

where zr,` is the `th pole of the rth source and cr,` scales
the exponential term. A signal with Lr distinct poles is
characterized by a Hankel matrix with rank Lr. If the poles
are different, condition C1 holds for sufficient sample size
and decomposition (4) is unique. Milder conditions guarantee
uniqueness even in the case of common poles [12]. If these
conditions are fulfilled, the BTD of tensor X defined in (3)
will yield the mixing matrix columns as vector factors and
the source Hankel matrices as matrix factors, like in eqn. (4).
According to (2), the source signals can then be recovered
by averaging along the antidiagonals of the associated Hankel
matrices.

As recently shown in [9]–[11], BTD can provide adequate
results and outperform matrix approaches in scenarios with
limited observation length and spatial diversity. Nevertheless,
its performance is highly dependent on the appropriate choice
of model parameters, i.e., the number of block terms R and the
rank of the matrix factors Lr. In the sequel, we will assume
for simplicity that all sources have the same number of poles,

Lr = L, r = 1, 2, . . . , R, a typical assumption in previous
works. The remaining of the paper focuses on the estimation
of the matrix factor rank L by means of AR analysis.

III. AR MODELING

As pointed out by all-pole equation (5), the sources accept
the AR model:

sr(n) =
LX

`=1

ar,`sr(n� `) + er(n) (6)

where er(n) is the error signal. AR coefficients ar,` define
the Lth degree polynomial pr(z) = zL �

PL
`=1

ar,`zL�`,
whose roots are the poles zr,`. The AR model coefficients
can be estimated by solving the Yule-Walker equations via the
efficient Levinson-Durbin recursion or well-known alternative
techniques. As a result, parameter L may be obtained by
suitable AR model order estimation methods. Among the most
popular existing techniques, we consider three such estima-
tors in this work: Akaike’s information criterion, minimum
description length and partial autocorrelation function, which
are briefly recalled next.

Akaike’s information criterion (AIC) estimates the AR
model order as the value of L minimizing the cost function:

AIC(L) = N log "L + 2L

where "L represents the prediction error, i.e., the power of
the error term er(n) in eqn. (6) when the model order is
set to L. AIC tends to underestimate the model order when
the signal under analysis is not an AR process, and tends
to overestimate it as the sample size N increases [14]. The
minimum description length (MDL) is based on the criterion:

MDL(L) = N log "L + L logN.

MDL is a consistent model order estimator, as it converges
to the true order as N ! 1 when the signal follows an
AR model [14]. Finally, the partial autocorrelation (PAC)
function criterion is also considered. The PAC sequence can
be directly computed from the reflection coefficients obtained
in the solution of the Yule-Walker equations [14]. We estimate
L as the maximum index of the PAC coefficients lying outside
the statistically significant threshold of ±1.96/

p
N . For its

increased robustness and stability, we choose the modified
covariance method (also known as forward-backward or least
squares method) [14] to estimate the AR model coefficients
and prediction error used in the AIC and MDL methods.

In practice, the source signals are unknown and their rank
cannot be estimated as explained above. To circumvent this
problem, we propose to compute as an initial approximation
the AR model order estimates in the TQ segments of the ECG.
TQ segments are the time intervals between two consecutive
beats and therefore only contain atrial signal contributions, as
illustrated Fig. 1.

IV. EXPERIMENTAL RESULTS

This section performs a series of numerical experiments
on synthetic and real data to test the ideas presented above.
In the first place, synthetic signals in controlled conditions are
employed to assess the influence of the selected model param-
eters on BTD’s computational performance in terms of tensor
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Fig. 1. Single-beat AF ECG segment processed by BTD in the real data
experiments of Sec. IV-B. The segment is composed of an initial QT interval,
containing a mixture of AA and VA, followed by a TQ segment, in which only
AA is present. The rank of the BTD matrix factors is computed by several AR
model order estimators from the TQ segment. Then the full interval (QT+TQ)
is decomposed via BTD. All 12 leads of the standard ECG are considered in
the analysis, but only bipolar limb lead II is shown here for clarity.

reconstruction quality and number of iterations for conver-
gence. These indices are shown to improve when the selected
parameters approach the ground truth. Next, we illustrate the
application of the AR model based matrix rank estimators
in a real AF ECG record, with the aim of optimizing the
computational performance of BTD while providing adequate
atrial signal estimation quality and physiologically reasonable
results in this biomedical problem. In the following experi-
ments, BTD is computed by the nonlinear least squares (NLS)
implementation available in Tensorlab MATLAB toolbox [15].
The maximum number of iterations is set to 1000.

A. Synthetic Data
A mixture of R = 5 sources and K = 5 observations

is generated with a mixing matrix composed of normalized
Gaussian random entries. Each source is a sum of 6 sinusoids
with random frequencies and N = 250 samples. Since a
sinusoid is defined by two complex conjugate poles, we
have L = 12 as the true theoretical value of the Hankel
matrix factors associated with each source signal. Figure 2
shows the normalized mean squared error (NMSE), defined as
k ˆX �Xk2

Fro

/kXk2
Fro

, of the tensor reconstructed for different
values of the matrix factor rank L assumed by BTD. We
plot the best tensor NMSE out of 10 independent random
initializations of the BTD factors for each L. Also shown
are the corresponding NMSE of the estimated sources and
the number of iterations required by the NLS-BTD algo-
rithm for convergence. Performance indices are computed
after permutating and scaling the estimated temporal factors
through a greedy algorithm based on the normalized cross-
correlation with the actual sources. One can observe that these
computational performance indices drop significantly when the
value of L used in the algorithm approaches the ground truth
and, therefore, they can be used as a guide to estimate the
BTD matrix factor rank.

B. Real AF ECG Data

1) Original data and preprocessing: To illustrate these
results on real data, we consider a standard 12-lead ECG record
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Fig. 2. Synthetic data experiments: influence of BTD matrix factor rank L.
NMSE of reconstructed tensor for the best BTD initialization (solid line),
corresponding source reconstruction NMSE (dashed line) and number of
iterations for BTD convergence (dotted line, right axis). The dashed vertical
line shows the actual theoretical value of the source Hankel matrix rank
(L = 12).

from the first patient of an AF signal database acquired during
catheter ablation procedures at the Cardiology Department
of Princess Grace, Monaco. The record, over a minute long
and acquired at a 977 Hz sampling rate, is preprocessed by
a zero-phase forward-backward type-II Chebyshev bandpass
filter with 0.5 and 40 Hz cutoff frequencies to suppress high-
frequency noise and baseline wandering. For BTD processing,
the single beat-to-beat interval (QQ segment) with the longest
TQ interval duration is considered, of which bipolar limb
lead II is shown in Fig. 1. The full beat and the TQ segment
are composed of 1468 and 1017 samples, respectively.

2) BTD factor rank estimation via AR modeling: The AR
order estimation methods described in Sec. III are applied to
the TQ segment in each ECG lead separately, yielding the
values shown in Table I. For each method, the model orders
averaged over the 12 ECG leads are considered as an estimate
of the matrix factor rank of the atrial sources present in the
observed AF ECG; hence: ˆL

AIC

= 95, ˆL
MDL

= 48 and
ˆL
PAC

= 17.

TABLE I. AR MODEL ORDER ESTIMATES FOR THE PROCESSED TQ
SEGMENT OF THE AF ECG RECORD. VALUES REPRESENT MEAN ±

STANDARD DEVIATION COMPUTED OVER THE 12 LEADS.

AIC MDL PAC
95 ± 3.5 48 ± 5 17 ± 5.2

3) BTD computational performance: Next, the whole
single-beat 12-lead ECG segment, including the QT interval
containing VA, is downsampled by a factor of two and hanke-
lized as explained in Sec. II, resulting in a third-order tensor
with dimensions (367⇥368⇥12). Downsampling is necessary
as the original tensor with dimensions (734⇥ 735⇥ 12) poses
difficulties to Tensorlab for some block term configurations
considered in these experiments. The tensor is processed by
NLS-BTD assuming different values of the number of block
terms R and the matrix factor rank L. The best reconstructed
tensor NMSE over 10 independent random initializations and
the corresponding number of iterations for convergence are
shown in Fig. 3 (top). A noticeable decrease in the number



of iterations can be observed from L =

ˆL
MDL

= 48. Tensor
approximation accuracy also improves significantly after that
value of L for a sufficient number of block terms.

4) Atrial signal analysis: Apart from these indices of
computational performance, other physiologically motivated
measures quantifying AA content are also considered such
as dominant frequency (DF) and spectral concentration (SC),
which are calculated as described in [7]. This experiment
assumes, as in previous works, that all atrial activity can be
represented by a single source, which is selected as the signal
with the highest SC among the sources with DF in the typical
[3, 9]-Hz frequency band. Figure 3 (bottom) plots the DF and
SC indices of the atrial source in the best tensor approximation
solution. The obtained DF does not show significant variations
over the considered range of BTD parameters but remains
physiologically plausible as it lies close to the DF of an intrac-
ardiac electrogram (EGM) acquired with the aid of a catheter
located in the left atrial appendage, DF

EGM

= 6.8 Hz. Higher
values of SC, reflecting clearer atrial signal components, are
generally obtained as the number of block terms increases.

Fig. 4 plots the AA signal reconstructed by BTD with
R = 12 block terms and the different AR-based matrix rank
estimates. Reconstructions are obtained with random initializa-
tions of the tensor factors different from those of Fig. 3. Also
shown as ground truth is the result by the adaptive singular
value cancellation (ASVC) method for QRST template match-
ing and subtraction [16]. Following closely the guidelines
of [16], ASVC is computed as the SVD-based synchronized
average of the optimal number of QT intervals in the full
observed recording (88-s long in this example) that are most
similar in terms of correlation to the QT interval under analy-
sis. Processing only the single-beat interval, the BTD estimates
achieve a level of atrial signal quality comparable to ASVC’s.
BTD may even appear superior in the QT interval, where
ASCV seems to underestimate the existing AA contribution as
quantified by the QT-to-TQ segment power ratio P

QT

/P
TQ

.
For reference, this ratio reaches 8.6 dB in lead V1.

V. CONCLUSIONS

The present contribution has proposed to estimate the rank
of the matrix factors in the BTD of AF ECG records by com-
puting the AR order of the observed TQ segments, containing
atrial contributions only. In the illustrative example, AIC and
MDL yield rank estimates leading to adequate performance
of BTD in terms of tensor approximation error, computational
complexity and atrial signal parameters, for a sufficient number
of block terms. The proposed approach may arguably be
considered as suboptimal since all block terms are assumed
to have the same matrix rank and the rank of the observed
mixture is expected to be higher than that of individual sources
as soon as any two sources do not have the same poles.
Despite these apparent limitations, experimental results are
encouraging. Further work should aim at the estimation of
the number of block terms, assess the impact of atrial signal
temporal variability on the tensor estimates and experimentally
evaluate their performance in a full AF ECG database.
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Fig. 3. Experiments on real AF ECG data: influence of number of BTD
block terms R and matrix factor rank L. (Top) NMSE of reconstructed tensor
for best BTD initialization (solid lines, left axis) and corresponding number of
iterations for BTD convergence (dotted lines, right axis). (Bottom) Dominant
frequency (solid lines, left axis) and spectral concentration (dotted lines, right
axis) of the corresponding atrial source.
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Fig. 4. Experiments on real AF ECG data: atrial signal estimation results.
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the ASVC method of [16]. Bottom plots: AA estimated by BTD with R = 12
block terms and matrix factor ranks L = L̂PAC = 17 (c), L = L̂MDL =
48 (d), and L = L̂AIC = 95 (e). Numerical values represent the dominant
frequency (DF), spectral concentration (SC) and QT-to-TQ segment power
ratio (PQT/PTQ) of the different signal estimates.
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