Skip to Main content Skip to Navigation
Conference papers

Improved Complexity for Power Edge Set Problem

Benoit Darties 1 Annie Chateau 2 Rodolphe Giroudeau 3 Mathias Weller 4, 2
2 MAB - Méthodes et Algorithmes pour la Bioinformatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
3 MAORE - Méthodes Algorithmes pour l'Ordonnancement et les Réseaux
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : We study the complexity of Power Edge Set (PES), a problem dedicated to the monitoring of an electric network. In such context we propose some new complexity results. We show that PES remains N P-hard in planar graphs with degree at most five. This result is extended to bipartite planar graphs with degree at most six. We also show that PES is hard to approximate within a factor lower than 328 /325 in the bipartite case (resp. 17/15 −), unless P = N P, (resp. under UGC). We also show that, assuming ET H, there is no 2 o(√ n)-time algorithm and no 2 o(k) n O(1)-time parameterized algorithm, where n is the number of vertices and k the number of PMUs placed. These results improve the current best known bounds.
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01715909
Contributor : Benoît Darties <>
Submitted on : Friday, February 23, 2018 - 10:33:59 AM
Last modification on : Thursday, May 14, 2020 - 9:12:02 AM
Document(s) archivé(s) le : Thursday, May 24, 2018 - 12:45:53 PM

File

IWOCA2017.pdf
Files produced by the author(s)

Identifiers

Citation

Benoit Darties, Annie Chateau, Rodolphe Giroudeau, Mathias Weller. Improved Complexity for Power Edge Set Problem. IWOCA: International Workshop on Combinatorial Algorithms, Jul 2017, Newcastle, Australia. pp.128-141, ⟨10.1007/978-3-319-78825-8_11⟩. ⟨hal-01715909⟩

Share

Metrics

Record views

766

Files downloads

638