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Abstract: In this work, we examine the benefit of having periodic dilution rate in the chemostat
model in terms of averaged conversion rate. We compare the effect of bringing a same substrate
quantity by a periodic rate with a constant rate. We show that for the classical chemostat model
with a Contois growth function, the performance of the averaged conversion rate can be improved
under certain conditions. Using Pontryagin’s Principle, we characterize the extremals of the
problem which minimizes the averaged substrate concentration among periodic trajectories of

a given period.

Keywords: Chemostat Model, Optimal Periodic Control, Pontryagin Maximum Principle,

Over-yielding.

1. INTRODUCTION

The foundations of the chemostat theory was originally
given by Monod (1950) and Novick and Szilard (1950).
Many works related to the chemostat model have been
published in mathematical, biological and chemical en-
gineering journals (see for instance Smith and Waltman
(1995); Harmand et al. (2017); Ziv et al. (2013)). The
concept of continuous culture is that micro-organisms are
grown in a fixed volume that is continually diluted by
addition of new nutrient with a simultaneous removal of
micro-organisms and nutrients. Typical examples of the
use of continuous culture techniques have been in the
field of biotechnology (see for instance Grasman et al.
(2005); Xu et al. (2013); Zhao and Yuan (2016); Wang
et al. (2016); Zhao and Yuan (2017)). Moreover, it plays
an important role in modeling natural ecosystems such
as lakes, lagoons (Wright and Hobbie (1965)) and also
in modeling the waste-water treatment processes (Gaudy
and Gaudy (1966)) where the objective is to guarantee,
in nominal operating conditions, the best water quality. It
is defined in terms of small concentration of undesirable
chemicals such as nitrate.

Many forms of the consumption term and the growth rate
function in the chemostat model have been introduced.
Monod (1950) assumed that no nutrient other than the
substrate are limiting and that no toxic by-products of
metabolism build up. He has proposed the following for-
mulation

HmazS
p(s) Tt s (1)
which describes the specific growth rate and the consump-
tion of the substrate where s denotes the substrate con-
centration. There are two parameters: fi,,q:, the maximum
specific growth rate, and ks , the half-saturation constant.
An other formulation was proposed by Andrews using

Haldane function, in order to illustrate the inhibition of
microorganisms by high substrate concentration (Andrews
(1968)):
_ Mmazs
 ke+s+s2/kp’
where kj is the inhibition constant. Whereas, the Contois
expression developed by Contois (1959) for Aerobacter
aerogenes indicates that the growth function depends on
the microorganism concentration denoted by = as well as
the concentration of the limiting nutrient:
MmazxS

o) = Jmest (2)
There are two ways to create a periodic environment in
a chemostat with the operating parameters: making the
input nutrient concentration vary periodically or the flow
rate (see Smith and Waltman (1995)). Both configurations
have been studied in literature, for example in Butler et al.
(1985), Peng and H.I.Freedman (2000). The novelty of
our work is to we consider a chemostat model with a
Contois growth function. We show first that the averaged
conversion rate can be improved by a periodic dilution
rate, under the constraint of a given amount of nutrient
to be brought during the period. Then, using tools of
optimal control theory, we determine the extremals of the
optimal control problem satisfying the input constraint.
Finally, we study numerically the problem with the soft-
ware bocop (Team Commands (2017)) and compare with
the extremals determined analytically. For applications in
waste-water treatments, this means that the average water
quality can be improved by a periodic non constant flow
rate.

11(s)

2. CONDITIONS FOR HAVING AN OVER-YIELDING

In this paper, we consider the following classical chemostat
model:



&= (u(s,x) —u(t))z.
In the above equations, z refers to the microorganism
concentration, s to the substrate concentration, s;, > 0 is
the input substrate concentration, u(-) is the dilution rate
which is the control variable. Furthermore, u(s,z) is the
Contois growth rate expression given by (2). Notice that
Contois kinetics is C', where the function z — u(s,r) is
strictly decreasing for all s and p(0,2) = 0 for all  and
(see Wang and Li (2014)).
Given T > 0, we consider the admissible control set defined
as:

U :={u: Ry = [Umin, Umaz] 8-t. u(-) meas., T—periodic},
where Uin and Uy,q, denote respectively the minimal and
the maximal dilution rates.

Our aim in this section is to determine whether the
averaged conversion rate can be improved by a peri-
odic dilution rate, comparing with a constant rate @ €
(Wrmin, Wmas ). Here, we suppose the following constraint:

%/0 w(t)dt = @ )

which means that we impose to have the substrate quan-
tity brought by a periodic rate, during a period, equal to
the quantity brought by the constant rate .

Remark 1. We look for T-periodic solutions of (3).

Recall the classical result of the chemostat (see Harmand
et al. (2017)):

Lemma 2. All trajectories of system (3) with u € U such
that (4) is satisfied and x(0) > 0 converge asymptotically
to the invariant set s + x = s;,.

Therefore, a periodic solution has to belong to the set
s+ x = s;n. We consider the dynamics in this set which
amounts to reduce the dynamic (3) to a one-dimensional
system given by
$ = (—v(s) + u(®))(sin — s), ()
where the function v is defined as
v(s) := (s, 8in — 8) = Hmaz ® )
ke(Sin —8) + s

k. and piymq, are positive.
We suppose that
u < V(Sin) = HUmaz-
Then, the non-trivial equilibrium point §, solution of
v(s) = @ exists and is given by
akcsin
I_L(k'c - 1) + Nmam.
This steady state is positive as @ € (0, tmaz ). Moreover,
it is necessarily globally stable because v is increasing.

S =

The optimization problem consists in finding a control
u € U such that the mean value of the substrate

1 (T
Jr(u) := —/ s, (¢) dt, (6)
T Jo
is minimized, where
Sy € St :={s(:) : [0, T] — [0, 8in], solution of (5) with
$(0) = s(T") with u € U satisfying (4)}.

Definition 3. We say that the system exhibits an over-
yielding if the value of the performance index Jr is less
than the value of the performance index at the steady state
S, i.e. there exists u € U such that:

JT(U) < 5= JT(ﬁ),
Proposition 4. If k. > 1 then v is strictly convex and an
over-yielding exists.

Proof. Note first that (0,s;,) is invariant by (5). We
consider a periodic function s € Sr and define £ as
E(t) = log(sin — s(t)). If we differentiate £ w.r.t t, we

get
!
! —S (t)
)= ——2 .
() P—
The integration of ¢’ from 0 to T using (5) gives

T T
/ gt)dt = / (v(s(t)) —u(t))dt = 0.
0 0

Therefore,

A(MdM—v@ﬁﬁ=0 (7)

Let us prove first that Contois’s function is convex. The
first and the second derivatives of v are:
71/(5) — s, Hmaz kc

ds (ke(Sin — 8) + 8)?

d2 /J/maz kc (kc - 1)

@y(s) = 2Sin (he(sm — 5) T 5)3°
One can easily conclude that v is strictly convex exactly
when k. > 1. Thus, when this condition is verified, we get,
by applying Jensen’s inequality

y(% /OTs(t) dt) < ;/OT v(s(t)) dt = v(3),

and as v is strictly monotonic, one obtains

1 T

Jr(u) < Jr(a).

>0,

therefore,

3. OPTIMAL SYNTHESIS AND NUMERICAL
SIMULATIONS

In this section, we suppose that the condition
ke>1
holds true, so that an over yielding exists.

For convenience, we reformulate the constraint (4) and
consider the following dynamics

$=(—v(s) +u)(sin — s),
{iz (v +n=9 @
where s € Sp. As v is monotonic, it is clear that equation
(7) is satisfied only if s(t) — § changes sign on [0, T]. Then,
necessarily there exists tg € [0, 7] such that
S(to) = S.

We then consider, without any loss of generality, the
following boundary conditions

5(0),2(0) = (5,0), (s(T),2(T)) = (5,aT).  (9)
Thus, the optimal control problem can be stated as follows

irelg Jr(u) satisfying (8) — (9). (10)



We define the break-even concentration associated to the
function v as
A(u) = sup{s < $in s.t. v(s) < u}

One can straightforwardly check that the interval I :=
(AMumin), Mtmaz)) is invariant and that 5 belongs to this
interval. Therefore we shall look in the sequel for periodic
solutions s(-) that belong I.

Let H : R2xR2xR xR — R be the Hamiltonian associated
to (10):

H:H(S,Z,)\S,AZ,A(),U)
=Xos — v(8)As(Sin — 8) + u(As(8in — 8) + A2),

where A\ := (As,A\.)T denotes the adjoint vector. Let
u € U be an optimal control corresponding to a trajectory
(s(+),2(+)). Then, there exists Ay < 0 and an absolutely
continuous map A : [0,7] — R? satisfying the following
adjoint equations for a.e. t € [0,T):

{ /:\s =—Xo+ /\S(V/(S)(Sin - S) + u(t) - V(S))a (11)
Ay =0,
where (Ag, A(+)) is non identically null. The control u

satisfies the maximization condition almost everywhere on
[0, T7:

u(t) € argmax H(s,z,As, Az, Ao, 0). (12)

VE[Umin,Umaa]

The switching function v associated to the control is
defined by:

OH
Ll

From (12), we obtain the following control law:

{w(t) >0 = u(t) = Umax

= As(8in — 8) + \s.

q/j(t) <0 = U(t) = Umin

'll)(t) =0= U(t) € [umin7umaz]
As v is increasing then one has i < Y(8) < Umae ON
I. Therefore, when ¥ > 0 (resp. ¥ < 0) on some time
interval, s increases (resp. decreases).
A singular arc occurs if ¥ vanishes on some time interval
[t1,t2] with ;1 < t2 (see Bonnard and Chyba (2002)) and
a switching time ¢4 € (0,7) is such that s(-) is not C* at
ts. Using (11), the derivative of ¢ w.r.t ¢ is

¥ = (80 — 8)(=Ao + Ast/'(5)(Sin — 5)).

In this paper, we assume that an optimal trajectory is
normal (Ao # 0). We take in the sequel A\g = —1.

Remark 5. Tt follows, by the periodicity of s and equation
(7), that ¢ changes sign and is zero at least twice. This
implies the existence of two switching times at least.

Let us define sz, Smins tmaz, tmin by

Smax = I[S%‘)](S(t); tmaz 1= min{t s.t. S(t) = S"”CWL

Smin = fnir}s(t); tinin := min{t s.t. s(t) = Smin}-
0,T

As s(-) changes it monotony at a4, and &, they are
necessarily two switching points.

Proposition 6. If t € [0,T] is a switching time different
from t,,4, and t,,;, then

8(5) S {Smawvsmin}

Proof. Note first that the times t,,4, and t,,;, necessarily
satisfy

w(tmam) = qZ)(trnzn) = 01

hence

)\s(tmax)(sin - smaz) = )\s(tmzn)(szn - smin) = _>\z~
Since the Hamiltonian is conserved along any extremal
trajectory, one has

H = —Smaz T )\zy(smam) = —Smin + )\ZV(Smin)7
which implies that ), is positive and

i _ V(Smaav) - V(Smin)
Az Smax — Smin ’
Let us define the function g as
v(s) —v(a)
g(s) == Q, s # a,
s—a

where a € I is a parameter. One can easily conclude,
from the Chordal Slope lemma, that g is strictly increasing
whatever is a. Therefore, if a = $;,:n, the equation g(s) =
i has a unique solution s = S;,4; and s = Spn if
a4 = Smax-

Let us now suppose by contradiction that there exists a
switching time # € [0, 7] such that

t ¢ {tmaz,tmin},
and }
S(t> =S ¢ {Smaw75min}-
Since () = 0 then one has

1 v(8) — v(Smin) _ V(5) — V(Smaz)

Az 5 — Smin 5 — Smaz
Thus § is solution of g(s) = A% with @ = s,,, and
4 = Smar Which is a contradiction. Therefore, we get

s € {Smamasmin}~
Proposition 7. The optimal trajectory has no singular arc.

Proof. Assume by contradiction that there exists a time
interval [t1,ts], t1 < t3 where ¢ is zero, then one has

b(t) = (1) =0, (13)

for any time ¢ € I. The equality (13) implies v/(s(t)) = -
and u(t) = v(s(t)) over [t1,ts]. Thus, s is constant over
the singular arc. Let s* € I be such that for any time
t € [t1,t2], one has s(t) = s*. Proposition 6 implies that
s* takes two possible values s,,in O Symaz-

If s* = $,p4z then

H = —Smaz — V(Smaa:)As(tmaz)(sin - Smam)
= —Smaz T V(Smaz))\z
= —Smin t+ V(Smin))\27
hence, we get
1 _ V(Smaz) - V(Smin) o
EN =V (smaaz)7
Az Smaz — Smin

which is a contradiction with the strict convexity of v.
Therefore s* = si,. Similarly, we get
i V(Smaw) _ V(szn)

— [ .
>\z B Smaz — Smin v (Smln)’

which is also a contradiction with the strict convexity of v.
One then concludes that s* & {s;in, Smaz  and the system
has no singular arc. This ends the proof.




At this stage, we have thus proved that if u is an optimal
control then it is of bang-bang type i.e. it is a succession
of arcs u = Upin and U = Umqee. Moreover, the number
of switching times is necessarily even (otherwise a switch
will have to occur at s(T') = 5 in contradiction with
Proposition 6).

We have computed the optimal cost Jr associated to the
optimal control containing 2, 4, 6 and 8 switchings, for
a fixed period T. The numerical values are given in the
following table:

2n 2 4 6 8
Jr | 1.5817 | 1.7749 | 1.8148 | 1.8356

with s, = 3, ke = 2.5, ez = 1, § = 1.8377, Upin, = 0
and Uygz = 2.

We observe that the cost is minimal for n = 1.

Notice that, for a given period T, a solution with 2n
switches is necessarily T'/n periodic and thus its cost is
equal to the cost of the two switches solution on the
interval [0,T"/n]. We have plotted the cost of the periodic
solution containing exactly two switches and observe that
is decreasing w.r.t the period T (see Figure 3).

We then conjecture the following optimality result:

Conjecture 8. The optimal periodic control of the problem
(10), has exactly two switching times and is expressed as
follows

u(t) = {umax if t €[0,¢1) U (t2, T

Urnin ifte (tl,tg) (14)

where t; and t5 are uniquely defined as solution of the
system

(t1 + T — tg)umam + (t2 - tl)umin =ul
T
/ v(s(t))dt =ul

0

Solving the problem numerically using the software bocop
(Team Commands (2017)) with different initial guess
allows us to affirm that an optimal periodic control for
the problem (10) contains only two switching times (see
Figures 1 and 2). Note that bocop implements a local
optimization method. It is done by a discretization in time
applied to the state and control variables and the dynamic
equation. Finally, as the optimal cost is decreasing w.r.t
T then the improvement of the conversion rate with a
periodic forcing, given by (14), can be significant and
increases with the period.

4. CONCLUSION

In this work, we have considered the specific chemostat
model with Contois kinetics and determined whether the
averaged conversion rate can be improved by a periodic
flow rate. We have analyzed the optimal control problem
using Pontryagin Maximum Principle and we have shown
that the best periodic control is bang-bang with 2n switch-
ing times, n > 1. Numerical simulations indicate that the
optimal periodic strategy contains exactly two switching
times during a period. We shall look for generalization of
this result for more general growth functions.

Fig. 1. Plot of the optimal control u of type bang-bang
given by (14) with T' = 10, Umin = 0 and Uma. = 2.

0 1 2 3 4 5 6 7 8
ty

Fig. 2. Plot of the substrate concentration s corresponding
o (14) with T = 10.

Fig. 3. Plot of the optimal Jr w.r.t. the period T.
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