G. and G. , Let f n ? · · · ? f 1 = id P 2 be a relation in Bir R (P 2 ) with f i ? G * ? G ? . By Theorem 2.5(1) for each i = 1, . . . , r there are links ? i1, ? iri such that f i = ? iri ? · · · ? ? i1 . Then ? nrn ? · · · ? ? n1 ? · · · ? ? 1r1 ? · · · ? ? 11 = id P

, Remark 3.10), and each elementary relation corresponds to a loop around the boundary of an elementary disc (Theorem 2.5). Elementary discs are classified in Proposition 2.8. The boundary of discs D 1 , D 3 and D 5 respectively corresponds to a relation in G ? ? G * , in G ? and in G * , respectively. We attach to *, is a relation inside the groupoid Sar R (P 2 ) and is thus a composition of conjugates of elementary relations

G. ,

. Moreover, ;. We-have-g-*-?-g-?-=-h-by-lemma, and G. By, Lemma 3.6 and Corollary 3.12. So the amamlgamated structure on Bir R (P 2 ) is nontrivial. Finally, the index of G * is uncountable by Lemma 3.7 and the index of G ? is uncountable by Corollary 3.12. Theorem 1.3. The homomorphism ? : Bir R (P 2 ) ? (0,1] Z/2Z from Proposition 3.11 coincides with the one given in [18, Proposition 5.3] since its restriction to J ? is the surjective homomorphism ? : J ? ? (0,1] Z/2Z and its kernel contains G * by construction, hence it also contains Aut R (P 2 ) and J * . The kernel of ? is, vol.3

G. ?g?-g-?, Then every element of Bir R (P 2 ) of finite order has a fixed point on T . It follows that very finite subgroup of Bir R (P 2 ) has a fixed point on T [15, §I.6.5, Corollary 3], and is in particular conjugate to a subgroup of G * or of G ? . For infinite algebraic subgroups of Bir R (P 2 ), it suffices to check the claim for the maximal algebraic subgroups of Bir R (P 2 )

=. X-=-f-n-,-n, ) X is a del Pezzo surface of degree 6 with a birational morphism X ?? F 0 blowing-up a pair of non-real conjugate points

J. Blanc, Simple relations in the Cremona group, Proc. Amer. Math. Soc, vol.140, issue.5, pp.1495-1500, 2012.

J. Blanc, S. Lamy, and S. Zimmermann, Quotients of higher dimensional cremona groups, p.14, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01981369

J. Blanc and F. Mangolte, Cremona groups of real surfaces, Automorphisms in birational and affine geometry, vol.79, p.13, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00838522

S. Cantat and S. Lamy, Normal subgroups in the Cremona group, Acta Math, vol.210, issue.1, pp.31-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00705299

G. Castelnuovo, Le trasformazioni generatrici del gruppo cremoniano nel piano, pp.861-874, 1901.

V. Iskovskikh, Generators in the two-dimensional Cremona group over a nonclosed field. Translation of the 1991 paper from Trudy Mat, Inst. Steklov, p.14, 1991.

V. A. Iskovskikh, Proof of a theorem on relations in the two-dimensional Cremona group. Uspekhi Mat. Nauk, vol.40, pp.255-256, 1985.

V. A. Iskovskikh, Factorization of birational mappings of rational surfaces from the point of view of Mori theory, vol.51, p.6, 1996.

A. Kaloghiros, Relations in the Sarkisov program, Compos. Math, vol.149, issue.10, pp.1685-1709, 2013.

S. Lamy, Groupes de transformations birationnelles de surfaces. Mémoire d'habilitation à diriger des recherches, 2010.

S. Lamy and S. Zimmermann, Signature morphisms from the cremona group over a non-closed field, vol.7, p.14, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01719067

M. Robayo and S. Zimmermann, Infinite algebraic subgroups of the real cremona group, Osaka J. of Math, vol.55, issue.4, p.16, 2018.

F. Ronga and T. Vust, Birational diffeomorphisms of the real projective plane, Comment. Math. Helv, vol.80, issue.3, pp.517-540, 2005.

J. Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math, vol.327, issue.2, pp.12-80, 1981.

J. Serre, Trees. Springer Monographs in Mathematics, 2003.

D. Wright, Two-dimensional Cremona groups acting on simplicial complexes, Trans. Amer. Math. Soc, vol.331, issue.1, pp.281-300, 1992.

E. Yasinsky, Subgroups of odd order in the real plane Cremona group, J. Algebra, vol.461, issue.2, pp.87-120, 2016.

S. Zimmermann, The abelianisation of the real Cremona group, vol.13, p.15, 2009.

S. Zimmermann, Laboratoire angevin de recherche en mathématiques (LAREMA), CNRS, Université d'Angers, 49045 Angers Cedex 1, France E-mail address: susanna.zimmermann@univ-angers