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Abstract

Stress and density changes in axi-symmetric compaction of pharmaceutical powders are analysed numerically. Data measured in a
compression cycle are used with a calibration procedure to assess the mechanical behaviour of powders in compaction based on a Drucker–
Prager Cap model. This model is based on the elastic–plastic theory and takes into account the macroscopic characteristics of powders such
as cohesion and global friction between particles. Moreover, a yield function is used to limit the admissible stresses in a tablet during a
compaction cycle. This yield function depends on the first and second invariants of the stress tensor: pressure and stress deviation. To
represent the plastic compaction mechanisms, a strain hardening function is used to expand the yield function with increasing volumetric
strain. A finite element method coupled to the finite strain plasticity theory is used to calculate stress and strain changes in a tablet during
compression and decompression. The die wall friction is estimated from the transmission effort to the lower punch with the modified equation
of Shaxby and Evans. This model and the calibration procedure are applied to lactose powder. Mechanical properties calculated are compared
to the experimental data measurements with a Jenike shear cell. The relative density distribution at the end of compaction and after the
unloading is analysed. The normal pressure on the die is numerically estimated and analysed in terms of load transferred from powder to die
during compaction and load restitution to tablet during decompression.
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1. Introduction

Successful tableting of pharmaceutical powders requires
an understanding and analysis of the fundamental mechan-
ical properties of powders, the die wall friction and the
process parameters during a compaction cycle.

Understanding the effect of important parameters during
compaction can help to solve some difficulties in tableting.
For example, problems such as capping can occur during the
compaction cycle and the explanation is not clear.

In pharmaceutical compaction, the techniques commonly
used to assess compaction behaviour are based on two main
equations: Heckel equation [1–3], to study the compressi-
bility of powders, and hardness equation [4–7], for the
compactibility properties. The compressibility is defined as
the volume reduction under pressure and the compactibility

as the ability of powder material to be compressed to form a
cohesive tablet. Moreover, several authors, Krycer et al. [8],
Armstrong and Haines-Nutt [9], Summers et al. [10] and
C!elik and Travers [11], define indices characterising the
elasticity and plasticity properties of powder. From these
indices, criteria are postulated to predict capping problems.
In general, these indices are calculated from data obtained by
measurement of macroscopic dimensional variations in tab-
lets during the compaction cycle. However, these equations
and indices do not give any information on the stress
gradients and heterogeneous density changes in the volume
of tablet during die compaction. The present work is a
contribution to the study of the compaction behaviour of
pharmaceutical powders using a continuum mechanical
model and finite element analysis. The material parameters
in the model used are calculated from data measurements
with a calibration procedure. The advantage of this approach
is that the mechanical analysis involves both tools (punches
and die) and the tablet.
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2. Continuum mechanical modelling of the compaction
behaviour

Several mechanisms can be involved in pharmaceutical
powder compaction processes: rearrangement and densifi-
cation of particles, friction between particles, fragmentation
and plastic deformation of particles. All these mechanisms
are connected and are difficult to predict [5,6]. In contin-
uum mechanical modelling, the powder is considered mac-
roscopically and is treated as a continuous medium. The
working scale (of the order of a millimeter) does not take
into account the characteristics of individual particles such
as size or shape. In this approach, the powder is considered
as a porous media and is characterised by overall para-
meters such as cohesion, global interparticle friction and
mechanical properties such as the Young’s modulus and the
Poisson ratio, which can depend on density during the
compaction cycle. Moreover, as the compressive load in-
creases, the mechanical stress in the volume of a tablet
evolves in a domain that is bounded, but it depends on
plastic hardening mechanism. This domain is an envelope
formed with one or more surfaces defining the admissible
stresses in the tablet.

Several continuum mechanical models have been devel-
oped for porous materials [12–15]. All of these are based on
the elastic–plastic theory and are essentially the same (see
Refs. [13,16]), even though their yield criteria, which define
the admissible stresses, are expressed in different forms and
can be defined with one or more surfaces.

In the present work, a Drucker–Prager Cap model,
presented by Hibbit, Karlsson and Sorensson [17], is used
to analyse the strain, stress and relative density changes in a
pharmaceutical powder during the compression and decom-
pression phases. The yield criterion is defined with three
surfaces. The choice of this model was motivated by its
implementation in the finite element code ABAQUS. The
analysis of the compaction is performed in an axi-symmetric
configuration.

3. Constitutive equations

In the elastic–plastic model, the total strain increment
tensor de=(deij) results from the contribution of the elastic
strain increment deel and the inelastic strain increment dein:

de ¼ deel þ dein ð1Þ

In this first approach, the elastic behaviour is assumed to
be linear:

deelij ¼
ð1þ !Þ

E
drij %

!

E
drkkdij ð2Þ

where E and m are Young’s modulus and Poisson ratio,
respectively, and dr=(drij) denotes the stress increment

tensor. The elastic material parameters E and m can depend
on the local density during compaction. In this work, we
assume that they are constant. A calibration technique is
used in Section 4 to compute for these constants.

3.1. Yield function for admissible stresses

In the Drucker–Prager Cap model, the yield function for
admissible stresses is defined by three surfaces in pressure p
and deviation stress

ffiffiffiffiffiffi

J2V
p

space. A plot of the following
surfaces is presented in Fig. 1.

A shear failure yield surface, Fs, which is a criterion
characterising the shear stress required for simple slip
depending on the cohesion and hydrostatic pressure
p=(rkk)/3:

Fsðp, J2VÞ ¼
ffiffiffiffiffiffi

J2V
p

% ptanb% d ¼ 0 ð3Þ

where b is the global angle of friction and d is the cohesion
of granular material. These two macroscopic parameters are
used as the only material parameters and are based on the
Mohr–Coulomb hypothesis presented by Drucker and
Prager [18].

A cap yield surface, Fc, which has an elliptical shape
with constant eccentricity. This cap can expand or contract
as the inelastic volumetric strain decreases or increases,
respectively. Its equation is given by:

Fcðp, J2VÞ ¼
n

ðp% paÞ2 þ
h

R
ffiffiffiffiffiffi

J2V
p

=ð1þ a% a=cosbÞ
i2o1=2

% Rðd þ patanbÞ ¼ 0 ð4Þ

Here, R is a material parameter that controls the shape of the
cap and a is a small number (typically 0.01–0.05) for a
smoothed transition yield surface from Fc to Fs.

To drive the hardening and softening mechanism, it is
assumed that the cap yield surface Fc is a continuous family
of similar ellipses, each of them corresponds to a single value
of the inelastic strain state. Hence, the hydrostatic pressure
yield stress pb, that defines the position of the cap (Fig. 1), is

Fig. 1. The Drucker–Prager Cap model in the ( p,
ffiffiffiffiffi

J2V
p

) plane.



assumed to be an increasing function of the volumetric in-
elastic strain evol

in =(ekk
in)/3, and pa is defined as:

pa ¼ ðpb % RdÞ=ð1þ RtanbÞ ð5Þ

A transition yield surface Ft that connects Fc and Fs

surfaces into a smooth one:

Ftðp, J2VÞ ¼ ðp% paÞ2 þ
ffiffiffiffiffi

J2V
p

% ð1% a=cosbÞ
hn

& ðd þ patanbÞ
i2o1=2

% aðd þ patanbÞ ¼ 0

ð6Þ

The typical shape of the function pb is plotted in Fig. 2.
This model provides a regular transition between the cap

and failure yield surfaces and avoids the corner problem for
numerical computation.

3.2. Irreversible flow

The evolution of inelastic deformation that results from
mechanisms of densification and plastification of particles is
defined by a flow potential that is an associated flow in the
cap region and a nonassociated flow in the failure and the
transition regions:

dein ¼ dkdFcðp, J2VÞ if Fcðp, J2VÞ ¼ 0 ð7Þ

dein ¼ dkdGðp, J2VÞ if Fsðp, J2VÞ ¼ 0

or Ftðp, J2VÞ ¼ 0 ð8Þ

where the flow potential Gs(p, J2V) is defined as:

Gsðp, J2VÞ

¼
h

ðpa % pÞtanb
i2

þ
ffiffiffiffiffi

J2V
p

=ð1þ a% a=cosbÞ
h i2

" #1=2

ð9Þ
and the multiplier dk is a positive scalar parameter.

The two elliptical portions Gs and Fc form a continuous
and smooth potential surface.

4. Experimental data and procedure of calibration

In the model presented, the following material parame-
ters must be fitted from experimental data measurements:

E: Young’s modulus
m: Poisson ratio
d: initial powder cohesion
b: angle of friction
pb=g(evol

in ): hardening function or cap evolution

The material parameter R that controls the curvature of
the cap Fc and must be between 0 and 1 was set to 0.558.
The small number a for the smoothed transition yield
surface was fixed to 0.03. The sensitivity of the model to
the two parameters is not studied here.

Classically, three experiments are required to calibrate
the Cap model: a hydrostatic compression test, a triaxial test
and a proportional loading test (the axial to radial stress ratio
is kept constant). These tests are commonly used for metal-
lurgical powders [13,19,20], but not for pharmaceutical
powders. Most data available for pharmaceutical powders
have been obtained by the use of instrumented tablet presses
[11], or by shear cell test [22,23]. An instrumented tablet
press is used to assess measurements of axial forces and
displacements on the punches and sometimes the radial
force on the die [21]. The shear cell test that is based on
the Mohr–Coulomb failure criterion supplies data on pow-
der cohesion and friction angle at different pressures.

4.1. Experimental data measurements

Measurements available are made with an instrumented
manufacture (instrumented Frogerais OA machine). Com-
pression of a sample of lactose powder is performed in a
cylindrical die. The tested volume is 1 cm2&1 cm and the
strain rate is 0.005 s%1. The axial force on the punches and
displacement of the upper punch during the compaction
cycle (loading and unloading) are measured. The axial stress
rzz is plotted in Fig. 3a as a function of the axial strain
ezz=Aln(z/zo)A, where zo=10 mm is the initial height of the
powder and z is the powder height during compaction. In
this example, the compaction stress reaches 250 MPa. It is
an extreme state of compaction for lactose powder, but the
subject is used to illustrate the approach and the procedure
of calibration. So, along the curve AB (loading phase),
densification increases. When the upper punch is in the
removable state, the elastic unloading starts at point B and
continues linearly until point D. At this point, the punch has
lost contact with the tablet, which is free to recover until
point E. The final net height is then represented by AE in
Fig. 3a.

The force on the upper punch Fupp is responsible for the
compression of the powder. The sensed force Flow by the
lower punch is less than Fupp because of the existence of a
frictional force between the die wall and powder. TheFig. 2. Shape of the cap evolution with volumetric inelastic strain.



deviation AFupp%FlowA is plotted in Fig. 3b as a function of
the displacement z of the upper punch.

Results of axial stress and strain at points A, B, D and E
of lactose powder compaction are summarised in Table 1.

4.2. Procedure of calibration

In the cylindrical closed die compaction, the circum-
ferential stress is assumed to be equal to the radial stress.
The pressure and stress deviator become:

p ¼ ðrzz þ 2rrrÞ=3 and
ffiffiffiffiffi

J2V
p

¼ jrzz % rrrj=
ffiffiffi

3
p

ð10Þ

The procedure used for fitting model parameters is based
on the stress path for the cap model of the uniaxial
compressive test. This technique was applied by Aydin et
al. [25] to the uniaxial compression of ceramic powder. To

obtain the stress path, the relation between rzz and rrr
during loading and unloading phases is often the general
problem. In the present study, this relation is obtained from
available results in Ref. [21] for the loading phase. In this
paper, measurements of axial and radial stresses of lactose
powder compaction at various strain rates are presented. In a
low strain rate range (0.001–0.1 s%1), these curves show a
linear correlation between rzz and rrr. Let us set, in these
conditions:

c ¼ rzz=rrr ð11Þ

the correlation ratio. The fitted slopes of the axial–radial
stresses curve for the lactose powder compaction in Ref.
[21] is typically c=2.44.

During the loading phase, the stress path ðp,
ffiffiffiffiffi

J2V
p

Þ of
lactose powder is then a straight line AB starting from (0,0)
and intersecting the cap (Fc(p, J2V)=0), as shown in Fig. 4.

The linearity assumption expressed here is not valid for
strain rate greater than 10 s%1 as shown in Ref. [21]. So, in a
nonlinear case, a parameterisation of the slope of the
(rzz,rrr) curve with the density can be recommended as
proposed by H.A. Kuhn [24].

Since the modulus
ffiffiffiffiffi

J2V
p

is positive, then the stress path
during unloading follows the line BC until

ffiffiffiffiffi

J2V
p

¼ 0. At this
point, the stress state is hydrostatic and rzz=rrr. When this
point is reached, the radial stress is larger than the axial, and
the elastic path continues with increasing

ffiffiffiffiffi

J2V
p

until it
intersects the failure surface Fs( p, J2V)=0 at D. Therefore,
plastic deformation occurs from D to E. The slope of BC
and CD lines is equal to 2l=

ffiffiffi

3
p

K, where the compressibility
K and shear modulus l are themselves related to Young’s
modulus E and Poisson ratio m [26]:

m ¼ ð3K % 2lÞ=2ð3K þ lÞ ð12:aÞ

E ¼ 9lK=ð3K þ lÞ ð12:bÞ

Furthermore, the slope of the elastic portion BD in Fig. 3a is
related to K and l, as in Eq. (12.c):

K þ 4l=3 ¼ ½rzzðBÞ % rzzðDÞ(=½ezzðBÞ % ezzðDÞ( ð12:cÞ

Table 1

Experimental data for lactose powder (closed die compaction test)

A B D E

Axial strain (%) 0.0 0.70 0.66 0.64

Axial stress (MPa) 0.0 247.56 14.65 0.0

Fig. 4. Stress path of the axial compressive test.

Fig. 3. (a) Axial stress versus axial strain (compaction of lactose powder).

(b) Deviation forces between upper and lower punches (lactose powder).



4.3. Computing for E

If m is a given constant, then K and l can be computed
from Eqs. (12.a) and (12.c), and E can then follow from Eq.
(12.b).

In the literature, no information is available about Pois-
son ratio for lactose powder compaction. Our choice is
arbitrary, and a Poisson ratio parameter equal to 0.17 was
taken. The resulting compressibility coefficient K and shear
modulus l are then equal to 2.34 and 2.01 GPa, respec-
tively. The Young’s modulus result from Eq. (12.b) takes the
value of 4.6 GPa.

4.4. Computing for the friction angle "

As presented in the stress path diagram, Fig. 4, the
friction angle b is defined as the slope of line AB. Then:

tanb ¼
ffiffiffiffiffi

J2V
p

ðBÞ=pðBÞ

From experimental data of lactose powder compaction
summarised in Table 1, the friction angle b is taken to be
equal to 29.3j.

4.5. Computing for cohesion d

From the stress path in Fig. 4, the stress state at C is
purely hydrostatic

ffiffiffiffiffi

J2V
p

ðCÞ ¼ 0 ðrzzðCÞ ¼ rrrðCÞÞ and is
characterised by Eq. (14):

rzzðCÞ ¼ rrrðCÞ ¼ pðBÞ %
ffiffiffiffiffi

J2V
p

ðBÞ=ð2l=
ffiffiffi

3
p

KÞ ð14Þ

In the case of lactose powder compaction, the hydro-
static pressure at point C is then equal to 65.2 MPa. So,
since D is on the Fs surface, cohesion d will be computed
as Eq. (15).

d ¼
ffiffiffiffiffi

J2V
p

ðDÞ % pðDÞtanb ð15Þ

In order to evaluate radial stress from the axial stress at D
and therefore compute for cohesion d, a linear relation
between rzz and rrr is assumed (Eq. (16)) during the
unloading phase. This assumption is not experimentally

verified here, but commonly used in the literature [25,27]
for ceramic powders and adopted in this study.

rzz ¼ arrr þ b ð16Þ

Because B and C satisfy the same equation (Eq. (16)) and
their axial and radial stresses are known, constants a and b
may be calculated by Eqs. (16.a) and (16.b). The system
solution is then:

a ¼ ½rzzðBÞ % rzzðCÞ(=½rrrðBÞ % rrrðCÞ( ð16:aÞ

and

b ¼ rrrðCÞð1% aÞ ð16:bÞ

The numerical application for lactose powder compac-
tion gives a=5.03 and b=%262.6. Then, the resulting lactose
powder cohesion is estimated to be 0.46 kPa.

4.6. Residual stress in the tablet

Finally, the residual stress in the tablet can be obtained
from Eq. (15) at E. Having the axial stress at E (rzz(E)=0),
then from Eq. (10):

pðEÞ ¼ 2=3rrrðEÞ and
ffiffiffiffiffi

J2V
p

ðEÞ ¼ ArrrA=
ffiffiffi

3
p

Then, the residual radial stress in the tablet is charac-
terised by the following equation:

rrrðEÞ ¼ 3d=ð
ffiffiffi

3
p

% 2tanbÞ ð17Þ

For lactose powder compaction, the residual radial stress
in tablet is estimated to be 2.3 kPa.

Table 2

Mechanical parameters of lactose powder compaction (Drucker–Prager

Cap model)

c m d (kPa) b (j) E (GPa)

2.44 0.17 0.46 29.3 4.6

Table 3

Hardening function or cap evolution

Pb (MPa) 0.0005 5.90 12.51 19.58 29.02 56.64 97.93 145.84 227.72 239.28

evol
in 0.0 0.26 0.32 0.37 0.41 0.48 0.55 0.62 0.64 0.65

Fig. 5. Initial mesh (half of powder bed).



4.7. Fitting the hardening function pb=g(evol
in )

In the Drucker–Prager Cap model, the hardening mech-
anism is defined as an evolution of the cap surface with the
inelastic volumetric strain. From Fig. 3a, and assuming that
intermediate unloading response is identical and parallel to
the BD line, the volumetric strain at every step of loading is
computed as:

einvol ¼ ezz % rzz=½K þ 4l=3(

From the stress path AB in Fig. 4, the hydrostatic
pressure at every step of loading is obtained as:

ffiffiffiffiffi

J2V
p

¼ ptanb

Moreover, let the cap Fc intersect the stress path at this
step. Then from Eq. (4), and knowing all other parameters, it

is easy to compute the following equation to determine the
position pb of the cap:

ðp% paÞ2 þ Rptanb=ð1þ a% a=cosbÞ½ (2
n o1=2

¼ Rðd þ patanbÞ

Hence, substituting the obtained value of pa in Eq. (5), it
follows that:

pb ¼ Rd þ pað1þ RtanbÞ

The fitted mechanical parameters of lactose powder
compaction are summarised in Tables 2 and 3.

5. Numerical simulation and results for lactose powder
compaction

5.1. Numerical method

A classical finite element method is applied to an axi-
symmetric compaction process in single-action pressing.

Fig. 6. Deformed mesh at 50% of compaction.

Fig. 7. Axial displacements (contour plots).

Fig. 8. Radial displacements.

Fig. 9. Hydrostatic pressure in the tablet at 50% of compaction.



The dimension of the powder bed simulated was the same as
in the experimental test (1 cm2&1 cm). Due to the axial
symmetry, half of the powder bed was meshed with a set of
four-node axi-symmetric elements as plotted in Fig. 5. The
die and punches are assumed to be rigid bodies. Coulomb
friction is assumed. The wall friction coefficient f was
estimated with the equation of Shaxby and Evans [31]
modified by Unckel [32] and Toor and Eagleton [33]:

ðrzzÞupp ¼ ðrzzÞlowexpð%4f c%1z=dÞ ð18Þ

where (rzz)upp>0 and (rzz)low<0 are the stresses on the upper
and lower punches and z and d are the height and the
diameter of the compact, respectively.

From experimental data, the (rzz)upp/(rzz)low ratio at the
end of the compaction (z=0.5 mm) is typically equal to 1.05.
Thus, the wall die friction coefficient resulting from Eq. (18)
is estimated to be f=0.06.

The load is applied in two steps. In the first step, the
upper punch moves down from height z=10 mm to z=5 mm.
This is the compaction phase. In the second step, the upper
punch loses contact with the tablet. Then boundary con-
ditions are determined to simulate the elastic recovery and
redistribution stresses. The measured and fitted data of the
model are presented in Tables 1–3.

Because of the nonlinearity of the boundaries problem,
the classic incremental algorithm is adopted to solve the
equilibrium equations at each increment.

5.2. Results and discussion

Figs. 5–14 show numerical results of lactose powder
compaction in cylindrical rigid die and in single-action
pressing. In the first step (loading phase), the powder bed
is compacted up to 50% of deformation with a rigid flat
punch. In the second step, the punch is drawn back, and the
formed tablet is free to expand to reach its equilibrium state.

Figs. 5 and 6 display respectively the meshing of the half
of the powder bed and the deformed mesh after 50% of the
compaction. No mesh is distorted and no remeshing is
needed.

Fig. 7 shows the axial contour displacements. The axial
displacement increases from the top of the bed to the
bottom, showing that the axial load is transmitted from
the upper layers to the lower ones as observed by Train [29].

Fig. 8 displays the radial contour displacements and
shows two distinct parts: an outwards flow at the bottom
and an inwards flow at the top. Between these parts, the
material remains at the same radius. However, the magni-
tude of the radial displacement remains low compared to the

Fig. 10. Von Mises stress (contour plots). Fig. 12. Von Mises stress.

Fig. 11. Pressure distribution (after unloading). Fig. 13. Mean pressure on the die during loading and unloading phases.



axial displacement. The same result was obtained by Al-
Khattat and Al-Hassani [28] with their modelling. This
phenomenon was depicted as an ‘‘eddy current’’ of powder
flow.

Figs. 9 and 10 display respectively the distribution of the
hydrostatic pressure and the Von Mises stress at 50% of
compaction. The pressure and the shear stresses are decreas-
ing down the tablet at the die wall and are in the range 157–
177 and 58–79 MPa, respectively. Their high and low
values are predicted at the top and at the bottom corners
of the tablet. However, at the interior of the tablet, the shear
stresses are increasing from the top to the bottom. These
results agree qualitatively with the general experimental
observations reported in Ref. [29–30].

Figs. 11 and 12 show the pressure and the shear stresses
in the tablet at the end of the decompression step. As the
tablet is free to expand, a redistribution of stresses occurs.
Unlike the loading step, the pressure and Von Mises stress
are increasing from the top to the bottom and are varying in
the range 43–54 and 24–30 MPa, respectively. Thus,
during the decompression phase, the tablet may develop a
capping tendency.

Fig. 13 shows the mean contact pressure on the wall
during the loading and the unloading time. This pressure
applied by the compact on the die increases up to 144 MPa.
However, during the decompression step, the tablet recovers
the elastic strain and continues to expand to reach the
equilibrium state. As a consequence, the contact pressure
on the wall decreases down to 55 MPa. The analysis of this
contact pressure can help to understand the interaction
between compact and die in the compression and decom-

pression steps and may explain occasional difficulties in
ejecting the tablet.

Fig. 14 shows the density changes with hydrostatic
pressure at the element number 12, 126 and 158 displayed
in Fig. 5. As it is shown in Appendix A, the density q at
every level of loading is computed from the strain at the
Gauss integration points with the following equation:

q=q0 ¼ expð%evolÞ

where evol=e1+e2+e3 and ei, i=1, 2, 3 are the principal
strains, and q0 is the density before starting compaction. It
is shown that the density increases with loading and
decreases with unloading. After the unloading step, the
relative density at the element number 12, 126 and 158 are
1.86, 1.88 and 1.89, respectively. These computed den-
sities will be compared to the true density measurements
with a pycnometer.

6. Conclusion

The Drucker–Prager Cap model is proposed to analyse
the compaction behaviour of pharmaceutical powders. An
associated methodology to fit mechanical parameters of the
model from data measurements of sample compaction with
an instrumented machine is proposed. The Coulomb friction
is assumed, and the die wall friction coefficient is evaluated
from the modified equation of Shaxby and Evans. The
elastic–plastic finite element method is applied to compute
stresses and density changes in the tablet. In this first

Fig. 14. Relative density q/qo versus hydrostatic pressure at elements number 12, 126 and 158 plotted in Fig. 5 (loading and unloading steps).



approach, the mechanical properties of powder are assumed
to be independent of the density. The application of the
model to the lactose powder compaction shows an agree-
ment between the results of simulation and experimental
data available in the literature and in our laboratory. How-
ever, this study must be confirmed with more experimental
measurements and applied to others powders.

7. List of symbols

e=(eij) strain tensor
ezz axial strain
einvol ¼

P

k e
in
kk volumetric inelastic strain

r=(rij) stress tensor
r=(rk), k=1, 3 principal stresses
rzz axial stress
rrr radial stress
Sij=rij%pdij stress deviator
p=(r1+r2+r3)/3 hydrostatic pressure
ffiffiffiffiffi

J2V
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffi

1
2 SijSij

q

modulus of the stress deviator

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

3
2 SijSij

q

Von Mises equivalent stress
d, b cohesion and friction angle of powder, respectively
E, m Young’s modulus and Poisson ratio, respectively
k, l compressibility and shear modulus, respectively
c ¼ rzz

rrr
ratio of axial to radial stresses

q density
Fs shear failure yield surface
Fc cap yield surface
Ft transition yield surface
a small number for a smoothed transition yield

surface from Fc to Fs

R material parameter to control the shape of the cap
Fc

pb hydrostatic yield stress

Appendix A. Density–strain relation

Originally presented by Kuhn [24], the incremental
variation in density dq during densification is related to
the incremental change of volume dv and principal strains
dei, i=1, 2, 3:

dv=v ¼ %dq=q ¼ de1 þ de2 þ de3 ðA1Þ

For small deformations, Eq. (A1) can be approached by

Dv=v ¼ %Dq=q ¼ e1 þ e2 þ e3 ¼ evol ðA2Þ

However, for large volume changes such as in compac-
tion, the correct relation is

lnð1þ Dv=vÞ ¼ lnð1% Dq=qÞ ¼ evol ðA3Þ

Then, the density q at one level of compaction can be
written as:

q=q0 ¼ expð%evolÞ ðA4Þ

where Dq is approached by (q%qo) and qo is the bulk den-
sity (before starting compaction).

References

[1] R.W. Heckel, Trans. Metall. Soc. AIME 221 (1961) 671.

[2] P.J. Rue, J.E. Rees, Limitations of the Heckel relation for predicting

powder compaction mechanisms, J. Pharmacol. 30 (1978) 642–643.

[3] P. York, A consideration of experimental variables in the analysis of

powder compaction behaviour, J. Pharmacol. 31 (1979) 244–246.

[4] W. Zetzer, H. Leuenberger, H. Sucher, Compressibility and compact-

ibility of powder mixtures, Pharm. Technol. 7 (11) (1983) 33–48.

[5] H. Leuenberger, B.D. Rohera, Fundamentals of powder compression:

1. The compactibility and compressibility of pharmaceutical powders,

Pharm. Res. 3 (1) (1986) 12–22.

[6] H. Leuenberger, B.D. Rohera, Fundamentals of powder compression:

2. The compression of binary mixtures, Pharm. Res. 3 (2) (1986)

65–74.

[7] J.C. Guyot, A. Delacourte, B. Marie, Computer determination and

comparison of the compression behaviour of powder mixtures, Drug

Devel. Ind. Pharm. 12 (11) (1986) 1869–1884.

[8] I. Krycer, D.G. Pope, J.A. Hersey, Pharm. Pharmacol. 34 (1982) 802.

[9] N.A. Armstrong, R.F. Haines-Nutt, J. Pharm. Pharmacol. 24 (1972)

135.

[10] M.P. Summers, R.P. Enever, J.E. Carless, J. Pharm. Pharmacol. 28

(1976) 89.

[11] M. C!elik, D.N. Travers, Drug Devel. Ind. Pharm. 11 (1985) 299.

[12] H.A. Kuhn, C.L. Downey, Deformation characteristics and plasticity

theory of sintered powder materials, Int. J. Powder Metall. 7 (1971)

15–25.

[13] F.L. DiMaggio, M. ASCE, I. Sandler, Material model for granular

soils, J. Eng. Mech. Div., Proc. Am. Soc. Civ. Eng. (1971) 935–950.

[14] N.A. Fleck, On the cold compaction of powders, J. Mech. Phys.

Solids 43 (9) (1995) 1409–1431.

[15] M. Oyane, S. Shima, T. Tabata, Consideration of basic equations, and

their application, in the forming of metal powders and porous metals,

J. Mech. Work. Technol. 1 (1978) 325–341.

[16] S.M. Deraivelu, H.L. Gegel, J.S. Gunasekera, J.C. Malas, J.T. Mor-

gan, A new yield function for compressible P/M materials, Int. J.

Mech. Sci. 26 (9/10) (1984) 527–535.

[17] ABAQUS Theory Manual Version 5.7, p. 4.4.4-1, Hibbit, Karlsson

and Sorensson.

[18] D.C. Drucker, W. Prager, Soil mechanics and plastic analysis or limit

design, Q. Appl. Math. 10 (1952) 157.

[19] H.A. Haggblad, Constitutive model for powder materials, Powder

Technol. 67 (1991) 127–136.

[20] E. Pavier, P. Dorémus, Comparison between constitutive equations

modelling the compaction of iron powder and experimental data ob-

tained with triaxial tests, International Wokshop on Modelling of

Metal Powder Forming Processes, Univ. Joseph Fourier, Grenoble,

France, 1997, 21–23 July (1997) 1–8.

[21] M.H. Es-Saheb, Uniaxial strain rate effects in pharmaceutical powders

during cold compaction, J. Mater. Sci. 27 (1992) 4151–4159.

[22] A.W. Jenike, J. Carson, Measurement principles of the flowability of

powders, Adv. Ceram. 21 (1985) 759–766.

[23] E. Guerin, P. Tchoreloff, B. Leclerc, D. Tanguy, M. Deleuil, G. Couar-

raze, Rheological characterization of pharmaceutical powders using

tap testing, shear cell and mercury porosimeter, Int. J. Pharm. 189

(1999) 91–103.



[24] H.A. Kuhn, Deformation processing of sintered powder materials,

Powder Metallurgy Processing: New Techniques and Analyses, Aca-

demic Press, New York, 1978, p. 99.

[25] I. Aydin, B.J. Briscoe, K.Y. Sanliturk, The internal form of compacted

ceramic components: a comparison of a finite element modelling with

experiment, Powder Technol. 89 (1996) 239–254.

[26] A. Zaoui, Comportement des matériaux, cours E.N.S.T.A., 1983.

[27] R.A. DiMilia, J.S. Reed, J. Am. Ceram. Soc. 66 (1983) 667.

[28] I.M. Al-Khattat, S.T.S. Al-Hassani, Towards a computer-aided analy-

sis and design of tablet compaction, Chem. Eng. Sci. 42 (4) (1987)

707–712.

[29] D. Train, An investigation into the compaction of powders, J. Pharm.

Pharmacol. 8 (1956) 745–761.

[30] D. Train, Trans. Inst. Chem. Eng. 35 (1957) 258.

[31] J.H. Shaxby, J.C. Evans, Trans. Faraday Soc. 19 (1923) 60.

[32] H. Unckel, Arch. Eisenhuttenwes. 18 (1945) 161.

[33] H.L. Toor, S.D. Eagleton, Ind. Eng. Chem. 48 (1965) 825.


