Discontinuous-Skeletal methods with linear and quadratic reconstructions for the elliptic obstacle problem

Abstract : Discontinuous-skeletal methods are introduced and analyzed for the elliptic obstacle problem in two and three space dimensions. The methods are formulated in terms of face unknowns which are polynomials of degree k = 0 or k = 1 and in terms of cell unknowns which are polynomials of degree l = 0. The discrete obstacle constraints are enforced on the cell unknowns. A priori error estimates of optimal order (up to the regularity of the exact solution) are shown. Specifically, for k = 0, the method employs a local linear reconstruction operator and achieves an energy-error estimate of order h, where h is the mesh-size, whereas for k = 1, the method employs a local quadratic reconstruction operator and achieves an energy-error estimate of order $h^{3/2 − \epsilon}$, $\epsilon > 0$. Numerical experiments in two and three space dimensions illustrate the theoretical results.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01718883
Contributeur : Alexandre Ern <>
Soumis le : mardi 27 février 2018 - 17:37:13
Dernière modification le : samedi 11 août 2018 - 11:22:01
Document(s) archivé(s) le : lundi 28 mai 2018 - 13:19:00

Fichier

Obtcle-HHO.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01718883, version 1

Collections

Citation

Matteo Cicuttin, Alexandre Ern, Thirupathi Gudi. Discontinuous-Skeletal methods with linear and quadratic reconstructions for the elliptic obstacle problem. 2018. 〈hal-01718883〉

Partager

Métriques

Consultations de la notice

557

Téléchargements de fichiers

178