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Abstract

A discrete-time random signal is singular if its values are singular random variables defined by a

distribution function continuous but with a derivative equal to zero almost everywhere. Singular random

signals can be obtained at the output of some linear filters when the input is a discrete-valued white

noise. Sufficient conditions for singularity are established. In particular it is shown that if the poles of

the filter are inside a circle called the circle of singularity and if the input is white and discrete-valued

the output is singular. Computer experiments using histograms at different scales exhibit the structure

of singular signals. The influence of input correlation is also analysed. It is shown that when the input

is not white, but has a specific Markovian structure, the output can be singular. This is also verified by

computer experiments. Finally, mixtures of singular and discrete-valued random signals are analysed.

Index Terms

Statistical signal analysis, Signal and noise modeling, Non-Gaussian signals and noise, Markov

processes., Cantor sets, spectral measure.
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I. INTRODUCTION

Singularity is a concept introduced in probability theory and related to properties of distribution

functions of random variables. Usually only two kinds of random variables are considered: those that

are continuous and having a distribution function (DF) with a derivative (probability density function)

and those that are discrete with a DF varying by steps defining possible values and their corresponding

probabilities. However there is a third kind of random variables: those that are singular.

A random variable (RV) is said to be singular if its DF is continuous but with a derivative equal to zero

almost everywhere. Then such a RV is neither continuous (no probability density function) nor discrete

because its DF is continuous and not a stepwise function.

Singular RVs are often considered as mathematical curiosities without interest in signal theory and

engineering sciences. They are rarely introduced in standard textbooks (Papoulis 1984, Ochi 1990, Pfeifer

1990, Helstrom 1991, Picinbono 1993) and appear only in mathematically oriented books (Loève 1977,

Wong and Hajek 1985). Very simple RVs however can be singular. The best example comes from an old

result known for more than sixty years. It says that if wk is a set of independent and identically distributed

(IID) RVs taking the values ±1 with the same probability, then the sum of the series
∑∞

k=0 a
kwk is singular

as soon as |a| < 1/2. So one of the simplest RV that can be considered is singular. This result is often

omitted because its usual proof requires very abstract reasoning. One of the first tasks of this paper is to

show its origin and to introduce an elementary proof that can afterwards be used in signal theory. Indeed

the series considered above is similar to the output of an exponential discrete-time filter whose input is a

discrete valued white noise. This is the case of autoregressive signals widely used in signal processing.

Then the question of knowing whether or not this can be extended to other class of signals and systems

appears immediately.

The main result of this paper is that singularity of the output of a linear filter depends on two facts: the

discrete character of the input, which is a common situation in communication theory, and some specific

properties of the filter such as the location of its poles in a circle called the circle of singularity. In order

to provide a better understanding of a problem usually widely ignored, and to visualize how singularity

can appear for rather simple signals, number of computers experiments are presented.

In the last part of the paper it is also shown that the assumption of whiteness, fundamental in the proof

of the basic result, can be partially deleted and we present some examples of coloured input signals

leading also to singular outputs. This is especially the case of some Markov processes. Finally mixtures

of discrete and and singular random signals can be obtained depending on the properties of the correlation

function of the input, and theoretical and experimental examples of such signals are presented.
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II. STATEMENT OF THE PROBLEM AND REVIEW OF KNOWN RESULTS

Let X(ω) be a RV defined on some probability space. Let F (x) be its distribution function (DF). In

all of what follows we do not make any difference between two RVs distinct but equal with probability

1. This means that X(ω) is entirely defined by its DF F (x). The RV X(ω) is said to be singular if its

DF F (x) is continuous but with a derivative equal to zero almost everywhere.

At the beginning let us remind some fundamental results of probability theory used in the discussion

that follows and especially the Lebesgue decomposition theorem (Lukacs 1970). For this let us recall

that a RV is said to be continuous if its DF is continuous and has a derivative which is its probability

density function (PDF). On the other hand a RV is said to be discrete if its DF varies only by steps of

amplitudes pi at points xi. This means that the RV takes only the values xi with the probabilities pi.

The Lebesgue theorem says that any DF F (x) can be decomposed in an unique way as a sum of three

terms, or that

F (x) = a1Fc(x) + a2Fd(x) + a3Fs(x), ai ≥ 0, a1 + a2 + a3 = 1. (1)

In this equation the three functions Fi(x) are DFs and Fc(x), Fd(x), and Fs(x) are the continuous,

discrete and singular components of F (x) respectively. If a1 = 1, the RV is continuous and its PDF is

the derivative of Fc(x). If a2 = 1, X is a discrete RV. If, finally, if a3 = 1, the RV X is singular. If

one of the coefficients ai is equal to 1, the DF is said to be pure. The spectrum SF of a RV is the set

of the points of increase of its DF F (x) and the spectral measure (SM) is the Lebesgue measure L(SF )

of this set. It is clear that if the SM is zero the continuous part in (1) is zero, or a1 = 0. Then the RV

can be discrete (a3 = 0), singular (a2 = 0), or a mixture of a discrete and a singular parts. Then to

show that a RV is singular it suffices to show that its SM is zero and that there is no discrete part in the

decomposition of its DF.

The fundamental theorem opening all this discussion is the following. Consider a set of RVs wk

independent and identically distributed (IID) with a symmetric Bernoulli distribution. This means that

the w′ks take only two values with the same probabilities 1/2. When this is not otherwise explicitly

indicated the two possible values of each RV wk are ±1. Consider the RV X defined by the series

X =
∞∑
k=0

akwk, (2)

which is convergent provided that |a| < 1. Note that the possible values of wk imply that X is symmetric,

which means that X and −X have the same DF. Furthermore, for the same reasons, changing a in −a

does not change the DF of X . Then we can assume that a ≥ 0. The following results holds:

February 22, 2018 DRAFT



4 INTERNATIONAL JOURNAL OF CONTROL ,

(1) if a < 1/2, X is singular;

(2) if a = 1/2, X is uniformly distributed in [−1/2,+1/2];

(3) if 1/2 < a = 1, X is in general continuous, but can also be singular for values of a belonging to

a set of zero measure.

Point 2 can be shown directly by a simple calculation. Point 3 is without interest for this paper and the

complete set of points of singularity is still a subject of research. Point 1 was shown long time ago in the

framework of infinite products of convolutions (Kershner and Wintner 1935) and discussed more recently

(Peres and Solomyak 1998, Solomyak et al. 2000). Because of its importance for all what follows, we

shall now present a direct proof.

For this purpose consider the partial sum XN and the rest RN defined by

XN =
N∑
k=0

akwk ; RN =
∞∑

k=N+1

akwk = aN+1
∞∑
k=0

akwN+k+1 (3)

The RV XN takes 2N+1 distinct values vNi with the same probability 1/2N+1. The rest RN satisfies

|RN | ≤ aN+1/(1−a), this limit being obtained if all the wN+k+1 are equal to +1 or −1. As a consequence

the SM of RN is smaller than aN+1[2/(1− a)]. Since there are 2N+1 distinct values vNi of XN, the SM

of X is smaller than (2a)N+1[2/′1− a)]). As this is valid for all N , this SM is zero whenever a < 1/2.

Note that this property of the SM is due to the value of a and to the fact that the input wk has only

two possible values. On the other hand the probabilities of these outcomes do not play any role. We shall

see later that this is general.

This result means that there is no continuous part in the decomposition of the DF of X , or that a1 = 0

in (1). Let us see now that there is also no discrete component, or a2 = 0. Indeed suppose that this

is not the case. This would mean that there is a value x0 such that the probability that X = x0 is

positive. But as x0 is a value of X , there exists a set of numbers ηk taking only the values ±1 such that

x0 =
∑∞

k=0 a
kηk. Furthermore, as the values vNi are distinct, this set is unique. Since the RVs wk are

IID and P[wk = ηk] = 1/2, we deduce

P[X = x0] =
∞∏
k=0

P[wk = ηk] = 0. (4)

As a consequence the RV X is singular, or a3 = 1. On the contrary to the property of the SM, it is

clear that this proof uses the fact that the wks are independent and that their two values have the same

probability 1/2. It is simple to see however that the result remains valid if one of the values has the

probability p, except when p = 0 or p = 1, which corresponds to a situation where the input signal wk

is no longer random.

DRAFT February 22, 2018



PICINBONO: SINGULARITY IN SIGNAL THEORY 5

For the discussion that follows it is important to understand that the singularity comes from two

completely distinct properties. The first one depends only on a and on the fact that wk takes only two

values ±1. But it is insufficient to imply singularity and we shall see later that for some particular

probability distributions of the wk the sum X can be discrete or a mixture of discrete and singular parts.

The second properties arises from the whiteness of wk. It is the combination of these two properties

which ensures that X is singular.

Let now present an interpretation of XN by its tree of construction presented in figure 1. For each

value vNi of XN we can associate the value −vNi . It is obtained simply by changing the signs of the wks

appearing in (3). This means, as noted above, that the the RV X is symmetric. As a consequence we can

consider only positive vNi s For the same reason it is always possible to assume that a > 0. With these

assumptions we have v00 = 1. The two positive values of v11 are 1 − a and 1 + a. The construction of

the 8 positive values of X3 appears in the tree of figure 1. Let us now see that the assumption a < 1/2

means that there is no crossing of the branches of the tree. Indeed consider the two branches of the

tree starting from a point vNi . There is no crossing between all the branches starting from this point

if vNi − aN+1 + aN+2/(1 − a) < vNi + aN+1aN+2/(1 − a). This yields a < 1/2. It is clear that the

construction of this tree is similar to the one of Cantor sets. This is why it is sometimes said that the

RV X has a Cantor-type distribution (Wittke et al. 1988).

Singularity is not limited to random geometric series like (2) but can appear with RVs such as

X =
∞∑
k=0

hkwk, (5)

where hk > 0 and the wks have the same properties as in (2). In this case XN and RN of (3) are written

simply by replacing ak by kk. The last equality of (3) does not hold.

It is shown without complete proof in p. 66 of (Lukacs 1970) that if

ρ =
∞∑

k=n+1

hk < hn, ∀n, (6)

then X is singular. In the case where kk = ak, this yields a < 1/2. It is possible to construct a tree as

in figure 1 with the hks instead of the aks. One can then see that the condition (6) implies that there is

no crossing between the branches of the tree, which introduces again a Cantor structure (Picinbono and

Tourneret 2005).

Before leaving this section let us present a short review of some papers from the engineering literature

where the problem of singularity is discussed. The treatment of sequences of Bernoulli RVs appear

frequently in the context of digital communications. The first discussion concerning consequences of

singularity was presented in (Hill and Blanco 1973). The discussion was limited to geometric series like
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(2) and the purpose was to obtain an approximation of the DF for the calculation of the error probability or

the performance of communication systems. Extensions of the same problem to Cantor-type distribution

was presented in (Wittke et al. 1988). In this paper the condition (6) is explicitly used and various

examples of filters satisfying this condition are introduced. However, as indicated by the authors, the

condition hk > 0 used in (5) and introducing the Cantor structure is very restrictive and it is not satisfied

by a large class of filters containing for example terms like ak cos(ωk). The principle of calculation of

the distribution function and of some expectations is then presented and used for the evaluation of the

error probability. A rather more theoretical approach of the same problem is presented in (Smith et al.

1993). Finally other calculations of expectations of singular RVs are discussed in (Campbell et al. 1995).

In this paper the singularity is introduced from some properties of the entropy of the RVs by using an

approach introduced in (Garsia 1962). Similar discussions appear in (Naraghi-Pour et al. 1990, Tourneret

et al. 1994).

The first purpose of the present paper is to show that singularity can be introduced from considerations

of properties of the poles of a linear filter. Furthermore in all these papers it is assumed that the RVs wk

are independent, and this assumption is a corner stone for the introduction of singularity. Then it arises

immediately the question of knowing whether or not it can be relaxed without suppressing singularity.

This question is discussed in the second part of the paper.

III. SINGULARITY AND LINEAR FILTERING

The previous discussion has an immediate application in the case of some signals obtained by linear

filtering and especially auto-regressive signals. A signal xk is said to be auto-regressive of order 1 [AR(1)]

if it is deduced- from a white noise wk by the linear filter defined in the time domain by the first order

recursion xk = axk−1 + wk. It is then defined by the parameter a called the regression coefficient and

by the DF of wk. This correspondoing input-output relationship is

xn =
∞∑
k=0

akwn−k (7)

It is then a discrete time causal filter with the impulse response ak. If the input signal is a white

symmetric Bernoulli signal, it results from the previous discussion that the RVs xk are singular as soon

that |a| < 1/2, and we say that the signal xk is singular. Indeed in order to come at (2) it suffices to

introduce ŵk = wn−k and it is clear that the RVs ŵk are still IID Bernoulli. The simplicity of this signal

explains why it was said previously that singularity is a common phenomenon.

But these results can be extended to a large of other signals. This can be done either by changing the

filter that yields xk from wk or by changing the statistical properties of the input.
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Let us first present some preliminary considerations. We restrict our discussion to dynamical discrete

time filters. These filters are characterized by the facts that they are causal and that their transfer function

H(z) is a rational function of z. Such filters are defined by their poles and their zeros and almost all

the filters used in signal processing are dynamical. We consider further only IIF filters, because RIF

filters cannot introduce singularity. Indeed this property, as seen previously, is due to a series and the

input-output relationships in RIF filters is a simple sum. This means that we exclude from our analysis

transfer functions with only one pole at the origin.

We consider also white discrete-valued inputs signals wk, or sequences of IID random variables taking

only a finite number q of possible values. Let finally introduce a circle called circle of singularity with

center O and with the radius equal to 1/q. This allows to introduce the following theorem.

Theorem 1: Let xk be the output of a dynamical non-RIF filter generated by the input wk. If wk is

a white signal taking only q values and if the poles of the filter lie inside the circle of singularity, then

the output xk is singular.

Proof: As previously it is made in two steps: 1. Proof that the SM is zero, 2. Proof that there is no

discrete component in the DF.

Let F be a dynamical filter defined by its transfer function H(z) or its impulse response hk. Let F ′ be

the filter with the impulse response gk = qkhk. It is obvious that its transfer function is G(z) = h(z/q).

This implies that if the poles of F are zi, those of F ′ are qzi. The assumption that the poles of F are

inside the circle of singularity implies that the poles of F ′ are inside the unit circle, or that F ′ is a

dynamical filter. As such a filter is stable we deduce that
∑∞

k=0 |gk| < ∞. The signal xp is defined by

xp =
∑∞

k=0 hkwp−k and by introducing xp = X and ŵk = wp−k we have X =
∑∞

k=0 hkŵk, where

the ŵks have the same properties as the wks or are IID and take only q values. As indicated above

the finite sum XN and the rest RN are defined in (3) where ak is replaced by hk and wk by ŵk.

Let A be the greatest possible value of wk. We have then |RN | < AρN with ρN =
∑∞

k=N+1 |hk|. As

XN can take only qN values, the SM S of X satisfies S ≤ 2AqN , ρN . This is valid for all N. Then

S ≤ 2A limN→∞(qN , ρN ). But we have

qNρN = qN
∞∑

k=N+1

|hk| <
∞∑

k=N+1

qk|hk| =
∞∑

k=N+1

|gk|, (8)

and the limit is 0 because the filter F’ is stable or
∑∞

k=0 |gk| <∞. This implies that S = 0, or a1 = 0.

The proof that a2 = 0 is exactly the same as previously and comes only from the whiteness of the wks

or from their independence. Another proof of the fact that there is non discrete component is given by

Lukacs (1970, p. 65).
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It is important to note that this theorem yields only a sufficient condition of singularity. However the

condition that the poles lie in the singularity circle is not at all necessary. Examples of this situation can

easily be found.

Note is that the possible values of wk do not play any role in the result. However for a given set of

values it is sometimes possible to extend the domain of singularity by more abstract methods (Peres and

Solomyak 1998). But if we impose the singularity for all the possible sets of values, we come back to

the conditions of Theorem 1.

The final point is that it is in general no longer possible to interpret the result by a tree of construction.

This is especially the case when the dynamical filter has complex poles as for example when the impulse

response is of the kind ak cos(kφ).

IV. THE INFLUENCE OF THE CORRELATION

The assumption of independence, or of whiteness of the input, plays a fundamental role in the previous

results. It is introduced in all the papers indicated in the list of references. This assumption allows us

to show that, even if the SM is zero, there is no discrete component in the DF, of that a2 = 0. Thus

appears immediately the question of knowing whether it is still possible to meet singularity in the case

of colored inputs.

Consider a filter F defined by its impulse response hk and satisfying the conditions of Theorem 1.

The problem of singularity of the output depends on the properties of the RV X given by (5) where

the condition hk > 0 is relaxed. We assume that the wks are symmetric Bernoulli, but not necessarily

independent. The maximum value of X is Xm =
∑∞

k=0 |hk| which is finite because F is stable. Let XN

be the partial sum analogue to (3) and defined by

XN =
N∑
k=0

hkwk. (9)

It takes at the maximum 2N+1 distinct values vNi and we assume that this maximum is reached. This

assumption of distinct values is obviously satisfied when there is no crossing of the branches of the tree

constructed with the hk. This appears with filters satisfying (6), or for the Cantor-type structure. It is

clear that this assumption depends only of the impulse response hk of the filter. It is however satisfied

by a large class of filters which is not discussed here. This means that for any N there is no pair (i, j),

i 6= j such that vNi = vNj . Because of the symmetry of the wks, the RVs X and XN are also symmetric

and this implies that vNi 6= 0. Indeed the symmetry and the existence of a zero value would imply that

the number of distinct values is odd, which is not the case.
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PICINBONO: SINGULARITY IN SIGNAL THEORY 9

To each value vNi we associate a node V N
i in the tree of construction similar to the one appearing in

figure 1. The assumption of distinct values vNi means that the nodes of the tree are single, which means

that each node V N
i is reached by only one path coming from only one node V N−1

j at the step N − 1.

This is obviously satisfied when there is no crossing of the branches of the tree constructed with the

hns. This especially appears if condition (6) is satisfied. However, since hk is not necessarily positive as

in figure 1, it is not possible to restrict this tree to the nodes V N
i corresponding to positive values vNi .

Then we assume that there are 2N+1 distinct nodes satisfying vN0 < vN1 < vN2 .... < vN2N+1−1. Finally we

assume that the nodes V 0
0 and V 0

1 defined by −v00 = v01 = |h0| are generated from an origin node V

which does not correspond to a value of XN .

The fundamental consequence of the assumption of distinct values vNi is that for any N and i there is

a unique path going from V to vNi . Let iNk (i), 0 ≤ k ≤ N − 1, be the indices j characterizing the nodes

V k
j of this path. These nodes can then be written V k

iNk (i).

The problem is to calculate the probabilities

pN (i) = P [XN = vNi ], 0 ≤ i ≤ 2N+1 − 1. (10)

When the wks are IID this probability is 1/2N+1. When they are no longer independent, its calculation

is much more complicated.

For this we introduce the conditional probability

pN (i, j) = pN [XN = vNi |XN−1 = vN−1j ]. (11)

called also transition probability. It has two fundamental properties for the discussion that follows.

The first comes from the fact that, as any probability, it is normalized or satisfies for all j the relation∑2N+1−1
i=0 p(i, j) = 1. However a node V N−1

j of the tree of construction generates only two nodes

V N
i characterized by the indices i+(j) and i−(j) and, according to (9), corresponding to the values

vNi±v
N−1
j ± hNwN . As a consequence for a given j there is only two terms in the previous sum and we

have

pN [i+(j), j] + pN [i−(j), j] = 1 (12)

The second starts from the fact that there is only one V N−1
j at the step N − 1 of the tree generating V N

j

and called j(i) Thus pN (i, j) is zero except when j = j(i), and the only non-zero values of pN (i, j) are

qN (i) = pN [i, j(i)] (13)

for N > 0 and q0(i) = 1/2.
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It results from (11) and from the unicity of the path between V and V N
i that

pN [(XN = vNi ).(XN−1 = vN−1j )] = pN−1(j).pN (i, j)δ[j − j(i)]. (14)

where δ[.] is the Kronecker delta symbol. By a summation on j, which contains only one term, we obtain

pN (i) = pN−1[j(i)]qN (i). (15)

By repeating this at all the nodes of the unique path between V and V N
i characterized by the indices

vNk (i) we obtain

pN (i) =
N∏
k=0

qk[i
N
k (i)]. (16)

When the RVs wks are IID we have of course qk[iNk (i) = 1/2, and we find again that the values vNi

have equal probabilities 1/2N+1.

The probabilities pN (i) of (16) are normalized, or
∑

i pN (i) = 1, where the sum is extended to all

the indices i from 0 to 2N−1. This property is valid for N = 0 because qN (i) = 1/2. Suppose that it is

valid at the step N − 1. Since each node V N−1
l generates only two nodes the result comes from (12).

The relation (16) is the basis for the discussion of the singularity. Indeed if all the pN (i) tend to 0

when N →∞ there is no value v∞i with a finite probability, and this means that the RV cannot have a

discrete component and then is singular. This can be specified by the following theorem.

Theorem 2: Let X be the RV
∑∞

k=0 hkwk, where hk is the impulse response of a dynamical non-RIF

filter F and wk a sequence of Bernoulli RVs. If the poles of F are inside the circle of singularity, if the

possible values vNi of the partial sums XN are distinct and if the transition probabilities qN (i) defined

by (13) satisfy

0 < qN (i) < B < 1, (17)

then the RV X is singular, or a1 = a2 = 0.

Proof: If the poles are inside the circle of singularity, Theorem 1 shows that the SM is zero or a1 = 0.

It remains to show that a2 = 0. This is a direct consequence of (16) and (17) because pN (i) < (1/2)BN ,

which tends to zero when N → 0.

Comments: It is clear that this situation appears for white input because in this case qN (i) = 1/2. The

question that remains concerns the conditions of the theorem on the filter. It is clear from the previous

discussion and that if hk = ak with a < 1/2, these conditions are satisfied. There is a large class of

filters satisfying also these conditions. However the question of characterizing all the dynamical filters

with poles inside the circle of singularity and introducing distinct values vNi remains open. As a matter

of fact it is possible to extend this theorem to the case where these values are not distinct, but this

introduces other conditions that cannot be presented in this paper.
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V. CONCLUSION

When the input of a causal discrete-time exponential linear filter with impulse response ak is a Bernoulli

white noise, the output is singular for a < 1/2. A simple proof of this result was presented and it exhibits

two steps. The condition on the parameter a and the fact that the input is a discrete-valued signal implies

that the SM of the output is zero, which means that there is no continuous component in its DF. The fact

that this DF does not contain a discrete component arises from the whiteness of the input. This result

is not specific to exponential filters. We have shown that singularity can appear in many other situations

and we have established a sufficient condition for singularity by using the positions of the poles of the

filter with respect to the circle of singularity and the whiteness of the input.

This assumption of whiteness can however be partially relaxed without changing the singularity of the

output. Some sufficient conditions ensuring the singularity with colored inputs have been established.

These conditions are obviously satisfied not only by white noise but also by a large class of correlated

signals. It is especially the case of some Markovian signals of finite order. The theoretical analysis also

shows that the output generated by colored inputs can be a mixture of a discrete and a singular distribution.

Computer experiments in order to verify the theoretical results will be discussed in a forthcoming paper.
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