K. Brew and H. Nagase, The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity, Biochim Biophys Acta, vol.1803, pp.55-71, 2010.

W. G. Stetler-stevenson, Tissue inhibitors of metalloproteinases in cell signaling: metalloproteinase-independent biological activities, Sci Signal, vol.8, p.6, 2008.
DOI : 10.1126/scisignal.127re6

URL : http://europepmc.org/articles/pmc2493614?pdf=render

C. Ries, Cytokine functions of TIMP-1, Cell Mol Life Sci, vol.71, pp.659-672, 2014.
DOI : 10.1007/s00018-013-1457-3

E. Lambert, L. Bridoux, J. Devy, E. Dassé, and M. L. Sowa, TIMP-1 binding to proMMP-9/CD44 complex localized at the cell surface promotes erythroid cell survival, Int J Biochem Cell Biol, vol.41, pp.1102-1115, 2009.
DOI : 10.1016/j.biocel.2008.10.017

URL : https://hal.archives-ouvertes.fr/hal-00380210

L. Bridoux, N. Etique, E. Lambert, J. Thevenard, and M. L. Sowa, A crucial role for Lyn in TIMP-1 erythroid cell survival signalling pathway, FEBS Lett, vol.587, pp.1524-1528, 2013.
DOI : 10.1016/j.febslet.2013.03.032

URL : https://hal.archives-ouvertes.fr/hal-01692925

K. K. Jung, X. W. Liu, R. Chirco, R. Fridman, and H. R. Kim, Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein, EMBO J, vol.25, pp.3934-3942, 2006.

A. P. Lillis, L. B. Van-duyn, J. E. Murphy-ullrich, and D. K. Strickland, LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies, Physiol Rev, vol.88, pp.887-918, 2008.
DOI : 10.1152/physrev.00033.2007

URL : http://physrev.physiology.org/content/physrev/88/3/887.full.pdf

Z. Yang, D. K. Strickland, and P. Bornstein, Extracellular matrix metalloproteinase 2 levels are regulated by the low density lipoprotein-related scavenger receptor and thrombospondin 2, J Biol Chem, vol.276, pp.8403-8408, 2001.
DOI : 10.1074/jbc.m008925200

URL : http://www.jbc.org/content/276/11/8403.full.pdf

H. Emonard, G. Bellon, L. Troeberg, A. Berton, and A. Robinet, Low density lipoprotein receptor-related protein mediates endocytic clearance of proMMP-2:TIMP-2 complex through a thrombospondin-independent mechanism, J Biol Chem, vol.279, pp.54944-54951, 2004.
DOI : 10.1074/jbc.m406792200

URL : http://www.jbc.org/content/279/52/54944.full.pdf

E. Hahn-dantona, J. F. Ruiz, P. Bornstein, and D. K. Strickland, The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism, J Biol Chem, vol.276, pp.15498-15503, 2001.

O. Y. Barmina, H. W. Walling, G. J. Fiacco, J. M. Freije, and C. López-otín, Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization, J Biol Chem, vol.274, pp.30087-30093, 1999.
DOI : 10.1074/jbc.274.42.30087

URL : http://www.jbc.org/content/274/42/30087.full.pdf

M. Beaujouin, C. Prébois, D. Derocq, V. Laurent-matha, and O. Masson, Pro-cathepsin D interacts with the extracellular domain of the beta chain of LRP1 and promotes LRP1-dependent fibroblast outgrowth, J Cell Sci, vol.123, pp.3336-3346, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00518213

D. K. Strickland, J. D. Ashcom, S. Williams, F. Battey, and E. Behre, Primary structure of alpha 2-macroglobulin receptor-associated protein. Human homologue of a Heymann nephritis antigen, J Biol Chem, vol.266, pp.13364-13369, 1991.

L. M. Obermoeller-mccormick, Y. Li, H. Osaka, D. J. Fitzgerald, and A. L. Schwartz, Dissection of receptor folding and ligand-binding property with functional minireceptors of LDL receptor-related protein, J Cell Sci, vol.114, pp.899-908, 2001.

J. Herz and D. E. Clouthier, Hammer RE (1992) LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation, Cell, vol.71, pp.411-421
DOI : 10.1016/0092-8674(92)90511-a

S. Dedieu, B. Langlois, J. Devy, B. Sid, and C. Schneider, LRP-1 silencing prevents malignant cell invasion despite increased pericellular proteolytic activities, Mol Cell Biol, vol.28, pp.2980-2995, 2008.
DOI : 10.1128/mcb.02238-07

URL : https://hal.archives-ouvertes.fr/hal-00277527

B. Langlois, G. Perrot, C. Schneider, P. Henriet, and H. Emonard, LRP-1 promotes cancer cell invasion by supporting ERK and inhibiting JNK signaling pathways, PLoS One, vol.5, p.11584, 2010.
DOI : 10.1371/journal.pone.0011584

URL : https://doi.org/10.1371/journal.pone.0011584

S. Rivera, M. Khrestchatisky, L. Kaczmarek, G. A. Rosenberg, and D. M. Jaworski, Metzincin proteases and their inhibitors: foes or friends in nervous system physiology?, J Neurosci, vol.30, pp.15337-15357, 2010.
DOI : 10.1523/jneurosci.3467-10.2010

URL : http://www.jneurosci.org/content/jneuro/30/46/15337.full.pdf

A. Ould-yahoui, E. Tremblay, O. Sbai, L. Ferhat, and A. Bernard, A new role for TIMP-1 in modulating neurite outgrowth and morphology of cortical neurons, PLoS One, vol.4, p.8289, 2009.

P. May, A. Rohlmann, H. H. Bock, K. Zurhove, and J. D. Marth, Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice, Mol Cell Biol, vol.24, pp.8872-8883, 2004.
DOI : 10.1128/mcb.24.20.8872-8883.2004

URL : http://mcb.asm.org/content/24/20/8872.full.pdf

L. Troeberg, K. Fushimi, R. Khokha, H. Emonard, and P. Ghosh, Calcium pentosan polysulfate is a multifaceted exosite inhibitor of aggrecanases, FASEB J, vol.22, pp.3515-3524, 2008.
DOI : 10.1096/fj.08-112680

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2537431/pdf

S. D. Scilabra, L. Troeberg, K. Yamamoto, H. Emonard, and I. Thøgersen, Differential regulation of extracellular tissue inhibitor of metalloproteinases-3 levels by cell membrane-bound and shed low density lipoprotein receptor-related protein 1, J Biol Chem, vol.288, pp.332-342, 2013.

A. B. Hamze, S. Wei, H. Bahudhanapati, S. Kota, and K. R. Acharya, Constraining specificity in the N-domain of tissue inhibitor of metalloproteinases-1; gelatinase-selective inhibitors, Protein Sci, vol.16, pp.1905-1913, 2007.

I. Mikhailenko, F. D. Battey, M. Migliorini, J. F. Ruiz, and K. Argraves, Recognition of alpha 2-macroglobulin by the low density lipoprotein receptorrelated protein requires the cooperation of two ligand binding cluster regions, J Biol Chem, vol.276, pp.39484-39491, 2001.

G. Perrot, B. Langlois, J. Devy, J. A. Verzeaux, and L. , LRP-1/CD44, a new cell surface complex regulating tumor cell adhesion, Mol Cell Biol, vol.32, pp.3293-3307, 2012.
DOI : 10.1128/mcb.00228-12

URL : https://hal.archives-ouvertes.fr/hal-00783574

G. Bu, E. A. Maksymovitch, J. M. Nerbonne, and A. L. Schwartz, Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neurons, J Biol Chem, vol.269, pp.18521-18528, 1994.

N. Etique, L. Verzeaux, S. Dedieu, and H. Emonard, LRP-1: a checkpoint for the extracellular matrix proteolysis, BioMed Res Int, p.152163, 2013.

J. G. Neels, B. Van-den-berg, A. Lookene, G. Olivecrona, and H. Pannekoek, The second and fourth cluster of class A cysteine-rich repeats of the low density lipoprotein receptor-related protein share ligand-binding properties, J Biol Chem, vol.274, pp.31305-31311, 1999.

R. P. Czekay, T. A. Kuemmel, R. A. Orlando, and M. G. Farquhar, Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase acivity, Mol Cell Biol, vol.12, pp.1467-1479, 2001.

S. Ranganathan, N. C. Noyes, M. Migliorini, J. A. Winkles, and F. D. Battey, LRAD3, a novel low-density lipoprotein receptor family member that modulates amyloid precursor protein trafficking, J Neurosci, vol.31, pp.10836-10846, 2011.

G. Murphy, A. Houbrechts, M. I. Cockett, R. A. Williamson, O. Shea et al., The N-terminal domain of tissue inhibitor of metalloproteinases retains metalloproteinase inhibitory activity, Biochemistry, vol.30, pp.8097-8102, 1991.

E. Lambert, E. Dassé, B. Haye, and E. Petitfrère, TIMPs as multifacial proteins, Crit Rev Oncol Hematol, vol.49, pp.187-198, 2004.

V. Egea, S. Zahler, N. Rieth, P. Neth, and T. Popp, Tissue inhibitor of metalloproteinase-1 (TIMP-1) regulates mesenchymal stem cells through let-7f microRNA and Wnt/b-catenin signaling, Proc Natl Acad Sci, vol.109, pp.309-316, 2012.

L. Pérez-martínez and D. M. Jaworski, Tissue inhibitor of metalloproteinase-2 promotes neuronal differentiation by acting as an anti-mitogenic signal, J Neurosci, vol.25, pp.4917-4929, 2005.

S. Rivera, E. Tremblay, S. Timsit, O. Canals, and Y. Ben-ari, Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and astrocytes after seizures: evidence for developmental, immediate early gene, and lesion response, J Neurosci, vol.17, pp.4223-4235, 1997.

S. Rivera, C. Ogier, J. Jourquin, S. Timsit, and A. W. Szklarczyk, Gelatinase B and TIMP-1 are regulated in a cell-and time-dependent manner in association with neuronal death and glial reactivity after global forebrain ischemia, Eur J Neurosci, vol.15, pp.19-32, 2002.

Z. Qiu, B. T. Hyman, and G. W. Rebeck, Apolipoprotein E receptors mediate neurite outgrowth through activation of p44/42 mitogen-activated protein kinase in primary neurons, J Biol Chem, vol.279, pp.34948-34956, 2004.

E. Mantuano, G. Mukandala, X. Li, W. M. Campana, and S. L. Gonias, Molecular dissection of the human alpha2-macroglobulin subunit reveals domains with antagonistic activities in cell signaling, J Biol Chem, vol.283, pp.19904-19911, 2008.

Y. Shi, E. Mantuano, G. Inoue, W. M. Campana, and S. L. Gonias, Ligand binding to LRP1 transactivates Trk receptors by a Src family kinase-dependent pathway, Sci Signal, vol.2, p.18, 2009.

T. L. Stiles, T. L. Dickendesher, A. Gaultier, A. Fernandez-castaneda, and E. Mantuano, LDL receptor-related protein-1 is a sialic-acid-independent receptor for myelin-associated glycoprotein that functions in neurite outgrowth inhibition by MAF and CNS myelin, J Cell Sci, vol.126, pp.209-220, 2013.