M. Backens, The ZX-calculus is complete for stabilizer quantum mechanics, New Journal of Physics, vol.16, issue.9, p.93021, 2014.
DOI : 10.1088/1367-2630/16/9/093021

M. Backens and &. Duman, A complete graphical calculus for Spekkens' toy bit theory. Foundations of Physics, pp.1-3410, 2014.

&. Niel-de-beaudrap and . Horsman, The ZX calculus is a language for surface code lattice surgery Available at https, QPL 2017, 2017.

N. Chancellor, A. Kissinger, J. Roffe, S. Zohren, and D. Horsman, Graphical Structures for Design and Verification of Quantum Error Correction. Available at https, 2016.

B. Coecke and &. Duncan, Interacting quantum observables: categorical algebra and diagrammatics, New Journal of Physics, vol.13, issue.4, p.43016, 2011.
DOI : 10.1088/1367-2630/13/4/043016

URL : http://iopscience.iop.org/article/10.1088/1367-2630/13/4/043016/pdf

B. Coecke and &. Kissinger, The Compositional Structure of Multipartite Quantum Entanglement, pp.297-308978, 2010.
DOI : 10.1007/978-3-642-14162-1_25

B. Coecke and &. Kissinger, Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning, pp.10-1017, 2017.
DOI : 10.1017/9781316219317

R. Duncan, A graphical approach to measurement-based quantum computing, 2013.

R. Duncan and &. Dunne, Interacting Frobenius Algebras are Hopf, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '16, pp.535-544, 2016.
DOI : 10.1017/CBO9780511618505

URL : https://strathprints.strath.ac.uk/56775/1/Duncan_Dunne_LINCS_2016_Interacting_Frobenius_algebras_are.pdf

R. Duncan and &. Garvie, Verifying the Smallest Interesting Colour Code with Quantomatic Available at https://arxiv, 2017.

R. Duncan and &. Simon-perdrix, Rewriting Measurement-Based Quantum Computations with Generalised Flow, Lecture Notes in Computer Science, vol.6199, pp.285-296, 2010.
DOI : 10.1007/978-3-642-14162-1_24

URL : https://hal.archives-ouvertes.fr/hal-00940895

R. Duncan and &. Simon-perdrix, Pivoting makes the ZX-calculus complete for real stabilizers, Electronic Proceedings in Theoretical Computer Science, vol.69, issue.043016, 2013.
DOI : 10.1103/PhysRevA.69.022316

URL : https://hal.archives-ouvertes.fr/hal-00935185

A. Hadzihasanovic, A Diagrammatic Axiomatisation for Qubit Entanglement, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science, pp.573-584, 2015.
DOI : 10.1109/LICS.2015.59

A. Hadzihasanovic, The algebra of entanglement and the geometry of composition Available at https, 2017.

C. Horsman, Quantum picturalism for topological cluster-state computing, New Journal of Physics, vol.13, issue.9, p.95011, 2011.
DOI : 10.1088/1367-2630/13/9/095011

URL : http://iopscience.iop.org/article/10.1088/1367-2630/13/9/095011/pdf

E. Jeandel, S. , and R. Vilmart, A Complete Axiomatisation of the ZX-Calculus for Clifford+T Quantum Mechanics Available at https://hal.archives-ouvertes, 2017.

E. Jeandel, S. Perdrix, R. Vilmart, and &. Wang, ZX-Calculus: Cyclotomic Supplementarity and Incompleteness for Clifford+T Quantum Mechanics, 42nd International Symposium on Mathematical Foundations of Computer Science Leibniz International Proceedings in Informatics (LIPIcs) 83, Schloss Dagstuhl?Leibniz-Zentrum fuer Informatik, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445707

A. Kissinger and &. Vladimir-zamdzhiev, Quantomatic: A Proof Assistant for Diagrammatic Reasoning, Automated Deduction -CADE-25, pp.326-336, 2015.
DOI : 10.1007/978-3-319-21401-6_22

&. Kang-feng-ng and . Wang, A universal completion of the ZXcalculus Available at https://arxiv, 2017.

C. Schröder-de-witt and &. Vladimir-zamdzhiev, The ZX-calculus is incomplete for quantum mechanics, Electronic Proceedings in Theoretical Computer Science, vol.95, issue.6, 2014.
DOI : 10.1017/CBO9780511976667