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Abstract. We study the complexity of Power Edge Set (PES), a
problem dedicated to the monitoring of an electric network. In such con-
text we propose some new complexity results. We show that PES remains
NP-hard in planar graphs with degree at most five. This result is ex-
tended to bipartite planar graphs with degree at most six. We also show
that PES is hard to approximate within a factor lower than 328/325 in
the bipartite case (resp. 17/15− ε), unless P = NP, (resp. under UGC).
We also show that, assuming ET H, there is no 2o(

√
n)-time algorithm

and no 2o(k)nO(1)-time parameterized algorithm, where n is the number
of vertices and k the number of PMUs placed. These results improve the
current best known bounds.

1 Introduction

Monitoring the nodes of an electrical network can be carried out by means of
Phasor Measurement Units (PMUs). The problem of placing an optimal number
of PMUs on the nodes for complete network monitoring, is known as Power
Dominating Set [16]. A recent variant of the problem [15], called Power Edge
Set (PES), is to have the PMUs on the network links rather than the nodes,
considering the following two rules: (1) two endpoints of an edge bearing a PMU
are monitored and (2) if one node is monitored and all but one of its neighbors
are too, then the unmonitored neighbor becomes monitored. The problem of
assigning a minimum number of PMUs to monitor the whole network is known
to be NP-hard in the general case but can be solved in linear time on trees [15].
In this paper, we present some new complexity results, proposing new lower
bounds according to classic complexity hypotheses.

We model the electrical network by a graph G = (V,E) with |V | = n and
|E| = m. We let V (G) and E(G) denote the respective sets of vertices and edges
of G. Further, NG(v) denotes the set of neighbors of v and dG(v) = |NG(v)| its
degree in G. Finally, we let NG[v] := NG(v)∪{v} denote the closed neighborhood
of v in G.

The problem Power Edge Set can be seen as a problem of color propaga-
tion with colors 0 (white) and 1 (black), respectively designating the states not
monitored and monitored of a vertex of G. Let G = (V,E) be a graph as the



a

b c

d

e

f

g

(a)

a

b c

d

e

f

g

(b)

a

b c

d

e

f

g

(c)

a

b c

d

e

f

g

(d)

a

b c

d

e

f

g

(e)

a

b c

d

e

f

g

(f)

a

b c

d

e

f

g

(g)

Fig. 1. Before placing any PMU (represented by crossed boxes on edges), all
vertices are white (Fig. 1a). If we place a PMU on {b, c}, then c(b) = c(c) = 1
(black) by Rule R1 (Fig. 1b). By applying Rule R2 on b, we obtain c(a) = 1
(Fig. 1c). Then, Rule R2 on a gives c(d) = 1 (Fig. 1d), and, finally, c(e) = 1
with Rule R2 on c or d (Fig. 1e). The color propagation is stopped, and we
need to place a second PMU. A PMU on {e, f} implies c(f) = 1 by Rule R1

(Fig. 1f) and Rule R2 on e gives c(g) = 1 (Fig. 1g).

input of Power Edge Set and, for each vertex v ∈ V , let c(v) be the color
assigned to v (we abbreviate

⋃
v∈X c(v) =: c(X)). Before placing the PMUs, we

have c(V ) = {0}. Given a set E′ ⊆ E of edges on which to place PMUs, colors
propagate according to the following rules:
Rule R1: if (u, v) ∈ E′, then c(u) = c(v) = 1 ("the endpoints of all {u, v} ∈ E′

are colored").
Rule R2: for u, u′ with c(u) = 1, u′ ∈ NG(u) and c(v) = 1 for all v ∈

NG(u)\{u′}, then c(u′) = 1 ("if u′ is the only uncoloured neighbor of an
already colored vertex u, then u′ is colored" – we say that we apply Rule
R2 on u to color u′, or that u′ is colored by propagation of u).

The objective of Power Edge Set is to find a smallest set of edges E′ ⊆ E
on which to place the PMUs such that c(V)={1} after exhaustive application of
Rule R1 and Rule R2. We call such a set a power edge set of G (see Fig. 1 for
a guided example of Rule R1 and Rule R2 on a simple graph, leading to an
optimal solution with two PMUs) and we let pmu(G) denote the smallest size
of any power edge set.

Power Edge Set (PES)
Input: a graph G = (V,E) and some k ∈ IN
Question: Is pmu(G) ≤ k?

Previous work Toubaline et al. [15] propose a complexity result and an approx-
imation threshold 1.12 − ε for ε > 0 based on an E-reduction from Vertex
Cover. They also propose a linear-time algorithm on trees by performing a
polynomial reduction to Path Cover. Moreover, Poirion et al. [14] develop an



exact method, a linear program with binary variables, indexed on the neces-
sary iterations using propagation Rule R1 and Rule R2, extended to a linear
program in mixed variables, with the goal of being efficient in practice.

Our contribution An interesting open question stems from the assumption that
power lines run in a plane or, at least in few planes or surfaces of low genus. In
this work, we address this question, developing hardness results on (bipartite)
planar graphs, covering both approximation and parameterized complexity. We
show that PES is hard to approximate within a factor lower than 328/325 for
bipartite graphs (resp. 17/15− ε), unless P = NP, (resp. under UGC). We also
show that, assuming ET H, there is no 2o(

√
n)-time algorithm, and no 2o(k)nO(1)-

time parameterized algorithm with respect to the standard parameter.

2 Preliminaries

In this section, we present some definitions and observations concerning parts
of optimal solutions to PES on a graph G. We call a cycle C ribbon if all but
exactly one vertex v of C have degree two in G and we call v the knot of C.

Lemma 1. Let G be a graph, let C be a ribbon with knot v and let e be an edge
of C. Then, there is an optimal power edge set S for G with S ∩ E(C) = {e}.

Proof. Suppose that no PMU is placed on the edges of C. Then, even if c(v) =
1, none of the neighbors of v in C can become colored and, thus, v cannot
propagate on any of them. If one PMU is placed on e, we obtain c(V (C)) = {1}
by consecutive propagation of vertices of degree two. ut

Definition 1 (Passive Relay). Let G be a graph, let C be a ribbon with knot v,
and let NG(v) \ V (C) = {x, y}. Then, v is called passive relay between x and y.

G

v

x

y

Fig. 2. A passive relay be-
tween x and y, consisting in
a ribbon with knot v.

If v is a passive relay between x and y, then
c(x) = 1 implies c(y) = 1 by Rule R2 applied to
v. A passive relay between x and y can be built
by connecting x and y to a ribbon (see Figure 2).
The interest of adding this relay lies in the fact
that, by Lemma 1, any optimal power edge set
intersects the ribbon, thus coloring it completely.
Then, a coloration of x necessarily implies a col-
oration of y even if there were remaining uncol-
ored vertices in NG(x) (and symmetrically from
y to x).

Throughout this work, we call a total order
< of vertices of G valid for any S ⊆ E(G) if, for
each v ∈ V (G), there is an edge incident with v in S or there is some u ∈ NG(v)
with NG[u] ≤ v (where ≤ denotes the extension of < by all reflexive pairs).
Note that valid orders correspond to propagation processes of S in G. We also
represent a total order < by a sequence (v1, v2, . . .) such that vi occurs before vj
in the sequence if and only if vi < vj .
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Fig. 3. Gadget Hv for a vertex v with neighbors x, y, and z.

3 Computational results

In this section, we present new complexity results for PES on restricted graphs.
First, we show that PES remains NP-complete even if G is a planar graph with
bounded degree at most five (Theorem 1). Then, we extend this result to planar
bipartite graphs with degree at most six (Theorem 2). To prove these results, we
use a reduction from 3-regular planar Vertex Cover (3-RPVC) defined
as follows:

3-regular planar Vertex Cover (3-RPVC)
Input: a 3-regular planar graph G = (V,E) and some k ∈ IN.
Question: Is there a size-k set S ⊆ V covering E, i.e. ∀e∈E e ∩ S 6= ∅?

3-RPVC is NP-complete [8] but admits a PTAS [1], and a 3
2 -approximation [3].

3.1 Hardness on Planar Graphs

First, we introduce the gadget graph Hv presented in Figure 3:

Construction 1 Given a vertex v of degree three with neighbors x, y, z, the
gadget Hv is composed of 1) an internal 5-wheel (vertices v0–v5) with center v0,
2) a set of three border-vertices, one for each neighbor of v, called vx, vy and vz
connected in a triangle 3) and three intermediate vertices (v6, v7, v8), connected
respectively to vx and v2, to vy and v3, and to vz and v5. The whole gadget
contains 12 vertices and 19 edges.

From any 3-regular planar graph G, we construct a planar graph G′ by 1. for
each v ∈ V (G), adding Hv, and 2. for each {u, v} ∈ E, adding a connecting
edge {uv, vu}, thus linking the gadgets Hu and Hv (see Figure 6 (appendix)).

In the following, let S′ be a solution to PES on G′ and let < be a valid order
corresponding to S′.

Lemma 2. S′ contains an edge incident with v0, v1, or v4 for all v ∈ V (G).



Proof. Towards a contradiction, assume that S′ avoids all edges incident with
v0, v1 and v4 for some v ∈ V (G). Then, since v0 is neighbor of all neighbors
(except v0 itself) of v1, we have v0 < v1 and the same holds for v4. However, all
neighbors of v0 have either v1 or v4 as a neighbor (or are v1 or v4 themselves),
implying v1 < v0 or v4 < v0, contradicting v0 < v1, v4. ut

Lemma 3. For all {v, x} ∈ E(G), we have {vx, xv} /∈ S′.

Proof. Towards a contradiction, assume that {vx, xv} ∈ S′ for some {x, v} ∈
E(G). Then, we can swap {vx, xv} and the edges in S′ ∩E(Hv) for {v0, v1} and
{v4, v5} in S′, allowing us to start < with (v0, v1, v4, v5, v2, v3, v6, v7, v8, vx,
vy, vz, xv) for {x, y, z} = NG(v). BY Lemma 2, S′ did not grow larger. Further,
vx and xv precede all w /∈ V (Hv) in this modified ordering, implying that it is
valid for the modified power edge set. ut

Lemma 4. Let v ∈ V (G) with |S′ ∩ E(Hv)| = 1, let x ∈ NG(v) and let w ∈
{v0, v1, . . . , v8} such that w is not incident with an edge of S′. Then, vx < w.

Proof. Abbreviate B := {vi | i ∈ NG(v)} and let w be chosen minimal with
respect to <. Since w is not incident with an edge of S′, there is some u ∈ NG′(w)
with NG′ [u] ≤ w. Assume towards a contradiction that u /∈ B. By minimality
of w, we then know that u is incident with an edge of S′ and by Lemma 2,
NG′ [u] avoids B. However, since |NG′ [u]| ≥ 4 for all such u, this contradicts
|S′ ∩ E(Hv)| = 1. Thus, u ∈ B, implying vx ∈ NG′ [u] and vx < w. ut

Lemma 5. Let {x, v} ∈ E(G). Then |S′ ∩ E(Hx)| > 1 or |S′ ∩ E(Hv)| > 1.

Proof. Towards a contradiction, assume that |S′ ∩ E(Hx)| = |S′ ∩ E(Hv)| = 1
(from Lemma 2, we know that |S′ ∩ E(Hv)| ≥ 1). By symmetry, suppose that
vx < xv and note that, by Lemma 2 and Lemma 3, vx is not incident with an
edge of S′. Thus, there is some u ∈ NG′(vx) with NG′ [u] ≤ vx. Since vx < xv,
we have u ∈ V (Hv). By Lemma 4, we know that u ∈ {vi | i ∈ NG(v)}. However,
NG′ [u] intersects {v0, v1, . . . , v8}, contradicting Lemma 4. ut

Theorem 1. Power Edge Set is NP-complete in planar graphs of degree at
most five.

Proof. We show that G has a size-k vertex cover if and only if the result G′ of
applying Construction 1 has a power edge set of size n+ k.

“⇒”: let S be a size-k vertex cover of G. We build a power edge set S′ for
G′ as follows: for each v ∈ V (G), add the edge {v0, v1} of Hv to S′ and for each
v ∈ S, add the edge {v4, v5} of Hv to S′. Note that |S′| = n+ k. We construct a
valid ordering < of G′ for S′. To this end, for each v ∈ V (G) with (x, y, z) being
an arbitrary sequence of NG(v), let

<v:=

{
(v0, v1, v4, v5, v2, v3, v6, v7, v8, vx, vy, vz) if v ∈ S
(v0, v1, vx, vy, vz, v6, v7, v8, v2, v3, v5, v4) if v /∈ S.
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Fig. 4. Gadget graph I(e) with e = {x, y}.

Let <∗ be an arbitrary ordering of V (G) such that u <∗ v for all u ∈ S and
v /∈ S and let < be the result of replacing each v by the sequence <v in this
ordering. Towards a contradiction, assume that < is not valid for S′ and let w
be the first vertex of < such that the subsequence of < ending with w is invalid
for S′. Let v ∈ V (G) such that w is a vertex of Hv. By construction of <v,
this is only possible if v /∈ S and w = vx for some x ∈ NG(v). However, since
S is a vertex cover, x ∈ S, implying x <∗ v and, thus, V (Hx) < w. But then,
NG′ [xv] ≤ vx contradicting that the subsequence of S′ ending with w is invalid.

“⇐”: Let S′ be a size-(n+ k) power edge set of G′ and let < be a valid total
order of V (G′) for S′. Lemma 5 directly implies that the set {v | |S′∩E(Hv)| > 1}
is a vertex cover of G and, by Claims 2, 4 and 5, its size is at most |S′| − n = k.

ut

3.2 Hardness on Bipartite Planar Graphs

In the proof of Theorem 1, the graph G′ obtained by Construction 1 is not
bipartite. In the following, we modify this construction to yield planar bipartite
graphs while preserving large parts of the previous proof. To this end, we replace
edges of odd-length cycles with a gadget (See Figure 4) and show that this
replacement does not alter the initial coloring propagation scheme in the graph.

Construction 2 Given a graph G and an edge e ∈ E(G), let r(G, e) denote
the graph (V (G) ∪ V (I(e)), E(G) ∪ E(I(e)) \ e) resulting from replacing e by the
gadget graph I(e) in G (see Figure 4).

Note that I(e) is bipartite and planar, and that the distance between x and y
is even. By Lemma 1, we know that each of the four 4-cycles connected to e4,
e8, e11, and e13, respectively contains a PMU. Moreover, vertex e4 (respectively
e8, e11, e13) is a passive relay between e3 and e5 (respectively between e1 and
e7, between e10 and y, between e12 and x). Recall that one can consider passive
relays and their connected cycles as always colored.

Lemma 6. Let G be a graph, let e = {x, y} ∈ E(G), and let G′ = r(G, e). Then,
pmu(G) ≤ k if and only if pmu(G′) ≤ k + 4.



Proof. “⇒”: Let Fe be a set containing one edge of each ribbon of I(e), let S be
a size-k power edge set for G, and let S′ := (S \ {x, y}) ∪ Fe. We suppose that
{x, y} /∈ S as otherwise, S′∪{x, e1} is a power edge set for G and its size is k+4.
Let < be a valid order of G for S and let (v1, v2, . . .) be the sequence of V (G)
corresponding to <. From <, we build a valid ordering <′ of G′ for S′, thus
proving that S′ is a power edge set for G′. Without loss of generality, let x < y
and note that (v1, v2, . . . , x) is valid for S′. Let z be minimal with respect to <
such that NG[x] ≤ z and let <′ be the result of (1) prepending the vertices of
the ribbons of I(e) to <, (2) replacing x by (x, e12, e5, e3, e2), (3) replacing z by
(e1, e7, e6, e9, e10, z) if z = y, and (4) replacing y by (y, e10, e1, e7, e6, e9) if z 6= y.
Let (v′1, v′2, . . .) be the corresponding vertex sequence. Towards a contradiction,
assume that there is some w such that (v′1, v′2, . . . , w) is not valid for S′ and let w
be minimal with respect to <′. As w is not incident with an edge of S′, it is also
not incident with an edge of S. Further, one can verify that (1)–(4) imply w 6= ej
for all j and, thus, w ∈ V (G). Since < is valid for S, there is some u ∈ NG(w)
with NG[u] ≤ w. First, suppose that u = x and note that x, y ≤ w = z in
this case. If y = w = z, then NG[x] ≤ y and NG′ [e11] ≤′ y by (3). Otherwise,
y < w and, by (4), e1, e13 <′ w, implying NG′ [u] ≤′ w. Second, suppose that
u = y. By (1) and (2), however, e5, e11 <′ y <′ w, implying NG′ [u] ≤′ w. Thus,
u /∈ V (I(e)), implying NG[u] = NG′ [u] and NG′ [u] ≤′ w as <′ is an extension of
<.

“⇐”: Let S′ be a size-(k+4) power edge set for G′ and let S′e := S′∩E(I(e)).
If |S′e| ≥ 5, then (S \ E(I(e))) ∪ {{x, y}} is clearly a power edge set for G and
its size is at most k. Otherwise, |S′e| ≤ 4 and, by Lemma 1, S′e consists of four
edges; one in each ribbon of I(e). Let S := S′ \ S′e, let <′ be a valid order of G′
for S′, and let < be the restriction of <′ to V (G). Let (v′1, v′2, . . .) and (v1, v2, . . .)
be the sequences of V (G′) and V (G) implied by <′ and <, respectively. Without
loss of generality, let x <′ y, implying x < y. By construction of I(e), we observe
that Se does not propagate beyond the ribbons of I(e), implying that

∀i∈{1,2,3,5,6,7,9,10,12} x <′ ei and ∀i∈{1,6,7,9,10} (NG′ [x] ≤′ ei)∨ (y <′ ei). (1)

We show that < is valid for S. Towards a contradiction, assume that there is
some w ∈ V (G) such that (v1, v2, . . . , w) is not valid for S and let w be minimal
with respect to <. Since w ∈ V (G) and it is not incident with any edges of S, it
is also not incident with any edges of S′, implying that there is some u ∈ V (G′)
with NG′ [u] ≤′ w. First, suppose that u ∈ V (G′)\V (G) and since, by (1), w 6= x
, we have w = y and u ∈ {e5, e11}. Thus, NG′ [e5] ≤′ y, implying e6 <′ y or
NG′ [e11] ≤′ y, implying e10 <′ y. In either case, (1) implies NG′ [x] ≤′ y and,
thus, NG[x] ≤ y. Second, suppose that u ∈ V (G). Since NG[u] = NG′ [u] for all
u ∈ V (G) \ {x, y}, we have u ∈ {x, y} as otherwise, NG[u] ≤ w. If u = y, then
NG[u] ≤ w since NG[y] = (NG′ [y]∩V (G))∪{x}. If u = x then, since e1 ∈ NG′ [u],
we have e1 <′ w. But since w ∈ NG′ [x], we have NG′ [x] �′ e1 and (1) implies
y <′ e1. As NG[x] = (NG′ [x] ∩ V (G)) ∪ {y}, we conclude NG[x] ≤ w. ut

In order to show hardness on bipartite graphs, we color the vertices of the
output graph G′ of Construction 1 arbitrarily with two colors and replace all



monochromatic edges e with I(e). We can strengthen the result using the fol-
lowing coloring strategy. For each boundary vertex vi of each Hv, color vi such
that NG′ [vi] \ {v6, v7, v8} is not monochromatic and let c be the color occurring
the least among {vx, vy, vz}. Then, color v0, v6, v7, and v8 with c and color v1–v5
with the other color.

Lemma 7. In Hv, each vi with i ∈ {x, y, z} is incident with at most two
monochromatic edges.

Proof. Let the color of vx be blue and assume towards a contradiction that
vx is incident with at least three monochromatic edges. As NG′ [vx] \ {v6} is
not monochromatic, v6 is blue. But then, blue appears least among vx, vy, vz,
implying that vy and vz are not blue. Thus, vx is incident with at most two
monochromatic edges. ut

Considering Lemma 7, we observe that the graph resulting from replacing monochro-
matic edges of G′ has maximum degree six.

Theorem 2. Power Edge Set is NP-complete in planar bipartite graphs of
degree six.

4 Some Lower Bounds

4.1 Non-Approximability

In this section, we prove new approximation lower bounds for PES, improving
the current best known bounds presented by Toubaline et al. [15]. First recall
the definition of L-reduction between two difficult problems Π and Π ′, described
by Papadimitriou and Yannakakis [13]. This reduction consists of polynomial-
time computable functions f and g such that, for each instance x of Π, f(x) is
an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is a feasible
solution for x. Moreover there are constants α1, α2 > 0 such that:
1. OPTΠ′(f(x)) ≤ α1OPTΠ(x) and
2. |valΠ(g(y′))−OPTΠ(x)| ≤ α2|valΠ′(y′)−OPTΠ′(f(x))|.
We use an L-reduction from Vertex Cover in hypergraphs in which all edges
have cardinality exactly 3.

3-Uniform VC (3UVC)
Input: a 3-uniform hypergraph G = (V,E) and some k ≥ 2.
Question: Is there a size-k vertex set V ′ ⊆ V covering E?

3-Uniform VC is hard to approximate within a factor less than 2 − ε for all
ε > 0, unless P = NP, even if each vertex appears in at most three edges [6].

Theorem 3. Under UGC, Power Edge Set is hard to approximate within a
factor of 17

15 − ε, even on graphs of maximum degree five.
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Fig. 5. Polynomial-time reduction for hypergraph G.

Proof. Given an instance I = (G, k) of 3-Uniform VC such that each vertex of
G appears in at most three edges, we construct an instance I ′ = (G′, k+n+m)
of PES in the following way: For each v ∈ V included in exactly γ ≤ 3 edges,
we add a gadget Hγ

v given in Fig. 5a–5c. Vertices vei , vej , vek are border-vertices
for H1

v , H2
v , H3

v . For each hyperedge e = {x, y, z}, we add a gadget Je, given by
Fig. 5d with border vertices ex, ey, ez and we add the edges {xe, ex}, {ye, ey},
and {ze, ez}.

Vertex-gadgets Hγ
v are designed such that if we have c(vej ) = 1 for all ej ∈ E

containing v, then placing a single PMU inside Hγ
v is sufficient to color the whole

vertex-gadget. If c(ev) = 0 for some e containing v, two PMUs are necessary in
Hγ
v to color the whole gadget, but this also colors e′v for all e′ containing v. Edge-

gadgets Je are designed such that if at least one border vertex ex is colored, then
only one PMU is required in Je to color the whole edge-gadget, but this also



colors ve for all v ∈ e. Note that if there are two PMUs on any edge-gadget
Je in an optimal solution, then one can simply switch one PMU from Je to any
adjacent Hγ

v and get a solution of same cost with only one PMU per edge-gadget.
Observe that G admits a size-k vertex cover if and only if G′ can be monitored

with k+n+m PMUs: the vertex-gadgets Hγ
v with two PMUs propagate on the

border-vertices on all edge-gadgets. If we add one PMU per edge-gadget, any
colored border vertex of Hγ

v propagates its color to all other border vertices.
To show that the vertex-gadgets Hγ

v with two PMUs induce a vertex cover of
I, suppose that there is a hyperedge e = {u, v, w} ∈ E that is not covered.
Then, their respective vertex gadgets contain a single PMU. Then, however,
these vertex gadgets cannot be colored by Rule R2, contradicting I ′ being
monitored.

To show that the above constitutes an L-reduction, let f be a function trans-
forming any instance I of 3-Uniform VC into an instance I ′ of pmuas above,
let S′ be any feasible solution for I ′, and let g be the function that transforms
S′ into a solution S′′ that contains exactly one edge of each Je and at least one
edge of each Hγ

v , and then outputs the set of vertices v for which S′′ assigns at
least two PMUs to Hγ

v . First, the above argument shows that g(S′) is a feasible
solution for 3-Uniform VC. Second, by construction,

OPT (I ′) = OPT (I) + n+m (2)

and, since each vertex of I appears in at most 3 edges of I, at least one in seven
vertices has to be in a vertex cover of G, implying n/7 ≤ OPT (I). Since each
vertex is incident with at most three hyperedges and each hyperedge contains
exactly three vertices, Hall’s theorem impliesm ≤ n. We then obtain OPT (I ′) ≤
15 ·OPT (I). Third, by construction of g, we have

val(g(S′)) ≤ val(S′)−m− n
(2)
≤ val(S′)−OPT (I ′) +OPT (I) (3)

Thus, we constructed an L-reduction with α1 = 15, α2 = 1. Assuming UGC,
3-Uniform VC is hard to approximate to a factor of (3− ε) [2] and, thus

val(S′)
(3)
≥ val(g(S′)) +OPT (I ′)−OPT (I)
≥ 3 ·OPT (I) +OPT (I ′)−OPT (I)
≥ 2/15 ·OPT (I ′) +OPT (I ′)

≥ 17/15 ·OPT (I ′) ut

Theorem 4. Power Edge Set on bipartite graphs of maximum degree six
cannot be approximated to within a factor better than 328/325 > 1.0092 unless P
=NP.

Proof. To show that the reduction from 3-RPVC presented in Construction 2 is
an L-reduction, let I be an instance of 3-RPVC, let f be the described reduction
and let g be the function that, given any feasible solution S′ for I ′ := f(I),



transforms S′ into a feasible solution S′′ according to Lemma 2–5 and returns
the set of vertices v such that S′′ contains at least two edges more than four times
the number of gadgets I(e) in Hv. Let m′ be the total number of edges e that
are replaced by I(e) by f . Using similar arguments, as in the proof of Theorem 3
we have OPT (I ′) = OPT (I) +n+4m′ and, since the graph G of I is 3-regular,
n/2 ≤ OPT (I) (no independent set of G can be larger than n/2). Additionally
to the coloring scheme suggested to prove Lemma 7, we repeatedly find a Hv

with at least two incident inter-gadget edges that are monochrome and swap
the coloring of Hv. Then, m′ ≤ 4n + m ≤ 4n + m/3 = 4n + n/2, we further
have OPT (I ′) ≤ 39 ·OPT (I). Then, val(S′) ≥ val(g(S′))+OPT (I ′)−OPT (I).
Since Vertex Cover is hard to approximate to within a factor of 1.36, even in
3-regular graphs [5, 7] (unless P=NP), we conclude val(S′) ≥ 328/325OPT (I ′).

ut

4.2 Lower Bounds for Exact and FPT Algorithms

We propose some negative results for Power Edge Set about the existence of
subexponential-time algorithms under ET H [9, 10], and FPT Algorithms. Since
the polynomial-time transformation given in the proof of Theorem 1 is linear
in the number of vertices, and since 3-regular planar Vertex Cover does
not admit a 2o(

√
n)nO(1)-time algorithm [7, 11], there is also no 2o(

√
n)nO(1)-time

algorithm for Power Edge Set. Moreover, since the solution size k is at most
n, a 2o(k)nO(1)-time algorithm contradicts the non-existence (assuming ET H) of
2o(n)nO(1)-time algorithms for Vertex Cover on planar graphs [11].

Corollary 1. Assuming ET H, there is no 2o(
√
n)nO(1)-time algorithm for Power

Edge Set in planar graphs, and there is no 2o(k)nO(1)-time algorithm for Power
Edge Set where k is the solution size.

5 Conclusion

In this article, we presented several new hardness results and some lowers bounds
for the problem of selecting a smallest number of phasor measurement units to
monitor a given (planar) network. As perspectives, it would be interesting to
explore the problem on particular classes of graphs to understand to what extend
the regularity of the graph, or special patterns and minors, may influence the
complexity of the problem. Further, having excluded 2o(k)nO(1)-time algorithms,
it is also interesting to seek "the next best thing", that is, single exponential-
time algorithms with respect to k as well as considering structural parameters
that are independent of planarity, such as the treewidth. Finally, as the problem
is hard to approximate in polynomial time, it is interesting to allow moderately
exponential time, in an FPT -approximation setting (see [4, 12]).
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Appendix
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(a) A 3-regular planar graph G and
an optimal solution S={a,c,d,f} to
Vertex-Cover
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(b) The graph G′ obtained from G and the solution S′ obtained from S. Here PMU are
placed on the edges with boxes

Fig. 6. Example of a graph constructed from an instance I of 3-RPVC (Proof
of Theorem 1)
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Fig. 7. Graph constructed from an instance I of ErVC with r = 3 (Proof of
Theorem 3). The 3-uniform hypergraph from I contains 8 vertices t, u,v,w,x,y,z
and the four edges e1 = {u, v, w}, e2 = {u, y, z}, e3 = {t, w, z}, e4 = {t, w, x}.
An optimal solution for PES is to place PMUs on edges with a box. Vertex-
Gadgets w and y are the only one with two PMU. Thus {w, y} is a vertex cover
in the hypergraph.


