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Abstract: This paper deals with the problem of mobile robot navigation in cluttered
environment. An adaptive elliptic trajectories are exploited for reactive obstacle avoidance using
only position information and uncertain range data. The used obstacle avoidance strategy is
based on elliptic limit-cycle principle where each obstacle is surrounded by an ellipse. The
ellipse parameters are computed on-line using the sequence of uncertain range data. An on-
line heuristic method combined with the Extended Kalman Filter (EKF) is used to compute
the ellipse parameters. It is demonstrated that this process insures that all range data are
surrounded by the computed ellipse. Moreover, this paper proposes a single control law to the
multi-controller architecture where is embedded the reactive obstacle avoidance algorithm. This
proposed control law is based on Kanayama control law and it is designed to improve the
performance of the controllers. The stability of this control architecture is proved according to
Lyapunov synthesis. Simulations and experiments in different environments were performed to
demonstrate the efficiency and the reliability of the proposed on-line navigation in cluttered
environment.

Keywords: Mobile robots navigation; Multi-controller architecture; Reactive control; Obstacle
detection and avoidance; Telemetry; Parameter identification; Extend Kalman Filter.

1. INTRODUCTION

An important issue for successful mobile robot navigation
is obstacle avoidance. This function permits to prevent
robot collision and insure thus robot safety. One part of
the literature considers that the robot control is entirely
based on path planning methods while involving the to-
tal knowledge of its environment. Voronoi diagrams and
visibility graphs [1] or artificial potential fields functions
[2] are among these methods. All obstacles configurations
are taken thus into account in the planning step. In these
methods, it is possible also to deal with dynamic envi-
ronment while regularly replanning the robot’s path [3],
[4]. However, planning and replanning require a significant
computational time and complexity.

The other community is concentrated on reactive methods
to deal with the obstacle avoidance, where only local
sensors information is used rather than a prior knowledge
of the environment [5], [6], [7]. In [8], the author proposes a
real-time obstacle avoidance approach based on the princi-
ple of artificial potential fields. In this work, it is assumed
that the robot actions are guided by the sum of attractive
and repulsive fields. In [9] author extends Khatib’s ap-
proach while proposing specific schema motors for mobile
robots navigation. Another interesting approach, based on
a reflex behavior reaction, uses the Deformable Virtual
Zone (DVZ) concept, in which a robot movement depends
on risk zone surrounding the robot [10]. If an obstacle
is detected, it will deform the DVZ and the approach
consists of minimizing this deformation by modifying the

control vector. This method deals with any obstacle shape,
however, it suffers as schema motors from local minima
problem. In general, reactive methods do not require high
computational complexities since robot’s actions must be
given in real-time according to the perception [11].

Many other approaches can be founded in the literature,
such as obstacles avoidance using vortex fields [12] and
orbital trajectories [13]. The last approach is build on
circular limit-cycle differential equations in [13], [14] or
[15]. The circular limit-cycles are more stable than the
vortex fields and always converge to periodic orbit. This
work uses elliptical trajectories that was presented in [16].
Furthermore, this work proposed to use only one control
law for the multi-controller architecture [17]. This control
law is based on [18] and adapted to this obstacle avoidance
algorithm. Therefore, more generic and efficient obstacle
avoidance is performed and this even with different obsta-
cle shapes, for instance long walls. In fact, an ellipse fits
better this kind of obstacles than a circle (cf. Fig. 2).

Different approaches have been proposed in the literature
to enclose the data with an ellipse. In [19], the author
proposed a technique to obtain the smallest enclosing
ellipse by a set of data using primitive operation with
linear increasing time with regards to data dimension. In
[20], the author presents a summary of the methods to fit
a set of data with an ellipse. The presented methods are
the least square fitting based on algebraic and Euclidean
distance, Kalman filtering method and robust estimation.
In this work, the used method is based on a simple and



efficient heuristic approach based on Euclidean distance
estimation [21].

The Extended Kalman Filter has important applications
in different fields [22], [23], [24], [25]. In [26], the author
presents a method to fit ellipses using bias corrected
Kalman filter. This method uses the perpendicular dis-
tance to the ellipse to find optimal fits to short sections
of ellipse data. In this work, the EKF is used to enhance
the ellipse parameters obtained from uncertain data of any
obstacle shapes [27].

The rest of the paper is organized as follows: in the next
section, the task of navigation using elliptic trajectories
is presented. In section 3, the details of the control archi-
tecture are introduced. It presents the model of the con-
sidered robot and the implemented elementary controllers.
Section 4 gives in details the proposed obstacle avoidance
algorithm. Section 5 presents the method for enclosing the
uncertain range data with an ellipse. Simulation results
are given in section 6. Finally, conclusion and some future
works are given in section 7.

2. NAVIGATION IN CLUTTERED ENVIRONMENT

Before to give details about the robot navigation, let us
assume first that the obstacle O in the environment can
be surrounded by elliptical box (cf. Fig. 1). The elliptical
shape is represented by its Cartesian form:

(x− h)
2

a2
+

(y − k)
2

b2
+ c(x− h)(y − k) = 1 (1)

where (h, k) ∈ R2 are the ellipse center coordinates and
a, b ∈ R+ are the semi-axes (a ≥ b). c ∈ R, permits to give
the ellipse orientation ΩE = 0.5 arctan(c/(b−2 − a−2)) (cf.
Fig. 1).

Ellipse boxes rather than circles are exploited to obtain a
generic and flexible means to surround and fit accurately
different kind of obstacle shapes [16]. Among examples of
shapes which can be properly fitted by an ellipse instead of
a circle is a wall (or in general, longitudinal shapes). Figure
2 shows this kind of configuration. In fact if we would like
to surround this wall by a circle, it will have a large radius
which will induce more robot path distance to avoid safely
the obstacle [13] (cf. Fig. 2(a)). Figure 2(b) shows that the
ellipse fits better the dimension of the obstacle. This figure
shows also uncertain perceptions taken by range sensor on
the left side of the wall.

Fig. 1. The obstacle and robot representation.
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Fig. 2. Interpolated wall using a circle and ellipse shapes.

In section 5, it will be shown how the ellipse parameters
can be efficiently computed from range data. Let us also
represent the robot and the target by circles CR and CT of
radius RR and RT respectively (cf. Fig. 1). One can define:

(1) DRO as the minimal distance between the robot and
the obstacle “O”.

(2) Ellipse of influence (Ef ) as an ellipse that has the
same center (h, k) and tilt angle ΩE as the ellipse
which surround the obstacle (1) while its major and
minor semi-axes, alc and blc, are defined as follows{

alc = a+RR + Margin
blc = b+RR + Margin

where Margin represents safety tolerances encapsul-
ing: perception uncertainties, control reliability and
accuracy. This definition is similar to the configura-
tion space for global path planing, nevertheless, in
this paper it is used to focus on the reactive planning
approach, i.e, the ellipse of influence is obtained by
the robot in real time using the detected obstacle.

(3) lf as the line passing through the center of CR and
CT . As we will see in the sequel, our method only
needs to know if it exists intersection points between
lf and Ef (cf. Fig. 1).

The objective of the navigation task in cluttered environ-
ment is to lead a mobile robot towards a specific target in
an unstructured environment. This task must be achieved
while avoiding static and dynamic obstacles O which can
have different shapes.

3. CONTROL ARCHITECTURE

The control structure is based on [17] (cf. Fig. 3). It aims
to manage the interactions between elementary controllers
while guaranteeing the stability of the overall control
as proposed in [7]. Its objective is also to insure safe,
smooth and fast robot navigation. The specific blocks that
compose the global controller are detailed below.

Fig. 3. Control architecture for mobile robot navigation.



This control architecture uses a hierarchical action selec-
tion mechanism to manage the switches between the con-
trollers, according to environment perception. The mech-
anism activates the obstacle avoidance controller as soon
as it exists at least one obstacle which can obstruct the
future robot movement toward its target (cf. Algorithm 1)
[15]. This allows to anticipate the activation of obstacle
avoidance controller unlike what is proposed in [28], [29],
which wait until the robot is in the immediate vicinity
of the obstacle (i.e. DRO ≤ R “a certain radius value”).
Algorithm 1 allows thus to decrease the time to reach the
target, especially in very cluttered environments.

if It exists at least one constrained obstacle
{i.e., it exists at least one intersect point between the line
“lf” and the ellipse of influence (cf. Fig. 1) } then

Activate Obstacle avoidance controller;
else

Activate Attraction to the target controller;
end

Algorithm 1: Hierarchical action selection

3.1 Elementary controllers

Each controller composing the control architecture (cf.
Fig. 3) is characterized by a stable nominal law. In
this work, only one control law synthesized according to
Lyapunov theorem is used to improve the performance of
the two different controllers (cf. Subsection 3.2). Before
describing each elementary controller, let us briefly recall
the kinematic model of an unicycle robot (cf. Fig. 4)

 ẋẏ
θ̇

 =

[
cos(θ) 0
sin(θ) 0

0 1

] [
v
ω

]
(2)

where x, y, θ are configuration state of the unicycle at
the point Om, v and ω are respectively, the linear and the
angular velocities of the robot at the point Om.

Attraction to the target controller This controller
guides the robot toward the target which is represented
by a circle CT of center (xT , yT ) and radius RT (cf. Fig.
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Fig. 4. Robot and target configuration in a Cartesian
reference frame.

4). It is based on the configuration of the robot to the
target, represented by ex, ey and eθ in Fig. 4. Since we
consider a circular target with radius RT , therefore, to
guarantee that the center of robot axis reaches the target
with asymptotical convergence, d must be smaller than

RT , where d =
√
e2x + e2y (cf. Fig. 4).

The position and orientation errors w.r.t local reference
frame Xm − Ym are:{

ex = cos(θ)(xT − x) + sin(θ)(yT − y)
ey = − sin(θ)(xT − x) + cos(θ)(yT − y)
eθ = θd − θ

(3)

where θd is the orientation of the line passing through the
robot and the target. Further, θ̇d = ωr is given by:

ωr = v sin(eθ)/d (4)

where v is the linear velocity of the robot [17].

Obstacle avoidance controller To perform the ob-
stacle avoidance behavior, the robot needs to follow ac-
curately limit-cycle trajectories as detailed in [13], [15].
In these works, the authors use a circular limit-cycle
characterized by a circle of influence of radius RI . In
[16], it is proposed to extend this methodology for more
flexible limit-cycle shape (an ellipse). The main ideas of
this controller are detailed below (cf. Fig. 6).

The differential equations giving elliptic limit-cycles are:

ẋs = mys + xs(1− x2s/alc2 − y2s/blc
2 − cxsys) (5)

ẏs =−mxs + ys(1− x2s/alc2 − y2s/blc
2 − cxsys) (6)

with m = ±1 according to the direction of avoidance
(clockwise or counter-clockwise, cf. Fig. 5). (xs, ys) cor-
responds to the position of the robot according to the
center of the ellipse; alc and blc characterize respectively
the major and minor elliptic semi-axes (cf. Fig. 1); c if not
equal to 0 gives the ΩE ellipse angle.

In this controller, the desired position is considered as the
same robot position, i.e. ex = 0 and ey = 0 in (3) (cf. Fig.
6). The desired robot orientation is given by the differential
equation of the limit-cycle (5) and (6) as (cf. Fig. 6):

θd = arctg

(
ẏs
ẋs

)
(7)

Fig. 5. Clockwise (m = 1) and counter-clockwise (m = −1)
shape for the used elliptic limit-cycles.
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3.2 Control law

The proposed control law is based on [18] and adapted to
the multi-controller architecture. In [30], the Kanayama
control law is used to track a reference trajectory. In
this work, the proposed control law is adapted to track
a reference trajectory (Obstacle avoidance controller) and
to reach the target (Attraction to the target controller).
It provides the desired velocities for these controllers (cf.
Sub-subsections 3.1.1 and 3.1.2). Further, this control law
allows to improve the performance of these controllers (cf.
Section 6).

Consider that the error w.r.t local frame of the robot
(ex, ey, eθ) between the desired position (xd, yd, θd) and the
actual position of the robot (x, y, θ) has the following form
(cf. Fig. 4 and 6):{

ex = cos(θ)(xd − x) + sin(θ)(yd − y)
ey = − sin(θ)(xd − x) + cos(θ)(yd − y)
eθ = θd − θ

(8)

The derivatives of the errors can be computed using (2)
and (8) (cf. [18]):{

ėx = −v + eyw +vr cos(eθ)
ėy = −exw +vr sin(eθ)
ėθ = −ω + ωr

(9)

Hence, the desired linear (v) and angular (ω) velocities of
the robot that make the errors converge to zero are given
by:

v = vr cos(eθ) +Kxex (10)

ω = ωr +Kyvrey +Kθe
(ey/RR)2 sin(eθ) (11)

where RR is the radius of the robot. This work proposes
a modification in the Kanayama control law, the term

e(ey/RR)2 is added in the angular velocity (11). The ob-
jective of this term is to improve the convergence of the
error for the case where vr = 0 (Attraction to the target

controller) (cf. Section 6). The form of the term e(ey/RR)2

is chosen to improve the convergence when ey ≥ RR, and
when ey ≈ 0, then the angular velocity depends only on eθ.
Let us consider the following Lyapunov function V0 [18]:

V0 =
1

2

(
e2x + e2y

)
+

1− cos(eθ)

Ky
(12)

Therefore, to guarantee the stability of the controller, V̇0
must be negative definite. By computing V̇0 using (9), (10)
and (11), we obtain:

V̇0 = exėx + ey ėy +
sin(eθ)ėθ
Ky

(13)

= ex (−Kxex + eyw) + ey (−exw + vr sin(eθ))

+
sin(eθ)

Ky

(
−Kyvrey −Kθe

(ey/RR)2 sin(eθ)
)

= −Kxe
2
x −

Kθe
(ey/RR)2 sin2(eθ)

Ky
≤ 0

where Kx,Ky and Kθ are positive constants to be defined
by the designer. vr = 0 when the attraction to the target
controller is activated, and if the obstacle avoidance is
activated, vr and ωr are computed as:

vr =
√

(ẋd)2 + (ẏd)2 and ωr = θ̇d. (14)

It is interesting to notice that only one control law is
applied to the robot even if the control architecture con-
tains two different controllers. Only the set points change
according to the applied controller such as in [17].

4. REACTIVE OBSTACLE AVOIDANCE
ALGORITHM

In what follows, the overall methodology to achieve the
proposed obstacle avoidance algorithm will be given [16].
The algorithm is developed according to stimuli-response
principle. To implement this kind of behavior it is impor-
tant to:

• detect the obstacle to avoid (cf. Section 2),
• give the direction of the avoidance (clockwise or

counter-clockwise),
• define an escape criterion which defines if the obstacle

is completely avoided or not yet.

All these different steps must be followed and applied
while guaranteeing that: the robot trajectory is safe,
smooth and avoid undesirable situations as deadlocks
or local minima; and that the stability of the applied
control law is guaranteed (cf. Subsection 3.1). In this
paper the obstacle observation is obtained in real time,
the robot does not have global information about the
hinder obstacle nor the ellipse that encloses it. The robot
discovers thus at each sample time the shape of the
obstacle and increase progressively the knowledge of the
enclosing ellipse to obtain a smooth elliptic trajectory. The
global information of the obstacle is not related to the used
reactive navigation. The necessary steps to carry out the
obstacle avoidance algorithm (2) are given below:

(1) For each sample time, obtain the distance DROi for
each potentially disturbing obstacle “i” (cf. Fig. 1).

(2) Among the set of disturbing obstacles (which can
constrain the robot to reach the target), choose the
closer to the robot (the smallest DROi (cf. Fig.
1)). This specific obstacle has the following features:
(xobst, yobst) center position and 2a as major axis and
2b as minor axis.

(3) After the determination of the closest constrained
obstacle, we need to obtain four specific areas (cf.
Fig. 7) which give the robot behavior: clockwise or
counter-clockwise obstacle avoidance ; repulsive or
attractive phase (cf. Algorithm 2). To distinguish
between these 4 areas we need to:



• define a specific reference frame which has the
following features (cf. Fig. 7):
· the XO axis connects the center of the obsta-

cle (xobst, yobst) to the center of the target.
This axis is oriented towards the target,
· the YO axis is perpendicular to the XO axis

and it is oriented while following trigonomet-
ric convention.

• apply the reference frame change of the position
robot coordinate (x, y)A (given in absolute refer-
ence frame) towards the reference frame linked
to the obstacle (x, y)O. The transformation is
achieved while using the following homogeneous
transformation: x

y
0
1


O

=

 cosα − sinα 0 xobst
sinα cosα 0 yobst

0 0 1 0
0 0 0 1


−1 x

y
0
1


A

(15)

Once all necessary perceptions are obtained, one can
apply the reactive obstacle avoidance strategy given by
Algorithm 2. To obtain the robot set points, it is necessary
to obtain the value of alc and blc (cf. Section 2) of the
orbital ellipse and the direction “clockwise or counter-
clockwise” of the limit-cycle to follow. The position (xO,
yO) gives the configuration (x, y) of the robot according
to obstacle reference frame. The definition of this specific
reference frame provides an accurate means to the robot
to know what it must do. In fact, the sign of xO gives
the kind of behavior which must be taken by the robot
(attraction or repulsion).

In repulsive phase, the limit-cycle takes an increase value
of a′lc and b′lc values to guarantee the trajectory smooth-
ness. The sign of yO gives the right direction to avoid the
obstacle. In fact, if yO ≥ 0 then apply clockwise limit-
cycle direction else apply counter-clockwise direction. This
choice permits to optimize the length of robot trajectory
to avoid obstacles. Nevertheless, this direction is forced to
the direction taken just before if the obstacle avoidance
controller was already active at (t − δT ) instant and this
to avoid local minima and dead-end [15].

In algorithm 2, some conflicting situations which are due to
local minima or dead ends have to be managed to improve
the performance. These specific local and reactive rules are
detailed in [15].

Fig. 7. The 4 specific areas surrounding the obstacle to
avoid [16].

Input: All the features of the closest constrained
obstacle.

Output: Features of the limit-cycle trajectory to follow.

// I) Obtaining the values of a′lc and b′lc of the
limit-cycle to follow

1 if xO ≤ 0 then

2

{
a′lc = alc − ξ
b′lc = blc − ξ

(Attractive phase)

3 {with ξ a small constant value as ξ � Margin which
guarantees that the robot do not navigate very
closely to the obstacle (cf. Section 2).}

4 else
5 {Escape criterion: go out of the obstacle ellipse of

influence with smooth way}

6

{
a′lc = a′lc + ξ

b′lc = b′lc + ξ
(Repulsive phase)

7 end

// II) Obtaining the limit-cycle direction
8 if obstacle avoidance controller was active at (t− δT )

instant then
9 Apply the same direction already used, equation (5)

or (6) is thus applied.
10 {This will permit to avoid oscillations and several

conflicting situations [15]}
11 else
12 {The limit-cycle set-point is given by:}

ẋ = sign(yO)y + x(1− x2/a′lc
2 − y2/b′lc

2 − cxy)

ẏ = −sign(yO)x+ y(1− x2/a′lc
2 − y2/b′lc

2 − cxy)
13 end

Algorithm 2: Obstacle avoidance algorithm [16].

5. ENCLOSING UNCERTAIN RANGE DATA WITH
AN ELLIPSE

During the robot movement, it is important to detect
on-line and to avoid the hinder obstacle. At this aim, the
observed noisy range data are surrounded with the closest
ellipse to apply elliptic limit-cycle approach.

For this purpose, let us consider a set of n points in
R2 with coordinates Pi(xi, yi) (cf. Fig. 8). These points
are computed from the data range of the robot, and the
outliers are erased while using the Mahalanobis distance
[31]. In this section, it will be shown how to compute the

Fig. 8. Range sensor model and data set of n points.



ellipse that encloses all points. An important condition in
this work is that the method need to start at least with
three different points.

This paper considers that the robot detects one obstacle
at a time. The segmentation method of the set of points
will be used in future works to the detection of more than
one obstacle at a time and for big obstacles.

Before describing the proposed method to obtain the
enclosing ellipse, let us present the model of the perceived
data from range sensor in the following subsection.

5.1 Range sensor model

The position of the obstacle with respect to the range
sensor in R2 can be denoted by the polar coordinates
(DLi, βi), where DLi is the distance between the center
of the robot and the impact point of the sensor and βi is
the orientation with respect to the mobile reference frame
(cf. Fig 8).

The sensor specifications and the real behavior of the
sensor have significant differences [32], [33]. In this work,
we focus on the accuracy of the range sensor, because we
have observed that short range readings are more accurate
than the long range ones. In [33] it is observed how the
mean and the standard deviation of the errors between
the real and the measured range tend to increase with
distance.

The reading range data provided by the range sensor at
each time step is modeled by the Normal distribution

Dt
Li = N(D̂t

Li, P
t
Li), where D̂t

Li = [DLi, 0]
T

is the mean
vector, DL is the range measure of the sensor and P tLi =

diag(
[
σ2
DLi

, σ2
βi

]
) is the covariance that is defined as the

model of the range and angular uncertainties. The angular
uncertainties are related to the sonar opening βi and the
range uncertainty is given according to the accuracy of
the range sensor (cf. Fig. 8) [33]. The representation of
the range data in Cartesian frame is given by:

zi = z′i + vi (16)

where zi = [xi, yi]
T is the point computed using the noisy

range data, z′i is the point computed using the range data
without noise, the Gaussian noise vi has E[vi] = 0 and
E[viv

T
i ] = Rvi . The covariance Rvi is given by:

Rvi =

[
cos(βi) −DLi sin(βi)
sin(βi) DLi cos(βi)

] [
σ2
DLi

0
0 σ2

βi

] [
.
]T

(17)

The following sub-sections will present the proposed meth-
ods to enclose the data with an ellipse. Subsection 5.2
permits to address the problem of enclosing ellipse and
subsection 5.3 is the extension of the proposed method to
deal with uncertainty data and to enhance the identifica-
tion of the ellipse parameters to get round the obstacle.

5.2 Heuristic approach

In [21], a review of different methods to enclosing an
ellipse is given, an heuristic method was proposed and
compared to the existing approaches (based on least square
or covariance). This method permits to enclose all range

data and to obtain a smooth changes of the ellipse param-
eters, different from least square and covariance method
that could have point outside of the obtained ellipse and
abrupt change of parameters (cf. Fig. 9(a)). In this work,
the heuristic approach is given in more details with the
mathematical proof that the obtained ellipse parameters
encloses all points without regard of the obstacle shape.
This approach uses the distance between the points to
obtain one of the axes.

Lemma 1. Consider a set of n points (PN ) in R2 with
coordinates Pi(xi, yi) with i = 1, . . . , n. The parameters
of the ellipse that enclose all points are computed as follow:

(1) Compute the distance between all the points dij =
‖pi−pj‖ with i, j = 1, . . . , n; and select the maximum
distance dmax. This dmax is not decreasing if more
data points are added.

(2) The ellipse center CO is the middle point between the
points with maximum distances and the first semi-
axis is a1 = dmax/2 (cf. Fig 9(b)).

(3) Transform the n points to new coordinates system
X ′ − Y ′ using (18) to obtain the second ellipse semi-
axis a2.

P′i =

[
cos(Ω) sin(Ω)
− sin(Ω) cos(Ω)

]
(Pi −CO) (18)

where Ω is the orientation of the line between the two
points that have the maximum distance. P′i(x

′
i, y
′
i)

are the coordinates in the new system, Pi(xi, yi) are
the coordinates in the initial system and CO are the
coordinates of the ellipse center in the initial system.

(4) Compute the distance of P′i to the origin O′, if the
value of |y′i| of the points is greater than a threshold
ε > 0. This threshold is used to eliminate the points
that are colinear with the two points that have the
maximum distance (first axis) and the points in the
perpendicular line to first axis (which could produce
a large axis).

(5) Choose a2 = max {bi}, where bi is the computed
semi-axis using P′i in (1).

(6) Finally, the semi-axes of the ellipse (1), are obtained:

a = max {a1, a2}
b = min {a1, a2} (19)

and, the orientation of the ellipse is ΩE = Ω + Π/2 if
a2 is the major axis, otherwise ΩE = Ω.

Proof 1. To proof that this heuristic method enclose all
the points, we assume that a data point pi ∈ PN , PN

is the set of n points used to compute the parameters of
the ellipse. First, if pi /∈ Ellipse then dij = ‖pi − pj‖ with
pj ∈ PN − {pi} could be dij ≥ dmax, however, the first
axis of ellipse is the maximum distance between all points,
then, dij is new first axis and pi ∈ Ellipse. Therefore, if
pi /∈ Ellipse then dij ≤ dmax, now, we know that the
second axis satisfy b2i ≤ b2, using (18) and (1), we obtain:

b2i ≤ b2

y′2i
1− x′2i /a2

≤ b2

x′2i /a
2 + y′2i /b

2 ≤ 1 (20)

Therefore, pi satisfy the ellipse equation (pi ∈ Ellipse)
with i, j = 1, . . . , n.
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Fig. 9. Obtained ellipses using Least Square (fLS), Covari-
ance (fcov) and Heuristic (fheur) approaches.

The heuristic approach is an efficient method to enclose
data with an ellipse. It produces a smooth change of the
ellipse parameters and the average time of computation is
O(n log(n)), where n is the size of the data, however, this
method does not consider neither uncertain data nor the
sequentiality of obtained data which characterize the real
experiments. The following subsection deal with this issue.

5.3 Optimal parameters identification using EKF

Kalman Filter is used in many fields as a general method
for integrating noisy measurements [24] and [25]. In this
paper, the Kalman Filter is used to improve the obtained
ellipse parameters. The general conic equation is given by:

f(x, y) = Ax2 + 2Bxy+Cy2 + 2Dx+ 2Ey+ F = 0 (21)

According to the real constants A, B, C, D, E anf F , we
obtain the analytic equation of the different kind of conics
(parabola, ellipse and hyperbole). An ellipse is defined if
the conic parameters (21) satisfy the following condition
B2 −AC < 0.

The problem is to fit a conic section (21) with a set of n
points {pi} = {(xi, yi)} | i = 1, . . . , n. This set of points
are selected using (21) with the ellipse parameters from
the heuristic method. These points satisfy the following
condition |f(xi, yi)| < δ, and δ ∈ R+ is close to zero,
i.e., these points are close to the boundary of the obtained
ellipse, other points are not considered for this method. As
the data are noisy, it is unlikely to find a set of parameters
(A,B,C,D,E, F ) (except for the trivial solution A = B =
C = D = E = F = 0) such that f(xi, yi) = 0. This
method is applied to the conic fitting.

The state vector is defined by the conic parameters as
x = [A,B,C,D,E, F ]T and the measurement vector by
the point as zi = [xi, yi]

T , a linear dynamic system (in
discrete-time form) can be described by

xi+1 = Fixi + wi (22)

zi = Hixi + vi (23)

Where i = 0, 1, . . . , n. The matrix state Fi is the identity
matrix of order 6 (I6), wi is the vector of random distur-
bance of the state and is usually modeled as white noise:

E[wi] = 0, E[wiw
T
i ] = Qi

The measurement equation (23) is nonlinear in function of
the ideal measurement z′i (is a polynomial equation that

does not satisfy the superposition principle [34]) and it is
described by the observation function:

fi(z
′
i,xi) = x′2i A+2x′iy

′
iB+y′2i C+2x′iD+2y′iE+F (24)

The real measurement zi is assumed to be corrupted by
additive noise vi. The model of noise vi is described in
subsection 5.1. We expand fi(z

′
i,xi) into a Taylor series

about (zi, x̂i|i−1):

fi(z
′
i,xi) = fi(zi, x̂i|i−1) +

∂fi(zi, x̂i|i−1)

∂z′i
(z′i − zi)

+
∂fi(zi, x̂i|i−1)

∂xi
(xi − x̂i|i−1) +O((z′i − zi)

2)

+ O((xi − x̂i|i−1)2) (25)

By ignoring the second order terms, we get a linearized
measurement equation:

yi = Mixi + ξi (26)

where yi is the new measurement vector, ξi is the noise
vector of the new measurement, and Mi is the linearized
transformation matrix. They are given by

Mi =
∂fi(zi, x̂i|i−1)

∂xi

yi =−fi(zi, x̂i|i−1) +
∂fi(zi, x̂i|i−1)

∂xi
x̂i|i−1

ξi =
∂fi(zi, x̂i|i−1)

∂z′i
(z′i − zi)

Clearly, we have E[ξi] = 0, and E[ξiξ
T
i ] = Rξi . We consider

then there is no correlation between the noise process of
the system and the observation. The derivative of fi(zi,x)
with respect to x and with respect to zi, are given by

∂fi(zi,x)

∂x
= [x2i , 2xiyi, y

2
i , 2xi, 2yi, 1] (27)

∂fi(zi,x)

∂zi
= 2[xiA+ yiB +D, yiC + xiB + E] (28)

The Extended Kalman Filter (EKF) is then used while
knowing that output equation (23) is obtained from the
nonlinear measurement equation (24). EKF is described
by the well known following steps:

• Initialization: Π0|0 = Π0, x̂0|0 = E[x0]
• Prediction of states: x̂i|i−1 = Fi−1x̂i−1
• Prediction of the state covariance matrix:

Πi|i−1 = Fi−1Πi−1F
T
i−1 + Qi−1

• Kalman gain matrix:

Ki = Πi|i−1H
T
i−1

(
Hi−1Πi|i−1H

T
i−1 + Rv

)−1
• Update of the state estimation:

x̂i = x̂i|i−1 + Ki(zi −Hix̂i|i−1)

• Update of the covariance matrix of states:

Πi = (I−KiHi)Πi|i−1

Note that the Kalman filtering technique is usually ap-
plied to a temporal sequence. Here, it is applied to a
spatio-temporal sequence. This spatio-temporal sequence
is composed of data from each sensor at each time. Due



to its recursive nature, it is more suitable to problems
where the measurements are available in a serial manner.
Otherwise, if all measurements are available or could be
made available (with no serious overhead) at the same
time, it is advantageous to applied the Kalman Filter in a
single joint evaluation (all the spatial sequence at the same
time). Indeed, the Kalman filtering technique is equivalent
to the least-squares technique only if the system is linear.
For nonlinear problems, the EKF will yield different results
depending on the order of processing the measurements
one after the other, and may run the risk of being trapped
into a local minimum [20].

6. SIMULATIONS RESULTS

To demonstrate the efficiency of the proposed control
law in the multi-controller architecture and the on-line
obstacle detection method to enclose the obstacle with an
ellipse and avoid it, two statistical survey was made. In
this paper, a mobile robot with a radius of RR = 0.065 m
and six infrared range sensors with the maximum detected
range equal to DLmax = 0.30 m is considered (cf. Fig.
8). These sensors are in the front of the robot, with 30◦

between each pairs of sensor (cf. Fig. 10). The accuracy of
the used sensors based on the datasheet is around 10% of
DLmax. In the simulation, we consider uncertainty range
with maximum value of 20% of DLmax ensuring thus to
take the worst range value.

For the control law (10) and (11), the gains are defined as
Kx = 0.8, Ky = 5 and Kθ = 3. The values of these gains
were chosen heuristically to obtain a smooth trajectory,
fast response and velocity but within limit velocities of
the mobile robot, which are vmax = 0.4 m/s and wmax =
3 rad/s. The sample time is 0.01 s. For each simulation,
the robot starts at the same configuration and reach the
same final configuration. The heuristic method does not
start until to have enough range data (ndata ≥ 3).

The first survey is used to compare the performance of
the reactive obstacle avoidance between proposed control
law and Kanayama control law in the multi-controller
architecture presented above to obtain safe and smooth
navigation (cf. Subsection 3.1).

Fig. 10. Robot trajectory using the two different control
laws for the multi-controller architecture.

Figure 10 shows the trajectory of the robot for two differ-
ent control laws in a specific environment where the pa-
rameters of the ellipse that enclose the obstacle are known.
It is observed that the trajectory with the Kanayama
control (red dotted line) is closer to the obstacle that the
trajectory with the proposed control law (green continuous
line) in the obstacle avoidance controller. Furthermore,
in the attraction to the target controller, the trajectory
with the proposed control law is shorter than the other
trajectory. This figure shows that the proposed control law
improve the trajectory safety to reach the target.

Figure 11 shows the position and orientation errors for the
two different control laws. It is observed that the proposed
control law improve the converge in the attraction to the
target controller. Further, the convergence of ex is close
between the two different control laws, that is because the
modification to obtain the proposed control law is only in
the angular velocity (more related to ey and eθ).

Otherwise, Fig. 12 shows the progress value of Lyapunov
function V0 (12) attributed to the control law (cf. Fig. 3)
when the navigation is performed. This function decreases
asymptotically to the equilibrium point. It is observed
that Lyapunov function of the proposed control law has
less value in the switch between controller and faster
convergence then that the Kanayama control law.

Fig. 11. Position and orientation errors.

Fig. 12. Evolution of Lyapunov functions for the two
different control laws during the robot navigation.



The second survey is used to make a focus around the
proposed heuristic method and Kalman filter which gives
satisfactory results and this while making an on-line nav-
igation in cluttered environment (cf. Fig. 13).

Figure 13 shows the trajectory of the robot in the environ-
ment with three obstacles. Moreover, the red points repre-
sent the range data from the sensor along all the trajectory.
The range data buffer used to compute the ellipse pa-
rameters is deleted for each new discovered obstacle. This
figure shows that the obtained ellipse using the heuristic
method enclose all points such as was demonstrated above.
Further, it is observed that the robot avoid the obstacles
with a smooth trajectory. This trajectory was obtained
while using the on-line obstacle avoidance algorithm [16]
with the proposed control law which takes its parameters
(elliptical limit-cycle to follows) from the combination of
the proposed heuristic approach and EKF.

Figure 14 shows the minimum distance between the ef-
fective elliptical obstacles (obtained while knowing all the
range data, without noise, which surround the obstacle)
and the position of the robot along of the elliptical trajec-
tory using only the heuristic method (red dotted line), and
the combination of heuristic method and EKF (green con-
tinuous line). This figure shows that the robot does never

Fig. 13. Robot trajectory using the heuristic and EKF
approach to enclosing the obstacle.

Fig. 14. Distance from the robot to the elliptical obstacles.

(a) (b) (c) (d)

Fig. 15. Top view of the robot trajectory in the platform
and observed uncertain range data from the robot.

collide with any obstacles when the proposed control law is
used, therefore, the proposed on-line approach is efficient
to deal with cluttered and unstructured environment.

Experimentations are implemented using Kheperar III
robot (cf. Fig. 15), its kinematic model is given by (2).
As a very first tests, navigation is achieved on a platform
equipped with a camera in the top which gives positions
and orientations of the robots and the obstacles to avoid.
The navigation is achieved on a platform using the local
infrared sensors of the robot. This test demonstrate the ef-
ficiency of the proposed robust enclosing ellipse approach.
The real trajectory of the robot avoiding two obstacles is
given in figure 15. It can be seen that the robot success-
fully converges to its target after avoiding two obstacles
(surrounded with two ellipses of influence).

7. CONCLUSION

This paper proposes an on-line and adaptive elliptic tra-
jectory to perform smooth and safe mobile robot naviga-
tion with reactive way. These trajectories use limit-cycle
principle to obtain generic and flexible navigation in very
unstructured environments. This elliptic limit-cycle trajec-
tory is obtained while using the proposed heuristic method
combined with Extended Kalman Filter which deals with
the uncertain range data to obtain the ellipse parameters.
This method was demonstrated and implemented on-line
to enclose all range data. The proposed reactive navigation
was embedded in multi-controller architecture. Further-
more, the proposed control law to this multi-controller
architecture improve the performance of the controllers.
Otherwise, the stability proof of the overall control archi-
tecture using only one control law for the two different
controllers was shown. Simulations and experiments in
different environments was presented. The efficiency and
the flexibility of the proposed control architecture and the
obstacle detection was proved.

In future works, the problem of outliers detection of the
range data will be accurately considered and the proposed
control structure will be extended for multi-robot system.
Furthermore, the presence of dynamic obstacles will be
developed.
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