# ON THE STRONG SEPARATION CONJECTURE

Abstract : This paper contains a partial result on the Pierce–Birkhoff conjecture on piece-wise polynomial functions defined by a finite collection {f 1 ,. .. , f r } of polynomials. In the nineteen eighties, generalizing the problem from the polynomial ring to an artibtrary ring Σ, J. Madden proved that the Pierce–Birkhoff conjecture for Σ is equivalent to a statement about an arbitrary pair of points α, β ∈ Sper Σ and their separating ideal < α, β >; we refer to this statement as the local Pierce-Birkhoff conjecture at α, β. In  we introduced a slightly stronger conjecture, also stated for a pair of points α, β ∈ Sper Σ and the separating ideal < α, β >, called the Connectedness conjecture, about a finite collection of elements {f 1 , . . . , fr} ⊂ Σ. In the paper  we introduced a new conjecture, called the Strong Connectedness conjecture, and proved that the Strong Connectedness conjecture in dimension n−1 implies the Strong Connectedness conjecture in dimension n in the case when ht(< α, β >) ≤ n − 1. The Pierce-Birkhoff Conjecture for r = 2 is equivalent to the Connectedness Conjecture for r = 1; this conjecture is called the Separation Conjecture. The Strong Connectedness Conjecture for r = 1 is called the Strong Separation Conjecture. In the present paper, we fix a polynomial f ∈ R[x, z] where R is a real closed field and x = (x1, . . . , xn), z are n + 1 independent variables. We define the notion of two points α, β ∈ Sper R[x, z] being in good position with respect to f. The main result of this paper is a proof of the Strong Separation Conjecture in the case when α and β are in good position with respect to f.
Type de document :
Pré-publication, Document de travail
2018
Liste complète des métadonnées

Littérature citée [15 références]

https://hal.archives-ouvertes.fr/hal-01716862
Contributeur : Daniel Schaub <>
Soumis le : samedi 24 février 2018 - 19:28:11
Dernière modification le : mercredi 19 décembre 2018 - 14:08:04
Document(s) archivé(s) le : vendredi 25 mai 2018 - 23:39:36

### Fichiers

separation.pdf
Fichiers produits par l'(les) auteur(s)

### Identifiants

• HAL Id : hal-01716862, version 1
• ARXIV : 1802.09389

### Citation

F Lucas †, D. Schaub, M. Spivakovsky. ON THE STRONG SEPARATION CONJECTURE. 2018. 〈hal-01716862〉

### Métriques

Consultations de la notice

## 134

Téléchargements de fichiers