L. Alberucci and A. Facchini, Abstract, The Journal of Symbolic Logic, vol.5, issue.04, pp.1367-1400, 2009.
DOI : 10.1007/s11225-006-8301-9

A. Arnold and D. Niwi´nskiniwi´nski, Rudiments of µ-calculus, 2001.

N. Bertrand and P. Schnoebelen, Computable fixpoints in well-structured symbolic model checking. Formal Methods in System Design, pp.233-267, 2013.
DOI : 10.1007/s10703-012-0168-y

URL : https://hal.archives-ouvertes.fr/hal-00906826

N. Bezhanishvili and D. De-jongh, Intuitionistic Logic Institute for Logic, Language and Computation, 2006.

W. J. Blok, P. Köhler, and D. Pigozzi, On the structure of varieties with equationally definable principal congruences ii. algebra universalis, pp.334-379, 1984.

S. L. Bloom and Z. Esik, Iteration Theories: The Equational Logic of Iterative Processes

P. Clairambault, Strong functors and interleaving fixpoints in game semantics. RAIRO - Theor, Inf. and Applic, vol.47, issue.1, pp.25-68, 2013.
DOI : 10.1051/ita/2012028

J. R. Cockett and D. Spencer, Strong categorical datatypes II: A term logic for categorical programming, Theoretical Computer Science, vol.139, issue.1-2, pp.69-113, 1995.
DOI : 10.1016/0304-3975(94)00099-5

G. D. Agostino and M. Hollenberg, Logical questions concerning the ??-calculus: Interpolation, Lyndon and ??o??-Tarski, The Journal of Symbolic Logic, vol.16, issue.01, pp.310-332, 2000.
DOI : 10.1016/0890-5401(89)90031-X

G. D. Agostino and G. Lenzi, On the <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd"><mml:mi>??</mml:mi></mml:math>-calculus over transitive and finite transitive frames, Theoretical Computer Science, vol.411, issue.50, pp.4273-4290, 2010.
DOI : 10.1016/j.tcs.2010.09.002

M. Dam and D. Gurov, ??-Calculus with Explicit Points and Approximations, Journal of Logic and Computation, vol.12, issue.2, pp.255-269, 2002.
DOI : 10.1093/logcom/12.2.255

URL : http://www.sics.se/~dilian/Papers/fics00.ps.gz

F. Dau, Some Notes on Proofs with Alpha Graphs, Conceptual Structures: Inspiration and Application, 14th International Conference on Conceptual Structures Proceedings, pp.172-188, 2006.
DOI : 10.1007/11787181_13

URL : http://www.dr-dau.net/Papers/alpha_proplogic_iccs.pdf

M. Ferrari, C. Fiorentini, and G. Fiorino, fCube: An Efficient Prover for Intuitionistic Propositional Logic, Logic for Programming, Artificial Intelligence, and Reasoning, pp.294-301, 2010.
DOI : 10.1007/s10817-006-9060-z

URL : https://air.unimi.it/bitstream/2434/148078/2/2010_lpar.pdf

S. Frittella and L. Santocanale, Fixed-point theory in the varieties Dn, Relational and Algebraic Methods in Computer Science -14th International Conference Proceedings, pp.446-462, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01509386

G. Gentzen, Untersuchungen ???ber das logische Schlie???en. I, Mathematische Zeitschrift, vol.39, issue.1, pp.176-210, 1935.
DOI : 10.1007/BF01201353

S. Ghilardi, M. J. Gouveia, and L. Santocanale, Fixed-Point Elimination in the Intuitionistic Propositional Calculus, Foundations of software science and computation structures, pp.126-141, 2016.
DOI : 10.1007/11601548_3

URL : https://hal.archives-ouvertes.fr/hal-01249822

S. Ghilardi and M. Zawadowski, Sheaves, Games, and Model Completions: A Categorical Approach to Nonclassical Propositional Logics, 2011.
DOI : 10.1007/978-94-015-9936-8

S. Ghilardi and M. W. Zawadowski, Model completions and r-Heyting categories, Annals of Pure and Applied Logic, vol.88, issue.1, pp.27-46, 1997.
DOI : 10.1016/S0168-0072(97)00012-2

URL : https://doi.org/10.1016/s0168-0072(97)00012-2

D. Harel, D. Kozen, and J. Tiuryn, Dynamic logic. Foundations of Computing Series, 2000.

P. Johnstone, Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics, 1982.

G. Kelly, Basic Concepts of Enriched Category Theory Number 64 in Lecture Notes in Mathematics Republished in: Reprints in Theory and Applications of Categories, pp.1-13, 1982.

A. Kock, Strong functors and monoidal monads, Archiv der Mathematik, vol.1, issue.1, pp.113-120, 1972.
DOI : 10.1007/BF01304852

D. Kozen, Results on the propositional ??-calculus, Theoretical Computer Science, vol.27, issue.3, pp.333-354, 1983.
DOI : 10.1016/0304-3975(82)90125-6

M. Kracht, 8 Modal consequence relations, Handbook of Modal LogicStudies in Logic and Practical Reasoning), chapter 8, pp.491-547, 2006.
DOI : 10.1016/S1570-2464(07)80011-5

K. Lehtinen and S. Quickert, Deciding the first levels of the modal mu alternation hierarchy by formula construction, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015 Schloss Dagstuhl -Leibniz-Zentrum fuer Informatik, pp.457-471, 2015.

S. Mardaev, Definable fixed points in modal and temporal logics : A survey, Journal of Applied Non-Classical Logics, vol.17, issue.3, pp.317-346, 2007.
DOI : 10.3166/jancl.17.317-346

S. I. Mardaev, Least fixed points in Grzegorczyk's Logic and in the intuitionistic propositional logic. Algebra and Logic, pp.279-288, 1993.

S. I. Mardaev, Convergence of positive schemes in S4 and Int. Algebra and Logic, pp.95-101, 1994.

A. M. Pitts, Abstract, The Journal of Symbolic Logic, vol.52, issue.01, pp.33-52, 1992.
DOI : 10.1016/0022-4049(83)90104-4

W. Ruitenburg, On the period of sequences (An(p)) in intuitionistic propositional calculus, The Journal of Symbolic Logic, vol.344, issue.03, pp.892-899, 1984.
DOI : 10.2307/2274142

L. Santocanale, -Bicomplete Categories and Parity Games, RAIRO - Theoretical Informatics and Applications, vol.200, issue.2, pp.195-227, 2001.
DOI : 10.1016/S0304-3975(98)00009-7