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Résumé� In this work, a modal redu
tion, based on real-valued modes, is used to improve the


omputational e�
ien
y of Finite Element problems in
luding 3D modelling of sound absorbing

poroelasti
 materials. A mode sele
tion pro
edure is proposed and tested in order to downsize

the basis in
luding only the most signi�
ant 
ontributions. The results are presented in terms of

the level of e�
a
y rea
hed.

Mots 
lés � Poroelasti
 materials, Noise redu
tion, Redu
ed model, Stru
tural-a
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s

1 Introdu
tion

Modelling poroelasti
 materials for interior noise redu
tion has been extensively studied over

the past two de
ades but 
an lead to rather expensive models when the Finite Element (FE)

method is used. Therefore, e�orts have been made in the last de
ade to propose e�
ient solution

strategies for the Biot-Allard theory [1℄. Among them, use of equivalent a
ousti
 impedan
es [2℄

proved to be very e�
ient, but limited by strong assumptions. In the s
ope of 3D FE modelling,

use of a mixed displa
ement-pressure formulation for the solid and �uid phases respe
tively [3℄

downsized the number of degrees of freedom (dofs) per node from 6, when using a standard solid

and �uid phases displa
ement formulation, to 4 dofs. Alternatively, modal redu
tion te
hniques

have been proposed and applied to standard linear poroelasti
 �nite elements, in an attempt to

keep a �ne and 
omplex 3D modelling of low frequen
y appli
ations [4�6℄.

In this work, a 
omponent mode synthesis is used to test the modal redu
tion of the dissipative

part of a 3D poro-a
ousti
 FE problem. Des
ribing the poroelasti
 domain with the standard solid

and �uid displa
ements formulation, a dire
t 
omputation s
heme is used to solve the frequen
y-

dependent problem. Real-valued modes based on the bi-phase poroelasti
 media are used to

de�ne a transformation applied on
e at the initial in
rement, and suitable for the frequen
y

range of interest. A further modal basis downsizing is performed by sele
ting the most signi�
ant


ontributions for the 
onsidered problem. After a presentation of the formulation as well as the

modal method used, the proposed redu
tion and its enhan
ements are tested on a rigid 
avity

treated with a porous layer on one wall.

2 FE formulation for the poro-a
ousti
 problem

A poro-a
ousti
 problem is 
onsidered, whi
h des
ription and notations are presented on

Fig. 1. The a
ousti
 �uid and the porous media o

upy the domains Ω
F

and Ω
P

respe
tively.

The 
ompressible �uid is des
ribed using pressure �u
tuation (p) as primary variable (Sub-

se
tion 2.1.1), while �uid and solid phases homogenized displa
ements (u
s

,u
f

) are retained as

primary variables for the porous media (Subse
tion 2.1.2). The domains boundaries are sepa-

rated into 
ontours of (i) imposed Diri
hlet boundary 
onditions denoted ∂1ΩF

and ∂1ΩP

, (ii)

pres
ribed Neumann boundary 
onditions denoted ∂2ΩF

and ∂2ΩP

, and (iii) 
oupling interfa
e

between a
ousti
 �uid and porous media (Γ
FP

). The FE formulation is presented for a stationary

harmoni
 response at angular frequen
y ω.
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Fig. 1 � Des
ription ans notations of the poro-a
ousti
 intera
tion problem

2.1 Dynami
 equations and 
onstitutive laws

2.1.1 Compressible �uid (p)

The internal �uid within 
avities is assumed 
ompressible and invis
id, satisfying the Helm-

holtz equation derived from the motion, 
ontinuity, and 
onstitutive equations

∆p+
ω2

c20
p = 0 in Ω

F

(1)

where c0 is the 
onstant speed of sound in the �uid, and p the pressure �u
tuation �eld.

2.1.2 Porous media Biot theory (u
s

,u
f

)

Notation Des
ription

ρ
s

Density of the material 
onstituting the frame

(λ; µ) Lamé parameters for the solid frame

ρ
f

Ambient �uid density

η Ambient �uid vis
osity

P0 Ambient �uid standard pressure

γ Heat 
apa
ity ratio for the ambient �uid

Pr Prandtl number for the ambient �uid

φ Porosity

α∞ Tortuosity

σ Stati
 �ow resistivity

Λ Vis
ous 
hara
teristi
 length

Λ′
Thermal 
hara
teristi
 length

Tableau 1 � List of material parameters

At angular frequen
y ω, the poroelasti
 media satis�es the following elastodynami
 linearized

equations, derived in the Biot-Allard theory [1℄, taking into a

ount inertia and vis
ous 
oupling

e�e
ts between solid and �uid phases :

divσ
s

− iω b̃(ω)(u
s

− u
f

) + ω2 [((1− φ) ρ
s

+ ρ
a

)u
s

− ρ
a

u
f

] = 0 in Ω
P

(2a)

divσ
f

− iω b̃(ω)(u
f

− u
s

) + ω2 [−ρ
a

u
s

+ (φρ
f

+ ρ
a

)u
f

] = 0 in Ω
P

(2b)

where u
s

and u
f

are respe
tively the solid phase and �uid phase averaged displa
ements in the

sense of Biot theory. b̃(ω) (hen
eforth denoted b̃, where ˜ refers to a 
omplex-valued quantity)

and ρ
a

are respe
tively the 
omplex frequen
y-dependent vis
ous drag and the inertia 
oupling

parameter, based on the standard notations of material parameters introdu
ed in Table 1 [1℄,

and given by

b̃ = σφ2

[
1 +

4iωα2
∞
ηρ

f

σ
2Λ2φ2

] 1
2

, (3)

ρa = φρ
f

(α∞ − 1). (4)

σ
s

and σ
f

are the averaged stress tensors for the solid and �uid phases respe
tively. In [6℄, it

was shown that they satisfy the Lagrangian stress-strain relations developed by Biot, rewritten
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in the following form using Voigt notation :

σ
s

= D(1)
s

ε(u
s

) +
(
K̃

f

− P0

)
D(2)

s

ε(u
s

) +D
(1)
sf

ε(u
f

) +
(
K̃

f

− P0

)
D

(2)
sf

ε(u
f

), (5a)

σ
f

= D
(1)
sf

ε(u
s

) +
(
K̃

f

− P0

)
D

(2)
sf

ε(u
s

) +D
(1)
f

ε(u
f

) +
(
K̃

f

− P0

)
D

(2)
f

ε(u
f

), (5b)

where ε(u
s

) and ε(u
f

) are the strain tensors asso
iated to the averaged displa
ements ve
tor

�elds u
s

and u
f

respe
tively. K̃
f

(ω) is the e�e
tive bulk modulus of the �uid phase (hen
eforth

denoted K̃
f

), given by

K̃
f

=
γP0

γ − (γ − 1)

[
1 + 8η

iωPrΛ′2ρ
f

(
1 + iωPrΛ′2ρ

f

16η

) 1
2

]
−1 . (6)

D
(1),(2)
s

, D
(1),(2)
f

and D
(1),(2)
sf

are 
onstant real-valued 
onstitutive matri
es given in [6℄.

2.2 Fluid-stru
ture intera
tion problem

2.2.1 Poro-a
ousti
 
oupling and boundary 
onditions

At external boundary of the a
ousti
 domain, rigid walls are 
onsidered, imposing a free

pressure �eld (∂1ΩF

= ∅). The time-harmoni
 sour
e term is given by

grad p · n = ω2ρ
F

u
Fb

on ∂2ΩF

, (7)

where u
Fb

is non-zero at the a
ousti
 sour
e lo
ation only (see ∂2ΩF

on Fig. 1).

Coupling at interfa
e Γ
FP

is given by normal stress and normal displa
ement 
ontinuity


onditions between a
ousti
 �uid and both �uid and solid phases of porous media :

σ
s

n+ (1 − φ) p n = 0 on Γ
FP

, (8a)

σ
f

n+ φ p n = 0 on Γ
FP

, (8b)

u
F

· n− (1− φ)u
s

· n− φu
f

· n = 0 on Γ
FP

, (9)

where φ is the porosity of the porous material, i.e. the volume fra
tion of �uid.

No external for
e is applied to the outer boundary of the porous media beside at interfa
e

Γ
FP

. Therefore, ∂2ΩP

= ∅ in the 
onsidered problem. Finally, at external boundary ∂1ΩP

, two

types of boundary 
onditions 
an be pres
ribed, the porous material being 
onsidered either as

sliding or bounded to a rigid wall (Table 2).

Bounded layer Sliding layer

u
s

= 0 u
s

· n
P

= 0
u
f

· n
P

= 0 u
f

· n
P

= 0

Tableau 2 � Boundary 
onditions for porous layer on ∂1ΩP

2.2.2 Finite element dis
retized problem

The test-fun
tion method is used to derive the variational formulation of the 
oupled pro-

blem. Details 
an be found in [6℄. Thus, using the Helmholtz equation (1), the elastodynami


equations (2a) and (2b), the 
onstitutive expressions (5a) and (5b), as well as the ex
itation and


oupling 
onditions (7), (9), (8a) and (8b), the following dis
retized system of equations arises :







K
F

0 0

−(1− φ)AT

Fs

K
(1)
ss

K
(1)
sf

−φAT

Ff

K
(1)T
sf

K
(1)
�


+

(
K̃

f

− P0

)


0 0 0

0 K
(2)
ss

K
(2)
sf

0 K
(2)T
sf

K
(2)
�




+iω b̃



0 0 0

0 C
ss

C
sf

0 CT

sf

C
�


− ω2



M

F

(1− φ)A
Fs

φA
Ff

0 M
ss

M
sf

0 MT

sf

M
�








P

U
s

U
f


 =



ω2U

Fb

0

0




(10)

This non-symmetri
 formulation 
an be symmetrized in the frequen
y domain by dividing the

a
ousti
 equation by ω2
(ω 6= 0).

3



3 Modal redu
tion of the porous media

3.1 Presentation of the proposed solution strategy

The proposed modal-based redu
tion is applied to the porous domain of a poro-a
ousti


problem, where the a
ousti
 domain is kept unredu
ed. Within the a
ousti
 domain, the degrees

of freedom (dofs) are separated into internal ones (subs
ript Ī), and those at interfa
e with the

porous media (subs
ript I). Notations used are presented in Fig. 2. These notations allow easy

���
���
���
���
���
���
���
���
���

Porous dofs

A
ousti
 interfa
e dofs I

A
ousti
 internal dofs Ī

Fig. 2 � Problem des
ription for modal redu
tion of porous media

extension of the method to problems with multiple interfa
es [7℄. In addition, the solid and �uid

phase dofs (subs
ripts s and f respe
tively) are further denoted by a 
ommon set of porous dofs

(subs
ript P), so that the matrix system of equations (10) may be rewritten as



KĪĪ − ω2

MĪĪ KĪI − ω2
MĪI 0

KIĪ − ω2
MIĪ KII − ω2

MII −ω2
AIP

0 −AIP
T

K
(1)
P

+
(
K̃
f

− P0

)
K

(2)
P

+ iω b̃C
P

− ω2
M

P



[
PĪ

PI

U
P

]
=

[
ω2

UĪb

0

0

]
(11)

whi
h 
an be symmetrized by dividing the a
ousti
 equations by ω2
(ω 6= 0).

3.2 Modal-based redu
tion

From the proposed expression of the porous media FE problem, real-valued normal modes


an be 
omputed asso
iated to the 
oupled poroelasti
 eigenvalue problem

(
K

(1)
P

− ω2M
P

)
φ = 0. (12)

It is supposed that the Diri
hlet boundary 
onditions imposed result in a nonsingularK
(1)
P

matrix,

therefore removing zero-frequen
y modes. A modal redu
tion basis Φ
Pm is built, sele
ting the

m lowest-frequen
y modes. They are normalized with respe
t to the porous mass matrix M
P

so

that

Φ
Pm

T M
P

Φ
Pm = Im, (13a)

Φ
Pm

T K
(1)
P

Φ
Pm = Ωm, (13b)

where Im is a unit matrix of dimension m, and Ωm a diagonal matrix with the m lowest

eigenvalues of (12) on its diagonal. It was shown in [6℄ that su
h a trun
ated modal basis exhibits


lose to orthogonality properties with respe
t to the global matri
es K
(2)
P

and C
P

, implying

sparsely populated 
orresponding matri
es κm and ζm :

Φ
Pm

T C
P

Φ
Pm = ζm, (14a)

Φ
Pm

T K
(2)
P

Φ
Pm = κm. (14b)

The transformation leading to a redu
ed version of system (11), keeping a
ousti
 dofs un
on-

densed, is 
ompleted by linearly independent atta
hment fun
tions linking the interfa
e a
ousti


dofs to the porous dofs. They are 
omputed as the K
(1)
P

� stati
 responses of the porous media to

unit pressure su

essively imposed at ea
h interfa
e a
ousti
 dof :

[
−AIP

T K
(1)
P

] [ II
Ψ

PI

]
= [0] ⇒ Ψ

PI = K
(1)−1

P

AIP
T . (15)

4



The 
orresponding 
hange of basis, leaving a
ousti
 dofs un
ondensed, is then



P̂Ī

P̂I

Û
P


 =

[
IĪ 0 0

0 II 0

0 Ψ
PI Φ

Pm

]

P̂Ī

P̂I

α̂m


 , (16)

where ̂ denotes an approximation of the original solution. When applied to a symmetrized form

of Eq. (11), the transformation leads to following redu
ed set of equations :







1
ω2KĪ Ī −MĪ Ī

1
ω2KĪI −MĪI 0

1
ω2KIĪ −MIĪ

1
ω2KII −MII −K

(1)
PII

0

0 0 Ωm


+

(
K̃

f

− P0

)


0 0 0

0 K
(2)
PII

K
(2)
PIm

0 K
(2)
PmI

κn




+iω b̃



0 0 0

0 C
PII

C
PIm

0 C
PmI

ζm


− ω2



0 0 0

0 M
PII

M
PIm

0 M
PmI

Im








P̂Ī

P̂I

α̂m


 =



U

Fb

0

0


 ,

(17)

where for porous matri
es indexed by subs
ript P, i.e. B
P

∈ {K
(1)
P

,K
(2)
P

,C
P

,M
P

},

B
PII

= ΨT

PIBP

Ψ
PI ,

B
PIm

= ΨT

PIBP

Φ
Pm = BT

PmI
.

This proposed redu
ed model for poroelasti
 materials was shown 
omputationally e�
ient [6℄,

espe
ially 
onsidering the fa
t that the modal 
oordinates asso
iated with the linearly inde-

pendent poroelasti
 equations 
an be further 
ondensed. However, the two following issues were

raised : (i) a large amount of modes are required when following the rule of thumb of two to

three times the highest frequen
y of interest for trun
ation, even though most seem to have no

signi�
ant 
ontribution, and (ii) the 
onvergen
e is not smooth with respe
t to the frequen
y

when modes are added into the basis, whi
h exhibits modes not satisfyingly ordered a

ording

to their eigenfrequen
ies. Following, a sele
tion and sorting pro
edure is proposed in order to

enhan
e these two aspe
ts.

3.3 Enhan
ed redu
ed model using mode sele
tion pro
edure

The residual for
es give a very useful insight into the quality of the redu
ed model, as they

are dire
tly linked to the approximation a
hieved. In the present approa
h, where the aim is

to provide a suitable basis for a set frequen
y range, the residual for
e is used to estimate

the signi�
an
e of ea
h mode 
ontribution. The residual for
e is 
omputed, at a given angular

frequen
y ω0, using the solution ve
tor of a redu
ed model in
luding only the very low frequen
y

modes, e.g. the �rst mode. The result is a poor approximate solution at ω0 whi
h gives after

inverse transformation :



P̂Ī

P̂I

Û
P



ω0

=

[
IĪ 0 0

0 II 0

0 Ψ
PI Φ

P

LF

]

P̂Ī

P̂I

α̂
LF



ω0

, (19)

where Φ
P

LF


onsists of the lowest frequen
y mode 
omputed by eigenvalue problem (12) and α
LF

the 
orresponding modal 
oordinate. Noti
ing that no external load is applied to the poroelasti


domain (see Eq. (11)) beside the 
oupling terms with the a
ousti
 domain, a residual for
e

ve
tor for the porous domain 
an be 
omputed dire
tly from the last line of Eq. (11), at angular

frequen
y ω0 :

R

F

P

(ω0) = AIP
T P̂Iω0

−
(
K

(1)
P

+
(
K̃

f

(ω0)− P0

)
K

(2)
P

+ iω0 b̃(ω0)CP

− ω2
0MP

)
Û

Pω0
. (20)

Next, ea
h mode shape is 
ompared to the 
ontent of this residual ve
tor. For this purpose,

the modal parti
ipation fa
tors are used. Thus, the modal parti
ipation fa
tor of the ith mode

shape Φ
Pi to the real part of residual for
e R

Fj
(e.g. R

F

P

(ω0) asso
iated to Φ
P

LF

in Eq. (20)),

is de�ned as

µij =
|Φ

Pi · ℜ(RFj
)|

ωi
2‖ℜ(R

Fj
)‖

, (21)
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Using only the real part of the residual ve
tor has proved to be su�
ient so far. This �rst

approa
h enables a proper sorting of the mode shapes a

ording to their 
ollinearity with respe
t

to the residual for
e ve
tor. Furthermore, being independent of the residual for
e norm, the

parti
ipation fa
tors de�ned as su
h 
an be used to 
ompare the relative 
ontributions of a mode

shape to a set of several residual for
e ve
tors 
omputed at di�erent frequen
ies. In the following,

it is supposed that for a given residual for
e R

Fj
, a set of N modes are ordered by in
reasing

modal parti
ipation so that

µ1j > · · · > µij > · · · > µ
Nj. (22)

In order to establish a trun
ation 
riterion based on the modal parti
ipation fa
tors, they are

normalized with respe
t to the smallest 
ontribution for a given residual for
e :

∀ i ∈ [1..N] µ̄ij =
µij

µ
Nj

> 1. (23)

In pra
ti
e, these fa
tors di�er from one another by several orders of magnitude, whi
h makes a

logarithmi
 s
ale more appropriate for their representation (See Fig. 3). The logarithmi
 repre-
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Fig. 3 � Example of normalized modal parti
ipation fa
tors : (a) linear s
ale and (b) logarithmi


s
ale

sentation allows to easily distinguish signi�
ant 
ontributions, either by their 
ontribution level,

or by the 
hange of tangent slope (Fig. 3(b)). Therefore, several sele
tion 
riteria 
an be propo-

sed, e.g. based on a threshold value, a 
hange in the tangent slope, a ratio of 
ontribution. After

some tests, the latter approa
h is presented in this work. Thus, for a sele
tion of the �n� most

signi�
ant modes in the trun
ated basis, the following 
riterion is proposed, based on a ratio of

the 
umulated logarithmi
 
ontributions :

χ
nj =

n∑

i=1

log(µ̄ij)

N∑

i=1

log(µ̄ij)

6 χ
max

, (24)

where χ
max

is an empiri
al limit, in the interval ]0, 1], typi
ally found to be 
onservatively suitable
when set to 0.4 in the tested 2D appli
ations.

4 Appli
ation and results

In the s
ope of this 
ontribution, the improvement indu
ed by the proposed mode sele
tion

and sorting pro
edure is illustrated on a small 2D problem presented on Fig. 4. Further validation


ases 
an be found in Ref. [7℄ It 
onsists of an a
ousti
 domain �lled with air, bounded by rigid

walls, and treated with a porous layer on one wall, whi
h material parameters are given in Table 3.

Sliding 
oupling 
onditions are set for the porous layer with the side walls and sti
king with the

ba
k wall (see Table 2). The low frequen
y behaviour is tested applying a harmoni
 velo
ity

sour
e (Eq. (7)) at a 
orner of the 
avity, opposite the layer. The mesh, 
onsisting of 7× 5 linear
elements in the a
ousti
 and porous domains is suitable for an analysis up to 1500 Hz.
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Fig. 4 � Mesh and dimensions of small 2D appli
ation

Frame Fluid Porous

c0 = 343 m/s φ = 0.96
λ = 905357 Pa γ = 1.4 σ = 32 kNs/m

4

µ = 264062 Pa Pr = 0.71 α∞ = 1.7
(1− φ) ρ

s

= 30 kg/m

3 ρ
f

= 1.21 kg/m

3 Λ = 90 µm
η = 1.84 · 10−5

Ns/m

2 Λ′ = 165 µm

Tableau 3 � Air and porous material parameters

The 
onvergen
e with the proposed modal-based redu
tion of the poroelasti
 layer is pre-

sented on Fig. 5, where the mean quadrati
 pressure in the 
avity is given. It is a
hieved when

the �rst 26 porous modes are in
luded in the basis. The mode sele
tion and sorting pro
edure is
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Fig. 5 � Convergen
e with original modal basis :(a) 2 Modes ; (b) 15 Modes ; (
) 26 Modes

applied to the retained modal basis, and the 
orresponding results are presented in table 4, for a

sele
tion 
riterion χ
max

set to 0.4, and a residual for
e ve
tor 
omputed at the arbitrarily 
hosen

frequen
y of 375 Hz. The 
onvergen
e of this enhan
ed modal redu
tion is presented on Fig. 6. It

Mode Eigenfrequen
y (Hz) µij χ
nj

1 83 (0) (1)
2 161 12.9 0.06
21 1139 12.0 0.12
15 947 11.9 0.17
4 299 11.1 0.23
12 787 10.4 0.28
26 1343 10.3 0.32
16 951 9.8 0.37
7 468 9.2 0.4

Tableau 4 � Signi�
ant modal 
ontributions sele
tion

appears 
learly that not only have the most signi�
ant modal 
ontributions been sele
ted, thus

resulting in a further downsized problem, but they are also sorted a

ording to their frequen
y

range of 
ontribution. One 
onsequen
e of this latter aspe
t, is that a sele
tion 
riterion χ
max

set to a too optimisti
 limit would only a�e
t the pre
ision at the highest frequen
ies in the


onsidered range.
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Fig. 6 � Convergen
e with enhan
ed modal basis, χ
max

= 0.4 : (a) 1 Mode, (b) 3 Modes,

(
) 8 Modes

5 Con
lusion

In this 
ommuni
ation, an enhan
ed modal-based redu
tion for sound absorbing porous ma-

terials was presented. It in
ludes a sele
tion and sorting pro
edure of the modes a

ording to

their 
ontribution signi�
an
e. Tested on a 2D poro-a
ousti
 problem, it showed promising per-

forman
e improvements, downsizing the modal basis to less than a third of its original size.

Further work is fo
using on tests for a larger range of industrial-like appli
ations [7℄.
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