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Abstract— This paper deals with the navigation of a mobile
robot in unknown environment. The robot has to reach a final
target while avoiding obstacles. It is proposed to break the task
complexity by dividing it into a set of basic tasks: Attraction to a
target and obstacle avoidance. Each basic task is accomplished
through the corresponding elementary controller. The activation
of one controller for another is done according to the priority
task. To ensure the overall stability of the control system,
especially at the switch moments, properties of hybrid systems
are used. Hybrid systems allow switching between continuous
states in presence of discrete events. In this paper, it is proposed
to act on the gain of the proposed control law. The aim is to
ensure the convergence of a common Lyapunov function to all
the controllers. This ensures the stability of the overall control.
Simulation results confirm the theoretical study.

I. INTRODUCTION

The control of a mobile robot navigating in a cluttered
environment is a fundamental problem and is receiving
much attention in the robotics community. The purpose
is mainly to ensure to the mobile robot a suitable and a
safe navigation (avoiding a risk of collision, respecting its
structural constraints, etc..)

Some of the literature considers that the robot control
is entirely based on the methods of path planning while
involving the total or partial knowledge of its environment:
Voronoi diagrams and visibility graphs [1] or Artificial
potential fields functions containing all the information on
the target [2] and the robot environment are among these
methods. Another community is interested by the ability
of the robot to achieve the control laws according to its
constraints (structural constraints, jerk-control, etc.). Even
if cognitive methods of path planning and replanning [3],
[4], can also be found here, more reactive methods (based
on sensors information rather than a prior knowledge of the
environment) are more common [5], [6] or [7]. The proposed
work falls into the latter approach.

To ensure the robot’s ability to accomplish a reactive task,
it is proposed to explore behavioral control architectures
originally proposed by Brooks [8]. This kind of architecture
of control breaks the complexity of the overall task by
dividing it into several basic tasks. Each basic task is ac-
complished with its corresponding controllers. There are two
major principles of coordinating them: the action selection
[8] and merging actions [9]. In the first, only one controller
selected from the basic controllers is applied to the robot at
every sample time. In the second case, the control applied

to the robot is a result of merging all or a part of available
controllers in the control architecture.

We note that the action selection is more interesting.
Indeed, one controller is applied to the mobile robot at a
given time. It is then easier to examine individual stability of
each controller. However, random switch from one controller
to another (avoiding obstacles, follow a trajectory, reaching
a target, etc.) may cause instability of the global control law,
even if each individual controller is stable [10].

Stability proof of this kind of control architecture has
been little explored in the literature: in [5], a merging action
node is introduced to the control automaton in order to
smoothly switch between the two controllers. The advantage
of studying each controller alone is then lost, since we have
also to study the merging action node. Controlling a mobile
robot to follow a trajectory in presence of obstacles, based
on the theorem of multiple Lyapunov functions [10] was
established in [11]: A third secondary controller was then
introduced to satisfy this theorem. However, this control
architecture is not suitable for any cluttered environment.

Finding a common Lyapunov function to the basic systems
forming a hybrid system is not a simple task [12]. In this
paper, we propose to deal with this problem by ensuring
overall stability of our control architecture with a single
Lyapunov function. Here we are interested by a mobile
robot reaching a target while avoiding obstacles: this task
is then divided into two basic tasks: attraction to a target
and obstacle avoidance.

The rest of the paper is organized as follows: in next
section, the basic controllers and the proposed control law
are introduced. The proposed control architecture is exposed
in Section III. Simulation results are given in IV. Finally, we
conclude and give some prospects in Section V.

II. ROBOT MODEL AND TASKS TO ACHIEVE

Before introducing attraction to the target controller, ob-
stacle avoidance and the proposed control law, we recall that
the kinematic model of the used unicycle mobile robot used
is expressed by the well-known equations:

ẋ = vcos(θ)
ẏ = vsin(θ)

θ̇ = ω
(1)

With
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Fig. 1. Controller for attraction to target.

• (x, y) are the world coordinates of the robot axle center
Om (cf. Figure 1).

• θ is the world robot orientation.
• v and ω are respectively linear and angular velocities.

A. Attraction to target controller

The robot has to reach a given target of radius RT and
coordinates center (xT , yT ) (cf. Figure 1).

Position errors are defined as

ex = xT − x = d cos(θ̃)

ey = yT − y = d sin(θ̃)
(2)

d is the distance of the robot to the target and can then be
expressed as

d =
√
e2x + e2y (3)

θ̃ is the orientation error, such that : θ̃ ∈]− π, π] is

θ̃ = tan−1(
yc − y

xc − x
)− θ (4)

Its derivative ˙̃
θ is then

˙̃
θ =

˙
(
ey
ex

)/(1 + (
ey
ex

)2)− ω (5)

After computation using the kinematic model
(cf. Equation 1) and equations in (2) we obtain

˙̃
θ = ωr − ω (6)

Where
ωr = v

sin(θ̃)

d

B. Obstacle avoidance controller

The objective of this controller is to control the robot to
avoid obstacles that hinder its attraction to the target. To
focus on the proposed control architecture, this controller is
briefly described. The theoretical details are available in [13].

This controller is based on the limit cycle methods [14],
[15]. The differential equations representing the desired
trajectory of the robot are given by the following system

ẋr = ayr + xr(R
2
c − x2

r − y2r)
ẏr = −axr + xr(R

2
c − x2

r − y2r)
(7)

With a = ±1 according to the optimal direction of avoid-
ance (clockwise or counterclockwise direction). (xr, yr) are

the relative robot coordinates with respect to the obstacle.
The latter is characterized by a circle of radius Rcl =
Ro + Rr + ϵ where: Ro is the obstacle radius, Rr is the
robot radius and ϵ is a safety margin (cf. Figure 2).

The algorithm for obstacle avoidance is summarized in the
following

• The nearest hindering obstacle is detected.
• The direction of avoidance is chosen according to the

sensor information.
• The robot avoids the obstacle while following a limit

cycle which has a radius Rc = Rcl−ξ (attraction phase).
• The robot avoids the obstacle while following a limit

cycle which has a radius Rc = Rcl+ξ (repulsive phase)
(cf. Figure 2). Where ξ is a small value and (ξ ≪ ϵ).
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Fig. 2. Obstacle avoidance controller.

C. The proposed control law

It is interesting to notice that only one control law is
applied to the robot even if its architecture of control contains
two different controllers (attraction to the target and obstacle
avoidance). Only the set points change according to the
applied controller.

The proposed control law is expressed as follows:

v = vmax e−
1
d cos(θ̃) (a)

ω = ωr + k1θ̃ (b)
(8)

where
• vmax is the maximum linear velocity.
• k1 is a constant such that k1 > 0.
• d is the distance robot-target (cf. Equation 3). The robot

reaches the target when 0 < d ≤ RT (cf. Section II-A).
To study the stability of the proposed control law, consider

the Lyapunov function

V =
1

2
θ̃2

The control law is asymptotically stable if V̇ < 0.

V̇ = θ̃
˙̃
θ

By replacing (6) in (8.b), we get

˙̃
θ = −k1θ̃ (9)

and V̇ becomes



V̇ = −k1θ̃
2 < 0 (10)

and V̇ becomes for every θ̃ ̸= 0.
The controller is then asymptotically stable.
Once each basic task and the control law are defined, the

proposed architecture of control which coordinates them is
given in next section.

III. THE PROPOSED ARCHITECTURE OF CONTROL

Even if each controller is individually stable, it is impor-
tant to constrain switch between them to avoid instability of
the overall system, see [10]. Here, it is proposed to generalize
the Lyapunov function previously defined (cf. Section II-
C) for the overall control system. Indeed, it was proved
(cf. Section II-C) that this function is strictly decreasing.
However, the problem arises (as for all hybrid systems) at
switching moments where the set point is discontinuous.
This means that there is an unavoidable jump of the error
θ̃ at these moments. This naturally leads to jumps in the
Lyapunov function after the switch and this jump may lead
to increasing it.

Hence, It is proposed to adjust the gain k1 of the control
law (cf. Equation 8) at the switch moments so that even if the
value of the Lyapunov function increases during the switch,
it returns to its value before switch V (tbs) in a finite time
Tmax. (tbs is the moment just before switch).

In addition, the robot should not navigate more than a dis-
tance dmax when (V (t) > V (tbs)) in order to insure stability
criterion as soon as possible. Also, when the robot performs
the obstacle avoidance task, it is necessary that (dmax < ϵ)
(cf. Section II-B) to avoid collision with the obstacle. Notice
that ϵ is the minimal distance separating the robot from the
obstacle once this one is detected (cf. Section II-B).
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Fig. 3. The proposed architecture of control.

A. Adaptating the control law gain

The adjustment of the gain k1 (cf. Equation 8) is triggered
if one of the following events occurs

• The control of the robot switches from one controller
to another.

• Obstacle avoidance controller switches from an obstacle
to another.

• Obstacle avoidance moves from attraction phase to
repulsive phase (cf. Figure 2).

To insure that V decreases in a finite time Tmax that we
can impose, we have to get

V (ts + Tmax) ≤ V (tbs) (11)

Where ts is the switch moment.
The resolution of the differential equation (9) gives the

orientation error with respect to time θ̃

θ̃(t) = θ̃(ts)e
−k1(t−ts) (12)

Equation (12) allows to easily deduce the Lyapunov func-
tion :

θ̃2(t) = θ̃2(ts)e
−2k1(t−ts) (a)

V (t) = θ̃2(ts)
2 e−2k1(t−ts) (b)

V (t) = V (ts)e
−2k1(t−ts) (c)

(13)

Thus, k1 is expressed as

k1 =
ln(V (t)/V (ts))

−2(t− ts)
(14)

Note that k1 is always positive. Indeed, V (t) ≤ V (ts) (cf.
Equation 13) and then ln( V (t)

V (ts)
) ≤ 0.

The value of k1 allowing to reach V (tbs) in a finite time
Tmax is

k1 =
ln(V (tbs)/V (ts))

−2Tmax
(15)

Note that the restriction on Tmax is necessary especially in
the case of obstacle avoidance. Indeed, the stability criterion
of hybrid systems (cf. Equation 11) must be satisfied in
minimal time. Moreover, the distance achieved during Tmax

has to be (dmax ≤ ϵ) (cf. Section II-B) to avoid collision
with the obstacle. It is easy to see that the minimum
necessary time to achieve this distance is

tmin =
ϵ

vmax

corresponding to a straight robot navigation to the obstacle
center with its maximum linear velocity. (15) becomes then

k1 =
ln(V (tbs)/V (ts))

−2tmin
(16)

Note that k1 is not defined if V (tbs) = 0. The notion of
weak stability [16] allows to define a threshold Vmin such
that if V (t) < Vmin, then the system is (weakly) stable
without comparing V (t) to V (tbs). It means that

k1 =
ln(Vmin/V (ts))

−2tmin
(17)

Thus, k1 is recalculated in this way and replaced in (8.b).
We can then summarize the proposed control architecture

as in figure (Fig. 3).

B. The mechanism of the architecture of control

The block AS (for Action Selection) selects the suitable
controller to apply to the robot according to the environment:
if no obstacle is detected, Attraction to the target task is
accomplished. If there is a discrete event (switching from one
controller to another, transition from attraction to repulsive
phase, etc.), the block transition phase prevents the control
from affecting the robot’s actuators, until the block adapta-
tion gain recalculates the gain k1 as previously highlighted.
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Fig. 4. Variation of the Lyapunov function keeping k1 constant.
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Fig. 5. Robot trajectory in presence of obstacles.

IV. SIMULATION RESULTS

To estimate the relevance of the proposed control archi-
tecture, it is proposed to simulate a mobile robot navigation
to reach a target in presence of obstacles. Simulation is
made twice. In the first case, the used control law has a
constant gain during all the navigation (k1 = 1) (there is no
gain adjustment in the switch moments). Switching control
indicating the active controller can be seen in figure (Fig. 4).

In the second case, the proposed control architecture is
implemented on the robot. In the two cases, the robot
reaches its target while avoiding obstacles. However, by
comparing Tmax1, Tmax2 which are convergence times for
obstacle avoidance controller in figures (Fig. 4 ) and (Fig. 6),
it is noticed that the Lyapunov function of the proposed
architecture of control converges faster than the architecture
with a constant gain. Evolution of the gain k1 is given in
the same figure (Fig. 6). Note that attraction to the target
controller converges fastly in the two cases even if in the
proposed architecture, we can see that it is slightly faster.

V. CONCLUSION

A control architecture based on hybrid systems has been
proposed. With these systems, it is possible to divide the
control architecture into a set of elementary controllers to
examine each controller separately. Even if each individual
controller is stable, global stability is not necessarily guaran-
teed. In this paper, the overall stability was established thanks
to a single Lyapunov function. The proposed idea is to adjust
the gain of the control law in order to accelerate convergence
of the Common Lyapunov Function CLF after each switch.
The simulation results have confirmed the theoretical study.
In future works, it is proposed to introduce the gain k1 as a
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Fig. 6. Variation of the Lyapunov function and the gain k1 with the
proposed architecture of control.

dynamical gain. Thus, once the lyapunov function converges,
it returns to its nominal value without disturbing the control.
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