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Résumé — In this work, a modal reduction, based on real-valued modes, is used to improve the
computational efficiency of Finite Element problems including 3D modelling of sound absorbing
poroelastic materials. A mode selection procedure is proposed and tested in order to downsize
the basis including only the most significant contributions. The results are presented in terms of
the level of efficacy reached.
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1 Introduction

Modelling poroelastic materials for interior noise reduction has been extensively studied over
the past two decades but can lead to rather expensive models when the Finite Element (FE)
method is used. Therefore, efforts have been made in the last decade to propose efficient solution
strategies for the Biot-Allard theory [1]. Among them, use of equivalent acoustic impedances [2]
proved to be very efficient, but limited by strong assumptions. In the scope of 3D FE modelling,
use of a mixed displacement-pressure formulation for the solid and fluid phases respectively [3]
downsized the number of degrees of freedom (dofs) per node from 6, when using a standard solid
and fluid phases displacement formulation, to 4 dofs. Alternatively, modal reduction techniques
have been proposed and applied to standard linear poroelastic finite elements, in an attempt to
keep a fine and complex 3D modelling of low frequency applications [4-6].

In this work, a component mode synthesis is used to test the modal reduction of the dissipative
part of a 3D poro-acoustic FE problem. Describing the poroelastic domain with the standard solid
and fluid displacements formulation, a direct computation scheme is used to solve the frequency-
dependent problem. Real-valued modes based on the bi-phase poroelastic media are used to
define a transformation applied once at the initial increment, and suitable for the frequency
range of interest. A further modal basis downsizing is performed by selecting the most significant
contributions for the considered problem. After a presentation of the formulation as well as the
modal method used, the proposed reduction and its enhancements are tested on a rigid cavity
treated with a porous layer on one wall.

2 FE formulation for the poro-acoustic problem

A poro-acoustic problem is considered, which description and notations are presented on
Fig. 1. The acoustic fluid and the porous media occupy the domains Qr and p respectively.
The compressible fluid is described using pressure fluctuation (p) as primary variable (Sub-
section 2.1.1), while fluid and solid phases homogenized displacements (ug,uf) are retained as
primary variables for the porous media (Subsection 2.1.2). The domains boundaries are sepa-
rated into contours of (i) imposed Dirichlet boundary conditions denoted 91 and 9,Qp, (ii)
prescribed Neumann boundary conditions denoted 0>Qpr and 0>Qp, and (iii) coupling interface
between acoustic fluid and porous media (I'pp). The FE formulation is presented for a stationary
harmonic response at angular frequency w.
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Fig. 1 — Description ans notations of the poro-acoustic interaction problem

2.1 Dynamic equations and constitutive laws
2.1.1 Compressible fluid (p)

The internal fluid within cavities is assumed compressible and inviscid, satisfying the Helm-
holtz equation derived from the motion, continuity, and constitutive equations

w2
Ap+c—2p:0 in Op (1)
0

where cg is the constant speed of sound in the fluid, and p the pressure fluctuation field.

2.1.2 Porous media Biot theory (ug,ur)

Notation Description

Ps Density of the material constituting the frame
(N5 ) Lamé parameters for the solid frame

pr Ambient fluid density

n Ambient fluid viscosity

P Ambient fluid standard pressure

¥ Heat capacity ratio for the ambient fluid
Pr Prandtl number for the ambient fluid

1) Porosity
oo Tortuosity

o Static flow resistivity

A Viscous characteristic length

A Thermal characteristic length

Tableau 1 — List of material parameters

At angular frequency w, the poroelastic media satisfies the following elastodynamic linearized
equations, derived in the Biot-Allard theory [1], taking into account inertia and viscous coupling
effects between solid and fluid phases :

dives — iwb(w)(us — ug) + w? [((1 = @) ps + pa) Us — paug] =0 in Qp (2a)
divop — iwb(w)(ug — ug) + w? [—paus + (dpr + pa)u] =0 inQp (2b)

where ug and uy are respectively the solid phase and fluid phase averaged displacements in the
sense of Biot theory. E(w) (henceforth denoted b, where ~ refers to a complex-valued quantity)
and p, are respectively the complex frequency-dependent viscous drag and the inertia coupling
parameter, based on the standard notations of material parameters introduced in Table 1 [1],
and given by

. 9 !
b=ogt |1+ St 3)
Pa = ¢pt (Qoo — 1). (4)

os and oy are the averaged stress tensors for the solid and fluid phases respectively. In [6], it
was shown that they satisfy the Lagrangian stress-strain relations developed by Biot, rewritten



in the following form using Voigt notation :
o, =DM e(u,) + (Ki — P) D e(ug) + D e(ur) + (Ki — Py ) DY e(ur), (52)
or =D e(u,) + (f(f — PO) D e(u,) + DY e(uy) + (f(f - PO) D e(uy), (5b)

where €(us) and e(uy) are the strain tensors associated to the averaged displacements vector
fields ug and ug respectively. K¢(w) is the effective bulk modulus of the fluid phase (henceforth

denoted Ky), given by

N j2
K= 70 - (6)

P
8 wPrA2p;\ 2
Y (’7 - 1) |:1 + inr?\’pr (1 + = 1T677 pf) :|

Dgl)’@), Dgl)’@) and Dg)’@) are constant real-valued constitutive matrices given in [6].

2.2 Fluid-structure interaction problem
2.2.1 Poro-acoustic coupling and boundary conditions

At external boundary of the acoustic domain, rigid walls are considered, imposing a free
pressure field (0;Qp = (). The time-harmonic source term is given by

gradp - n = w’pp up, on Orlp, (7)

where upyp is non-zero at the acoustic source location only (see J>Qr on Fig. 1).
Coupling at interface I'pp is given by normal stress and normal displacement continuity
conditions between acoustic fluid and both fluid and solid phases of porous media :

osn+(1—¢)pn=0 onIlpp, (8a)
orn+¢pn=0 onlpp, (8b)
up-n—(1—¢)ug-n—¢us-n=0 onIlpp, 9)

where ¢ is the porosity of the porous material, i.e. the volume fraction of fluid.

No external force is applied to the outer boundary of the porous media beside at interface
I'rp. Therefore, 3,Qp = () in the considered problem. Finally, at external boundary 9;Qp, two
types of boundary conditions can be prescribed, the porous material being considered either as
sliding or bounded to a rigid wall (Table 2).

Bounded layer Sliding layer

us =0 us-np =0
ur-np =0 ur-np =0

Tableau 2 — Boundary conditions for porous layer on 9;{)p

2.2.2 Finite element discretized problem

The test-function method is used to derive the variational formulation of the coupled pro-
blem. Details can be found in [6]. Thus, using the Helmholtz equation (1), the elastodynamic
equations (2a) and (2b), the constitutive expressions (5a) and (5b), as well as the excitation and
coupling conditions (7), (9), (8a) and (8b), the following discretized system of equations arises :

Kp 0 0 0 o0 0
~1-9)AL K KP4 (K-R)jo KD OKY
“oal KT K 0 KPT K o)
_ 0 0 0 MF (17¢)AFS gf)AFf P WQUFb
+iwb |0 Cg Cy| —w?| 0 M, M U | = 0
0 CL Cg 0 ML Mg U 0

This non-symmetric formulation can be symmetrized in the frequency domain by dividing the
acoustic equation by w? (w # 0).



3 Modal reduction of the porous media

3.1 Presentation of the proposed solution strategy

The proposed modal-based reduction is applied to the porous domain of a poro-acoustic
problem, where the acoustic domain is kept unreduced. Within the acoustic domain, the degrees
of freedom (dofs) are separated into internal ones (subscript I), and those at interface with the
porous media (subscript I). Notations used are presented in Fig. 2. These notations allow easy

O Acoustic internal dofs T
@ Acoustic interface dofs T

Fig. 2 — Problem description for modal reduction of porous media

extension of the method to problems with multiple interfaces [7]. In addition, the solid and fluid
phase dofs (subscripts s and f respectively) are further denoted by a common set of porous dofs
(subscript P), so that the matrix system of equations (10) may be rewritten as

K —w’Mjr Kpp —w’My; 0 P; w?Up,
K;;—w’M;; K —w?My; —w?Arp P;| = 0 (]_]_)

0 —AppT Kg) + (kf — Po) Kg) + iwng — w?Mp Up
which can be symmetrized by dividing the acoustic equations by w? (w # 0).

3.2 Modal-based reduction

From the proposed expression of the porous media FE problem, real-valued normal modes
can be computed associated to the coupled poroelastic eigenvalue problem

(K — w?Mp) ¢ = 0. (12)

It is supposed that the Dirichlet boundary conditions imposed result in a nonsingular Kg ) matrix,
therefore removing zero-frequency modes. A modal reduction basis ®p,, is built, selecting the
m lowest-frequency modes. They are normalized with respect to the porous mass matrix Mp so
that

(I)PmT MP(I)Pm - Ima (133“)
Bpp K ®p,, = (13b)

where I, is a unit matrix of dimension m, and €,, a diagonal matrix with the m lowest
eigenvalues of (12) on its diagonal. It was shown in [6] that such a truncated modal basis exhibits

)

close to orthogonality properties with respect to the global matrices Kg
sparsely populated corresponding matrices &, and ¢, :

and Cp, implying

®p,," Cp®p, = Cm, (14a)
®p, " KD ®p,, = k. (14b)

The transformation leading to a reduced version of system (11), keeping acoustic dofs uncon-
densed, is completed by linearly independent attachment functions linking the interface acoustic
dofs to the porous dofs. They are computed as the Kg ) static responses of the porous media to
unit pressure successively imposed at each interface acoustic dof :

I —1
—Ap” K] [‘I’;J =[0] = ¥p; = Kg) ApT. (15)



The corresponding change of basis, leaving acoustic dofs uncondensed, is then

I:)j I7 0 0 f’j
P;|=1|0 I 0 P, |, (16)
Up 0 Pp; Ppn] |,

where ~ denotes an approximation of the original solution. When applied to a symmetrized form
of Eq. (11), the transformation leads to following reduced set of equations :

2 Kir — My K —Mj; 0 ~ o0 0
#Klf - le #KII - MII - KSI)I 0 + (Kf B PO) 0 K% )I K%I)m
0 0 Qn 0 K§35 R
Ke., a7)
|0 0 0 0 0 0 P; Uryp,
+iwb [0 CPU CPIm - w2 0 MPU MPIm 13[ = 0 ’
0 Cme Cm 0 MPmI Im am 0

where for porous matrices indexed by subscript P, i.e. Bp € {Kg), Kg), Cp,Mp},

Bp,, = ¥, BpPpy,
Bp,, = VL, Bp®p,, =BL .

This proposed reduced model for poroelastic materials was shown computationally efficient [6],

especially considering the fact that the modal coordinates associated with the linearly inde-
pendent poroelastic equations can be further condensed. However, the two following issues were
raised : (i) a large amount of modes are required when following the rule of thumb of two to
three times the highest frequency of interest for truncation, even though most seem to have no
significant contribution, and (ii) the convergence is not smooth with respect to the frequency
when modes are added into the basis, which exhibits modes not satisfyingly ordered according
to their eigenfrequencies. Following, a selection and sorting procedure is proposed in order to
enhance these two aspects.

3.3 Enhanced reduced model using mode selection procedure

The residual forces give a very useful insight into the quality of the reduced model, as they
are directly linked to the approximation achieved. In the present approach, where the aim is
to provide a suitable basis for a set frequency range, the residual force is used to estimate
the significance of each mode contribution. The residual force is computed, at a given angular
frequency wy, using the solution vector of a reduced model including only the very low frequency
modes, e.g. the first mode. The result is a poor approximate solution at wg which gives after
inverse transformation :

12]’ Ir 0 0 1:\51*
P; =10 I, 0 P; , (19)
Up o 0 ¥Ypr Prl |a,, o

where ®p, . consists of the lowest frequency mode computed by eigenvalue problem (12) and oy p
the corresponding modal coordinate. Noticing that no external load is applied to the poroelastic
domain (see Eq. (11)) beside the coupling terms with the acoustic domain, a residual force
vector for the porous domain can be computed directly from the last line of Eq. (11), at angular
frequency wy :

RFp (w()) = AIPT]/-:\)IWO — (Kg) + (f(f(wo) — PO) Kg) + iwog(wo) Cp — w%Mp) ﬁpwo. (20)

Next, each mode shape is compared to the content of this residual vector. For this purpose,
the modal participation factors are used. Thus, the modal participation factor of the ith mode
shape ®p; to the real part of residual force Rp, (e.g. Rpp(wo) associated to ®p, ;. in Eq. (20)),
is defined as
_ [®ei BB, )| (21)
PR )
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Using only the real part of the residual vector has proved to be sufficient so far. This first
approach enables a proper sorting of the mode shapes according to their collinearity with respect
to the residual force vector. Furthermore, being independent of the residual force norm, the
participation factors defined as such can be used to compare the relative contributions of a mode
shape to a set of several residual force vectors computed at different frequencies. In the following,
it is supposed that for a given residual force Rp;, a set of N modes are ordered by increasing
modal participation so that

fj > > g > e > NG (22)

In order to establish a truncation criterion based on the modal participation factors, they are
normalized with respect to the smallest contribution for a given residual force :

Mg

Vie[l.N] g =
N HN5

> 1. (23)

In practice, these factors differ from one another by several orders of magnitude, which makes a
logarithmic scale more appropriate for their representation (See Fig. 3). The logarithmic repre-

x10°

Normalized particiation factor (log scale)

Normalized particiation factor (linear scale)

0 10 200 300 0 50 60 70 80 o 100 20 a0 00 50 60 700 800
Mode number Mode number

(a) (b)

Fig. 3 — Example of normalized modal participation factors : (a) linear scale and (b) logarithmic
scale

sentation allows to easily distinguish significant contributions, either by their contribution level,
or by the change of tangent slope (Fig. 3(b)). Therefore, several selection criteria can be propo-
sed, e.g. based on a threshold value, a change in the tangent slope, a ratio of contribution. After
some tests, the latter approach is presented in this work. Thus, for a selection of the “n” most
significant modes in the truncated basis, the following criterion is proposed, based on a ratio of
the cumulated logarithmic contributions :

Z log (fii;)
i=1
Xnj =

TN
Z log(fi;)
i=1

where Xmax is an empirical limit, in the interval |0, 1], typically found to be conservatively suitable
when set to 0.4 in the tested 2D applications.

< XmaXa (24)

4 Application and results

In the scope of this contribution, the improvement induced by the proposed mode selection
and sorting procedure is illustrated on a small 2D problem presented on Fig. 4. Further validation
cases can be found in Ref. [7] It consists of an acoustic domain filled with air, bounded by rigid
walls, and treated with a porous layer on one wall, which material parameters are given in Table 3.
Sliding coupling conditions are set for the porous layer with the side walls and sticking with the
back wall (see Table 2). The low frequency behaviour is tested applying a harmonic velocity
source (Eq. (7)) at a corner of the cavity, opposite the layer. The mesh, consisting of 7 x 5 linear
elements in the acoustic and porous domains is suitable for an analysis up to 1500 Hz.



0.15m

Acoustic cavity

Acoustic source
Porous layer
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Fig. 4 — Mesh and dimensions of small 2D application

Frame Fluid Porous
co =343 m/s ¢ = 0.96
A\ = 905357 Pa y=14 o = 32 kNs/m*
p = 264062 Pa Pr=0.71 Qoo = 1.7
(1 —¢)ps =30 kg/m*®  pf=1.21 kg/m? A =90 ym

n=184-10"° Ns/m? A’ =165 um

Tableau 3 — Air and porous material parameters

The convergence with the proposed modal-based reduction of the poroelastic layer is pre-
sented on Fig. 5, where the mean quadratic pressure in the cavity is given. It is achieved when
the first 26 porous modes are included in the basis. The mode selection and sorting procedure is

——unreduced porous damped » ——unreduced porous damped ——unreduced porous damped
120} - = reduced porous damped ," 120} - - reduced porous damped i i 120 = - reduced porous damped
i

Mean quadratic pressure in cavity (dB)
Mean quadratic pressure in cavity (dB)
Mean quadratic pressure in cavity (dB)

1000 1200 Too 200 0 1000 1200 Too 200 o0 1000 1200 Too

500 &0 o
Frequency (Hz.)

(a) (b) (c)

&0 500
Frequency (Hz.)

&0 500
Frequency (Hz.)

Fig. 5 — Convergence with original modal basis :(a) 2 Modes; (b) 15 Modes; (c) 26 Modes

applied to the retained modal basis, and the corresponding results are presented in table 4, for a
selection criterion xmax set to 0.4, and a residual force vector computed at the arbitrarily chosen
frequency of 375 Hz. The convergence of this enhanced modal reduction is presented on Fig. 6. It

Mode Eigenfrequency (Hz)  pi;  Xnj

1 83 0 )
2 161 12.9  0.06
21 1139 120 0.12
15 947 119  0.17
4 299 111 0.23
12 787 104 0.28
26 1343 103 0.32
16 951 98 037
7 468 92 04

Tableau 4 — Significant modal contributions selection

appears clearly that not only have the most significant modal contributions been selected, thus
resulting in a further downsized problem, but they are also sorted according to their frequency
range of contribution. One consequence of this latter aspect, is that a selection criterion xmax
set to a too optimistic limit would only affect the precision at the highest frequencies in the
considered range.



—— unreduced AC + porous layer ,' '. —— unreduced AC + porous layer ' '. ——unreduced AC + porous layer
o = - reduced AC + porous layer 20} -~ = reduced AC + porous layer " ' 120 - = reduced AC + porous layer
'

Mean quadratic pressure in cavity (dB)
Mean quadratic pressure in cavity (dB)
Mean quadratic pressure in cavity (dB)

&0 500 1000 500 &0 1000
Frequency (Hz.) Frequency (Hz.)

(a) (b) (c)

&0 500 1000
Frequency (Hz.)

Fig. 6 — Convergence with enhanced modal basis, xmax = 0.4 : (a) 1 Mode, (b) 3 Modes,
(c) 8 Modes

5 Conclusion

In this communication, an enhanced modal-based reduction for sound absorbing porous ma-
terials was presented. It includes a selection and sorting procedure of the modes according to
their contribution significance. Tested on a 2D poro-acoustic problem, it showed promising per-
formance improvements, downsizing the modal basis to less than a third of its original size.
Further work is focusing on tests for a larger range of industrial-like applications [7].
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