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Strong convergence rates of semi-discrete splitting
approximations for stochastic Allen–Cahn equation

Charles-Edouard Bréhier, Jianbo Cui, and Jialin Hong

Abstract. This article analyzes an explicit temporal splitting numerical scheme

for the stochastic Allen-Cahn equation driven by additive noise, in a bounded

spatial domain with smooth boundary in dimension d ≤ 3. The splitting strat-
egy is combined with an exponential Euler scheme of an auxiliary problem.

When d = 1 and the driving noise is a space-time white noise, we first
show some a priori estimates of this splitting scheme. Using the monotonicity

of the drift nonlinearity, we then prove that under very mild assumptions on the

initial data, this scheme achieves the optimal strong convergence rate O(δt
1
4 ).

When d ≤ 3 and the driving noise possesses some regularity in space, we
study exponential integrability properties of the exact and numerical solutions.

Finally, in dimension d = 1, these properties are used to prove that the splitting
scheme has a strong convergence rate O(δt).

1. Introduction

The stochastic Allen-Cahn equation driven by an additional noise term models
the effect of thermal perturbations, and plays an important role in the phase theory
and the simulations of rare events in infinite dimensional stochastic systems (see
e.g. [13, 19, 27]).

In this article, we mainly focus on deriving the optimal strong convergence
rates of temporal splitting schemes for the stochastic Allen-Cahn equation driven by
Wiener processes, including the cylindrical Wiener process and some more regular
Wiener processes, under homogenous Dirichlet boundary conditions:

dX(t) = AX(t) + F (X(t))dt+ dWQ(t), t ∈ (0, T ], X(0) = X0,(1)

where F (x) = x − x3, (WQ(t))t∈[0,T ] is a generalized Wiener process on a filtered

probability space (Ω,F , (F (t))t∈[0,T ],P) and O ∈ Rd, d ≤ 3 is a bounded spatial
domain with smooth boundary ∂O.

Strong convergence of numerical approximations for Stochastic Partial Differ-
ential Equations(SPDEs) with globally Lipschitz continuous coefficients has been
extensively studied in the last twenty years (see e.g. [1, 14, 17, 21, 25]). For
SPDEs with non-Lipschitz coefficients, there only exist a few results about the
strong convergence rates of numerical schemes (see e.g. [2, 3, 8, 9, 12]). The
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strong convergence rates of numerical schemes, especially the temporal discretiza-
tion, is far from being understood and it is still an open problem to derive general
strong convergence rates of numerical schemes for SPDEs with non-globally Lips-
chitz coefficients.

For the discretization of equations such as the stochastic Allen-Cahn equation,
the main difficulty is the polynomial growth of the non-globally Lipschitz continuous
coefficient F . It is very delicate and necessary to design efficient numerical schemes
for stochastic equations with this type of nonlinearities. The authors in [20] study
a fully implicit split-step scheme combined with the backward Euler scheme, and
show that the scheme converges strongly with a rate O(δt

1
2 ) for Eq. (1) with d ≤ 3,

driven by some Q-Wiener processes. We refer to [12] for the analysis of finite
element methods applied to stochastic Allen-Cahn equations with multiplicative
noise. For Eq. (1), with d = 1 driven by a space-time white noise, first, the authors
in [3] obtain the strong convergence rate results for a nonlinearity-truncated Euler-
type scheme. Similar strong convergence results are then obtained in [2] for a
nonlinearity-truncated fully discrete scheme. A backward Euler-Spectral Galerkin
method has been considered in [22] by using stochastic calculus in martingale type
2 Banach spaces. Recently, the authors in [4] propose some splitting schemes and
prove the proposed schemes are strongly convergent without strong convergence
rates.

In this work, we give a systemic analysis of the properties of a splitting scheme
and its strong convergence rates for approximating Eq. (1) with d ≤ 3 driven by
different kinds of noise. We first introduce the splitting scheme with a time-step
size δt > 0, defined by:

Yn = Φδt(Xn),(2)

Xn+1 = SδtYn +

∫ tn+1

tn

S(tn+1 − s)dWQ(s),

where Φδt(z) = z√
z2+(1−z2)e−2δt

is the phase flow of dX = F (X(t))dt, t ∈ [0, δt], X0 =

z, and Sδt = S(δt) = eAδt. This type of splitting scheme, in a stochastic context,
has been first proposed in [4], and it is convenient for practical implementations
since it is explicit and strongly convergent without a taming or truncation strategy.
Note that an exponential Euler scheme is used in the second step of the splitting
strategy.

In this article, we first derive the optimal strong convergence rate of the split-
ting scheme in the case of space-white time noise, using a variational approach.
This gives a positive answer to the question asked in [4], concerning the strong
convergence rate of splitting schemes for the stochastic Allen-Cahn equation. We
would like to mention that these splitting-up based methods have many applica-
tions on approximating SPDEs with the Lipschitz nonlinearity, and are also used
for approximating SPDEs with non-Lipschitz or non-monotone nonlinearities (see
e.g. [7, 9, 11, 15]).

In order to analyze the strong convergence rate of this splitting method for
different types of noise, different approaches are required. In the case of space-
time white noise, there are three main steps to derive the strong convergence rate.
Following [4], the first step is constructing an auxiliary problem, with a modified
nonlinearity Ψδt instead of F , such that the splitting scheme can be viewed as a
standard exponential Euler scheme applied to the auxiliary problem. Even though
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the exponential Euler applied to the original equation may be divergent, the so-
lutions of the numerical scheme and of the auxiliary problem are proved to be
bounded in Lp(Ω;Lq), for all finite p, q. Thus no taming or truncation strategy
is required to ensure the boundedness of numerical solutions. The second step is
based on the monotonicity properties of the nonlinearities F and Ψδt, appearing
in the exact and auxiliary problems respectively. In addition, since the noise is
additive and an exponential Euler scheme is used with no discretization of the sto-
chastic convolution, one is lead to study some PDEs with random coefficients. The
last step consists in applying properties of the stochastic convolution and stochastic
calculus results in martingale type 2 Banach spaces, to deduce the optimal strong
convergence rate O(δt

1
4 ) in Lp(Ω;C(0, T ;Lq)), p ≥ q = 2m, m ∈ N+, i.e.,∥∥∥ sup

t∈[0,T ]

‖XN (t)−X(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(X0, T, p, q)δt
1
4 .

This variational approach can also be used to obtain the strong convergence rate
O(δt

1
2 ), in the case of more regular Q-Wiener processes, in dimension d ≤ 3.

In the case of H1-valued Q-Wiener processes, in dimension d = 1, we get
higher strong convergence rates of this splitting method, thanks to exponential
integrability properties of the exact and numerical solutions. To the best of our
knowledge,this is the first result with strong convergence order 1 about the temporal
numerical schemes approximating the stochastic Allen–Cahn equation. For similar
approaches to derive the strong convergence rates of numerical schemes, we refer
to [7, 16, 18] and the references therein. We first study stability and exponential
integrability properties of the exact solution, in dimensions d ≤ 3, and obtain results
of their own interest beyond analysis of numerical schemes. Then, in dimension
d = 1, a new auxiliary processes ZN is constructed, and some a priori estimate
and exponential integrability properties of ZN are studied. We then prove that the
scheme, in this context, has strong convergence order equal to 1:

sup
n≤N

∥∥∥‖XN (tn)−X(tn)‖Lq
∥∥∥
Lp(Ω)

≤ C(X0, Q, T, p, q)δt.

This strong convergence result is restricted to dimension d = 1, due to a loss of
exponential integrability of the auxiliary process ZN in higher dimension. Further
study is required to overcome this issue.

This article is organized as follows. Some preliminaries are given in Section
2. The variational approach to deal with the case of space-time white noise and
Q-Wiener processes, as well as some properties of the auxiliary problem, and one
main strong convergence rate result, are given in Section 3. In Section 4, stability
and exponential integrability properties, of the exact solution and of a new auxiliary
processes, are studied. Finally, we establish the optimal strong convergence rate of
this proposed scheme in dimension 1.

We use C to denote a generic constant, independent of the time step size δt,
which differs from one place to another.

2. Preliminaries

In this section, we first introduce some useful notations and further assump-
tions. Let T > 0, δt is the time step size, N is the positive integer such that
Nδt = T , and let {tk}k≤N be the grid points, defined by tk = kδt. We denote by
H = L2(O), Lq = Lq(O), 1 ≤ q < ∞ and E = C(O). A is the Dirichlet Laplacian
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operator, which generates an analytic and contraction C0-semigroup S(t), t ≥ 0 in H
and Lq. It is well-known that the assumptions on O implies that the existence of the
eigensystem {λk, ek}k∈N+ of H, such that λk > 0, −Aek = λkek and lim

k→∞
λk =∞.

Let Wr,q is the Banach space equipped with the norm ‖ · ‖Wr,q := ‖(−A)
r
2 · ‖Lq for

the fractional power (−A)
r
2 , r ≥ 0. The identities H1 = H1

0 and H2 = H1
0 ∩H2 are

frequently used in Section 4.

Given two separable Hilbert spaces H and H̃, we denote by L0
2(H, H̃) the space

of Hilbert-Schmidt operators fromH into H̃, equipped with the usual norm given by
‖Q‖L0

2(H,H̃) = (
∑
k∈N+ ‖Qek‖2H̃)

1
2 , where N+ = {1, 2, · · · }, and the result does not

depend on the orthonormal basis {ek}k∈N+ of H. We denote by Ls
2 := L0

2(H,Hs),
for s ∈ N.

Given a Banach space E, we denote by R(H̃, E) the space of γ-radonifying

operators endowed with the norm defined by ‖Q‖γ(H̃,E) = (Ẽ‖
∑
k∈N+ γkQek‖2E)

1
2 ,

where (γk)k∈N+ is a sequence of independent N (0, 1)-random variables on a proba-

bility space (Ω̃, F̃ , P̃). We also need the Burkerholder inequality in martingale-type
2 Banach spaces E = Lq, q ∈ [2,∞), (see e.g. [5, 26]): for some Cp,E ∈ (0,∞),

(3)

∥∥∥ sup
t∈[0,T ]

∥∥∥ ∫ t

0

φ(r)dW (r)
∥∥∥
E

∥∥∥
Lp(Ω)

≤ Cp,E‖φ‖Lp(Ω;L2([0,T ];γ(H̃;E)))

= Cp,E

(
E
(∫ T

0

‖φ(t)‖2
γ(H̃;E)

dt
) p

2
) 1
p

and the following property (see [26]): for some Cq ∈ (0,∞),

‖φ‖2
γ(H̃,Lq)

≤ Cq
∥∥∥ ∑
k∈N+

(φek)2
∥∥∥
L
q
2
, φ ∈ γ(H̃, Lq).(4)

The process W :=
∑
k∈N+ βkek is the H-valued cylindrical Wiener process, where

(βk)k∈N+ are independent Brownian motions defined on a filtered probability space
(Ω,F , (F (t))t∈[0,T ],P). The driving noise is WQ :=

∑
k βkQek, where Q is a

bounded operator from H to E. When Q = I, E = H, WQ is the standard
cylindrical Wiener process, which corresponds to the case of space-time white noise.
In Sections 3 and 4, we will also consider more regular cases, with assumptions
Q ∈ Ls

2, s ∈ N.
The solution of the stochastic Allen-Cahn equation, Eq. (1), is interpreted in a

mild sense,

X(t) = S(t)X0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)dWQ(s).(5)

Let ω(t) =
∫ t

0
S(t − s)dWQ(s) be the so-called stochastic convolution. Then note

that Y (t) = X(t)− ω(t) solves a random PDE (written in mild form):

Y (t) = S(t)X0 +

∫ t

0

S(t− s)F (Y (s) + ω(s))ds.(6)

We now introduce an auxiliary problem, and several auxiliary processes. The aux-
iliary problem is coming from writing the solution of the splitting scheme Eq. (2)
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as follows:

Xn+1 = SδtΦδt(Xn) +

∫ tn+1

tn

S(tn+1 − s)dWQ(s)

= SδtXn + δtSδtΨδt(Xn) +

∫ tn+1

tn

S(tn+1 − s)dWQ(s),

where Ψδt(z) = Φδt(z)−z
δt ,Ψ0(z) = F (z), Φ0(z) = z. Thus we get for all n ∈

{0, . . . , N}

Xn = S(tn)X0 + δt

n−1∑
k=0

S(tn+1 − tk)Ψδt(Xk) +

n−1∑
k=0

∫ tk+1

tk

S(tn+1 − s)dWQ(s).

A continuous time interpolation, such that XN (tn) = Xn for all n ∈ {0, . . . , N}, is
defined by

XN (t) = S(t)X0 +

∫ t

0

S((t− bscδt))Ψδt(X
N (bscδt))ds+

∫ t

0

S(t− s)dWQ(s),

(7)

where bscδt = max{0, δt, 2δt, · · · } ∩ [0, s].
As observed in [4], the proposed splitting scheme can be viewed as the expo-

nential Euler method applied to the following auxiliary SPDE:

dXδt(t) = AXδt(t)dt+ Ψδt(X
δt(t))dt+ dWQ(t), Xδt(0) = X0.(8)

The associated mild formulation is given by

Xδt(t) = S(t)X0 +

∫ t

0

S(t− s)Ψδt(X
δt(s))ds+

∫ t

0

S(t− s)dWQ(s).

Let Y δt(t) = Xδt(t)−ω(t), where ω is the stochastic convolution. Then Y δt is also
solution of a random PDE:

Y δt(t) = S(t)X0 +

∫ t

0

S(t− s)Ψδt(Y
δt(s) + ω(s))ds.(9)

We quote the following results from [4]. The estimates may be derived with
elementary calculations.

Lemma 2.1. For every δt0 ∈ (0, 1) and δt ∈ [0, δt0), the mapping Φδt is glob-
ally Lipschitz continuous, and the mapping Ψδt is locally Lipschitz continuous and
satisfies a one-side Lipschitz condition. More precisely, for q = 2m, m ∈ N+,

|Φδt(z1)− Φδt(z2)| ≤ eCδt0 |z1 − z2|,

(Ψδt(z1)−Ψδt(z2))(z1 − z2)q−1 ≤ eCδt0 |z1 − z2|q,
|Ψδt(z1)−Ψδt(z2)| ≤ C(δt0)|z1 − z2|(1 + |z1|2 + |z2|2),

|Ψδt(z1)−Ψ0(z1)| ≤ C(δt0)δt(1 + |z1|5).

3. Strong convergence rate analysis of the splitting scheme
approximating stochastic Allen-Cahn equation by a variational

approach

This section is devoted to the application of a variational approach, to derive
strong convergence rates for the splitting scheme defined by Eq. (2). The study
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includes the cases of the cylindrical Wiener process (Q = I, q = 1) and of Lq-
valued Q-Wiener processes (Q ∈ γ(H, Lq)).

We recall that in [4] it is proved that the scheme is convergent, when d = 1
and Q = I. Precisely, assume that X0 ∈ Hβ1 ∩ E , for some β1 > 0. Then

lim
δt→0

E
[

sup
n≤N
‖XN (tn)−X(tn)‖p

]
= 0.

However, it is well-known that the standard approach used to derive strong rates of
convergence using a Gronwall’s inequality argument, cannot be applied, when the
nonlinearity is not globally Lipschitz continuous. Additional properties, precisely
giving exponential integrability for the exact and numerical solutions, are required.

Instead, in the present section, we overcome this issue using a variational ap-
proach, based on a different decomposition of the error introduced below.

For convenience, throughout this article, we assume that X0 is a determinis-
tic function and that supk∈N+ ‖ek‖E ≤ C. The typical example to ensures that
supk∈N+ ‖ek‖E ≤ C is the d dimensional cube [0, 1]d.

3.1. A priori estimates and spatial regularity properties. We first deal
with the case Q = I, d = 1 and recall the following well-known result about the
stochastic convolution (see e.g. [10]): for 2 ≤ q <∞,

E
[

sup
t∈[0,T ]

‖ω(t)‖pLq
]
≤ Cp(T ), E

[
sup
t∈[0,T ]

‖ω(t)‖pE
]
≤ Cp(T ) <∞.

The following lemma states standard a priori estimates for the processes X, XN

and Y δt defined by Eq. (1), (7) and (9) respectively. For convenience, throughout
this paper, we omit the mollification procedure to get the evolution of ‖ · ‖Lq .

Lemma 3.1. Let d = 1, Q = I, q = 2m, m ∈ N+, p ≥ 1 and X0 ∈ Lq. Then
X,Y δt and XN satisfy

E
[

sup
t∈[0,T ]

‖X(t)‖pLq
]
< C(T, p, q)(1 + ‖X0‖pLq ),

and

E
[

sup
t∈[0,T ]

‖Y δt(t)‖pLq
]

+ E
[

sup
t∈[0,T ]

‖XN (t)‖pLq
]
< C(T, p, q)(1 + ‖X0‖pLq ).

Proof. For the a priori estimate for the exact solution X, we refer to [10].
Thus we focus on the a priori estimate of Y δt and XN . The definition, Eq. 9, of
Y δt and the one-side Lipschitz condition on Ψδt (see Lemma 2.1), combined with
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Hölder and Young inequalities, imply that for 2 ≤ q <∞,

‖Y δt(t)‖qLq ≤ ‖X0‖qLq + q

∫ t

0

〈AY δt(s), (Y δt(s))q−2Y δt(s)〉ds

+ q

∫ t

0

〈Ψδt(Y
δt(s) + ω(s)), (Y δt(s))q−2Y δt(s)〉ds

≤ ‖X0‖qLq + q

∫ t

0

〈Ψδt(Y
δt(s) + ω(s))−Ψδt(ω(s)), (Y δt(s))q−2Y δt(s)〉ds

+ q

∫ t

0

〈Ψδt(ω(s)), (Y δt(s))q−2Y δt(s)〉ds

≤ ‖X0‖qLq + C(δt0, q)

∫ t

0

‖Y δt(s)‖qLqds

+ C(δt0, q)

∫ t

0

‖Ψδt(ω(s))‖Lq‖Y δt(s))‖q−1
Lq ds

≤ ‖X0‖qLq + C(δt0, q)

∫ t

0

‖Y δt(s)‖qLqds+ C(δt0, q)

∫ t

0

(1 + ‖ω(s)‖3qL3q )ds.

Using the moment estimate on the stochastic convolution above, applying the Gron-
wall’s inequality concludes the proof for Y δt.

The estimate for XN is proved using similar arguments. First, note that it is
sufficient to control the values of XN at the grid points tn, n ≤ N :

E
[

sup
t∈[0,T ]

‖XN (t)‖pLq
]
≤ C(p, q, T )E

[
sup
n≤N
‖XN (tn)‖pLq

]
.

By the definition of XN (tn) = Xn, n ≤ N and the Lipschitz continuity of Φδt
stated in Lemma 2.1, since S(t) is a contraction semigroup, we obtain

‖XN (tn)−ω(tn)‖Lq ≤
∥∥∥S(δt)Φδt(X

N (tn−1))− S(δt)ω(tn−1)
∥∥∥
Lq

≤
∥∥∥Φδt(X

N (tn−1))− Φδt(ω(tn−1))
∥∥∥
Lq

+
∥∥∥Φδt(ω(tn−1))− ω(tn−1)

∥∥∥
Lq

≤ eCδt
∥∥∥XN (tn−1)− ω(tn−1)

∥∥∥
Lq

+ Cδt(1 + ‖ω(tn−1)‖3L3q ).

Then using the discrete Gronwall’s inequality, and the estimate on the stochastic
convolution, we get

E
[

sup
n≤N
‖XN (tn)‖pLq

]
≤ C(T, q, p),

which concludes the proof of XN . �

We now study spatial regularity properties of the processes XN and X. We
first state a Lemma (see [10]) concerning the factorization method.

Lemma 3.2. Assume that p > 1, r ≥ 0, γ > 1
p + r and that E1 and E2 are

Banach spaces such that

‖S(t)x‖E1 ≤Mt−r‖x‖E2 , t ∈ [0, T ], x ∈ E2.

Set Gγf(t) :=
∫ t

0
(t− s)γ−1S(t− s)f(s)ds, then, for γ > 1

p + r, one has

‖Gγf‖C([0,T ];E1) ≤ C(M)‖f‖Lp(0,T ;E2),
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if f ∈ Lp([0, T ];E2).

Lemma 3.3. Assume that d = 1, Q = I, p ≥ 2 and ‖X0‖Hβ1 <∞, β1 > 0. The
solution u satisfy the following estimate: if β < min( 1

2 , β1), then

E
[

sup
0≤s≤T

‖X(t)‖pHβ
]
≤ C(p, T, β,X0) <∞.

Proof. It is known (see e.g. [10]) that, for β < 1
2 ,

E
[

sup
0≤s≤T

‖ω(s)‖pHβ
]
≤ C(p, T ).

Thus we only need to study the regularity of S(t)X0 and of the deterministic

convolution
∫ t

0
S(t− s)F (X(s))ds. First,

‖S(t)X0‖Hβ1 ≤ ‖X0‖Hβ1 .

For the deterministic convolution, by the Fubini theorem, we have∫ t

0

S(t− s)F (X(s))ds =
sin γπ

π

∫ t

0

(t− s)γ−1S(t− s)Yγ(s)ds,

Yγ(t) =

∫ t

0

(t− s)−γS(t− s)F (X(s))ds

where we choose γ < 1
4 such that the regularity result also holds for the stochastic

convolution. Notice that ‖S(t)x‖Hβ ≤Mt−
β
2 ‖x‖H, for β > 0. Taking E1 = Hβ and

E2 = H, r = β
2 . Lemma 3.2 yields that for large enough p and γ > β

2 + 1
p ,

E
[

sup
0≤t≤T

∥∥∥∫ t

0

S(t− s)F (X(s))ds
∥∥∥p
Hβ

]
≤ CE

[ ∫ T

0

∥∥∥Yγ(t)
∥∥∥p
H
dt
]

≤ CE
[( ∫ T

0

t−2γ‖S(t)‖L(H,H)

(
1 + sup

r∈[0,T ]

‖X(r)‖3L6

)
dt
)p]

≤ C(T, p,X0).

This concludes the proof. �

Using standard arguments, including the use of a discrete Gronwall’s lemma,
and the two lemmas stated above, one may derive the following almost sure result
(see [4] for similar arguments): assume d = 1, Q = I, β < 1

2 , X0 ∈ Hβ1 ∩E , β1 > 0.
Then almost surely, for some C(ω) ∈ (0,∞), one has

sup
n≤N
‖XN (tn)−X(tn)‖ ≤ C(ω)δtmin( β2 ,

β1
2 ).

We omit the details. As explained above, the variational approach used below
allows us to go beyond this result and get a strong rate of convergence.
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3.2. Optimal strong convergence rate in space-time white noise case.
We are now in position to apply the variational approach developed in [3] in order
to obtain strong convergence rates for the splitting scheme (2).

We first state the main result of this section.

Theorem 3.1. Assume that d = 1, Q = I, ‖X0‖L9q < ∞, p ≥ q = 2m,
m ∈ N+ and η < 1

q . Then XN satisfies∥∥∥ sup
t∈[0,T ]

‖XN (t)−X(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T,X0, p, q)δt
min( 1

4 ,η),

If in addition ‖X0‖Wβ,3q <∞, β > 0, then∥∥∥ sup
t∈[0,T ]

‖XN (t)−X(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T,X0, p, q)δt
min( 1

4 ,
β
2 +η),

Note that, for q ∈ [2, 4), the first estimate of Theorem 3.1 gives order of conver-
gence 1

4 . If q ∈ [4,∞),the order of convergence 1
4 is obtained thanks to the second

estimate, under the assumption β > 1
2 −

2
q .

Observe that the error can be decomposed as follows:

‖XN (t)−X(t)‖Lq ≤ ‖XN (t)− ω(t)− Y δt(t)‖Lq + ‖Y δt(t) + ω(t)−X(t)‖Lq

≤ ‖XN (t)−Xδt(t)‖Lq + ‖Y δt(t)− Y (t)‖Lq .

Then Theorem 3.1 is a straightforward consequence of the two auxiliary results
stated below.

Proposition 3.1. Assume that d = 1, Q = I, ‖X0‖L5q < ∞. Then the
proposed method XN is strongly convergent to X and satisfies∥∥∥ sup

t∈[0,T ]

‖Y δt(t)− Y (t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T,X0, p, q)δt,

where p ≥ q = 2m, m ∈ N+.

Note that Y δt(t)−Y (t) = Xδt(t)−X(t), and in the case q = 2, Proposition 3.1
has already been proved in [4].

Proposition 3.2. Assume that d = 1, Q = I, ‖X0‖L9q < ∞, p ≥ q = 2m,
m ∈ N+. Then the proposed method XN satisfies for η < 1

q ,∥∥∥ sup
t∈[0,T ]

‖XN (t)−Xδt(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T,X0, p, q)δt
min( 1

4 ,η).(10)

If in addition assume that ‖X0‖Wβ,3q <∞, β > 0, then for η < 1
q ,∥∥∥ sup

t∈[0,T ]

‖XN (t)−Xδt(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T,X0, p, q)δt
min( 1

4 ,η+ β
2 ).(11)

It now remains to prove Propositions 3.1 and 3.2.
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Proof of Proposition 3.1. Note that Y δt(0) = Y (0), and recall that Y δt(t)−
Y (t) = Xδt(t)−X(t). Using the differential forms of the random PDEs (6) and (9),

‖Y δt(t)− Y (t)‖qLq

= q

∫ t

ε

〈(Y δt(s)− Y (s))q−2(Y δt(s)− Y (s)), AY δt(s)−AY (s)〉ds

+ q

∫ t

ε

〈(Xδt(s)−X(s))q−2(Xδt(s)−X(s)),Ψδt(X(s))−Ψδt(X(s)))〉ds

+ q

∫ t

ε

〈(Xδt(s)−X(s))q−2(Xδt(s)−X(s)),Ψδt(X(s)))− F (X(s)))〉ds.

Thanks to Lemma 2.1, combined with Young’s inequality and Gronwall’s lemma,
we obtain

‖Y δt(t)− Y (t)‖qLq

≤ C(T )δtq
∫ T

0

(
1 +

∥∥∥Y (s) + ω(s)
∥∥∥5q

L5q

)
ds,

It remains to use the a priori estimates of Lemma 3.1 to conclude the proof. �

To prove Proposition 3.2, we follow the approach from [3], and we introduce
an additional auxiliary process,

Ŷ (t) := S(t)X0 +

∫ t

0

S(t− s)Ψδt(X
N (bscδt))ds

for which the following auxiliary result is satisfied.

Lemma 3.4. Assume that d = 1, Q = I, ‖X0‖L3q < ∞, p ≥ q ≥ 2. Then for
0 < η < 1, s ≥ δt,

E
[∥∥∥Ŷ (s) + ω(s)−XN (bscδt)

∥∥∥p
Lq

]
≤ C(T, p, η,X0)(1 + (bscδt)−ηp)(δt)min( 1

4 ,η)p.

(12)

If assume in addition that ‖X0‖Wβ,q <∞, β > 0, then we have

E
[∥∥∥Ŷ (s) + ω(s)−XN (bscδt)

∥∥∥p
Lq

]
≤ C(T, p, η,X0)(1 + (bscδt)−ηp)(δt)min( 1

4 ,
β
2 +η)p.

(13)

Proof of Lemma 3.4. By the definition of Ŷ and XN , we get, for s ≥ δt,∥∥∥Ŷ (s) + ω(s)−XN (bscδt)
∥∥∥
Lq

=
∥∥∥S(s)X0 − S(bscδt)X0

∥∥∥
Lq

+
∥∥∥∫ s

0

S(s− r)Ψδt(X
N (bscδt))dr −

∫ bscδt
0

S(bscδt − brcδt)Ψδt(X
N (bscδt))dr

∥∥∥
Lq

+
∥∥∥∫ s

0

S(s− r)dWQ(r)−
∫ bscδt

0

S(bscδt − r)dWQ(r)
∥∥∥
Lq

:= I1 + I2 + I3.
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Thanks to the smoothing properties of the semigroup S(t), we have for arbitrary
η < 1,

I1 ≤
∥∥∥S(bscδt)(S(s− bscδt)− I)X0

∥∥∥
Lq

≤ C
∥∥∥AηS(bscδt)

∥∥∥
L(Lq,Lq)

∥∥∥A−η(S(s− bscδt)− I)X0

∥∥∥
Lq

≤ C(bscδt)−ηδtη‖X0‖Lq .

Then we turn to estimate the term I2, for s ≥ ε,

I2 ≤
∥∥∥∫ bscδt

0

(
S(s− r)− S(bscδt − brcδt)

)
Ψδt(X

N (bscδt))dr
∥∥∥
Lq

+
∥∥∥∫ s

bscδt
S(s− r)Ψδt(X

N (bscδt))dr
∥∥∥
Lq

≤
∫ bscδt

0

∥∥∥S(s− r)(S(r − brcδt)− I)Ψδt(X
N (bscδt))

∥∥∥
Lq
dr

+

∫ bscδt
0

∥∥∥S(bscδt − brcδt)(S(s− bscδt)− I)Ψδt(X
N (bscδt))

∥∥∥
Lq
dr

+ Cδt sup
s∈[0,T ]

∥∥∥Ψδt(X
N (bscδt))

∥∥∥
Lq
.

Similar to the estimate of I1, combing with Lemma 2.1, we obtain for 0 < η < 1,

I2 ≤ C(T )(δtη + δt)(1 + sup
n≤N
‖XN (tn)‖3L3q ).

Thanks to the Burkholder inequality, Eq. (3), from Section 2.1,

E[Ip3 ] ≤ C(p)E
[∥∥∥ ∫ bscδt

0

(
S(s− r)− S(bscδt − r)

)
dW (r)

∥∥∥p
Lq

]
+ C(p)E

[∥∥∥ ∫ s

bscδt
S(s− r)dW (r)

∥∥∥p
Lq

]
≤ C(p)

(∫ bscδt
0

∥∥∥S(s− r)− S(bscδt − r)
∥∥∥2

γ(H,Lq)
dr
) p

2

+ C(p)
(∫ s

bscδt

∥∥∥S(s− r)
∥∥∥2

γ(H,Lq)
dr
) p

2

.

Thanks to Eq. (4),

‖φ‖2γ(H,Lq) ≤ Cq
∥∥∥ ∑
k∈N+

(φek)2
∥∥∥
L
q
2
, φ ∈ γ(H, Lq).

Recall that it is assumed that sup
k∈N+

‖ek‖E ≤ C < ∞. Moreover, one has the

following useful inequality: for any γ > 0 and any α ∈ [0, 1],

sup
r∈(0,∞)

∑
k∈N+

r
1
2 +αλαk e

−γλkr = C(γ, α) <∞.

Using these properties,
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E[Ip3 ] ≤ C
(∫ bscδt

0

∑
k∈N+

∥∥∥S(bscδt − r)
(
S(s− bscδt)− I

)
ek

∥∥∥2

Lq
dr
) p

2

+ C
(∫ s

bscδt

∑
k∈N+

‖S(s− r)ek‖2Lqdr
) p

2

≤ C
(∫ bscδt

0

∑
k∈N+

e−2λk(bscδt−r)(e−λk(bscδt−s) − 1)2dr
) p

2

+ C
(∫ s

bscδt

∑
k∈N+

e−2λk(s−r)dr
) p

2

≤ C
(∫ bscδt

0

∑
k∈N+

e−2λk(bscδt−r)λ
1
2

k δt
1
2 dr
) p

2

+ C
(∫ s

bscδt
(s− r)− 1

2 dr
) p

2

≤ C
(∫ bscδt

0

r−
3
4 drδt

1
2

) p
2

+ Cδt
p
4 ≤ Cδt

p
4 .

Combining the estimates of I1, I2 and I3, we obtain for s ≥ δt,

E
[∥∥∥Ŷ (s) + ω(s)−XN (bscδt)

∥∥∥p
Lq

]
≤ C(p)

(
E[Ip1 ] + E[Ip2 ] + E[Ip3 ]

)
≤ C(T, p, q,X0)

(
(bscδt)−ηpδtηp + δt

p
4

)
≤ C(T, p, q,X0)(1 + (bscδt)−ηp)δtmin( 1

4 ,η)p,

which shows the first assertion.
If in addition we have ‖X0‖Wβ,q <∞, β > 0, alternatively we have

I1 ≤
∥∥∥AηS(bscδt)‖L(Lq,Lq)‖A−η(S(s− bscδt)− I)X0

∥∥∥
Lq

≤ C(bscδt)−ηδtη+ β
2 ‖X0‖Wβ,q ,

where η + β
2 ≤ 1, 0 < η < 1. Combing the previous estimation on I2 and I3, this

concludes the proof. �

It now remains to prove Proposition 3.2, using Lemma 3.4.

Proof of Proposition 3.2. We first show the estimation (10) with the rough
initial datum X0 ∈ L9q. Due to the definition of XN and Y δt, we have

‖XN (t)− ω(t)− Y δt(t)‖Lq

=
∥∥∥∫ t

0

S(t− bscδt)Ψδt(X
N (bscδt))ds−

∫ t

0

S(t− s)Ψδt(Y
δt(s) + ω(s))ds

∥∥∥
Lq

≤
∥∥∥∫ t

0

S(t− bscδt)Ψδt(X
N (bscδt))ds−

∫ t

0

S(t− s)Ψδt(X
N (bscδt))ds

∥∥∥
Lq

+
∥∥∥∫ t

0

S(t− s)Ψδt(X
N (bscδt))ds−

∫ t

0

S(t− s)Ψδt(Y
δt(s) + ω(s))ds

∥∥∥
Lq
.
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The first term is controlled by the smoothing properties of S(t) and the uniformly
boundedness of Ψδt(X

N (bscδt)). For 0 < η1 < 1, we have∥∥∥∫ t

0

S(t− bscδt)Ψδt(X
N (bscδt))ds−

∫ t

0

S(t− s)Ψδt(X
N (bscδt))ds

∥∥∥
Lq

=
∥∥∥∫ t

0

Aη1S(t− s)A−η1(S(s− bscδt)− I)Ψδt(X
N (bscδt))ds

∥∥∥
Lq

≤
∫ t

0

C(t− s)−η1(s− bscδt)η1
∥∥∥Ψδt(X

N (bscδt))
∥∥∥
Lq
ds

≤ C(η)δtη1
∫ t

0

(1 + ‖XN (bscδt)‖3L3q )ds.

We use the auxiliary process Ŷ and (12) in Lemma 3.4 to deal with the second term
since∥∥∥∫ t

0

S(t−s)Ψδt(X
N (bscδt))ds−

∫ t

0

S(t−s)Ψδt(Y
δt(s)+ω(s))ds

∥∥∥
Lq

= ‖Y δt(t)−Ŷ (t)‖Lq .

By the one-sided Lipschitz continuity of Ψδt , Hölder and Young inequality, we have
for δt ≤ t,

‖Y δt(t)− Ŷ (t)‖qLq

= ‖Y δt(δt)− Ŷ (δt)‖qLq + q

∫ t

δt

〈(Y δt(s)− Ŷ (s))q−2(Y δt(s)− Ŷ (s)), AY δt(s)−AŶ (s)〉ds

+ q

∫ t

δt

〈(Y δt(s)− Ŷ (s))q−2(Y δt(s)− Ŷ (s)),Ψδt(Y
δt(s) + ω(s))−Ψδt(X

N (bscδt))〉ds

≤ ‖Y δt(δt)− Ŷ (δt)‖qLq + q

∫ t

δt

〈
(Y δt(s)− Ŷ (s))q−2(Y δt(s)− Ŷ (s)),

Ψδt(Y
δt(s) + ω(s))−Ψδt(Ŷ (s) + ω(s))

〉
ds

+ q

∫ t

δt

〈(Y δt(s)− Ŷ (s))q−2(Y δt(s)− Ŷ (s)),Ψδt(Ŷ (s) + ω(s))−Ψδt(X
N (bscδt))〉ds

≤ ‖Y δt(δt)− Ŷ (δt)‖q + C(q)

∫ t

δt

‖Y δt(s)− Ŷ (s)‖qLqds

+

∫ t

δt

∥∥∥Ψδt(Ŷ (s) + ω(s))−Ψδt(X
N (bscδt))

∥∥∥q
Lq
ds.

Then Gronwall’s inequality yields that for t ≥ δt,

‖Y δt(t)− Ŷ (t)‖qLq ≤ e
CT ‖Y δt(δt)− Ŷ (δt)‖qLq

+ eCT
∫ T

δt

‖Ψδt(Ŷ (s) + ω(s))−Ψδt(X
N (bscδt))‖qLqds.

Using Lemma 2.1 and Hölder inequality,

‖Ψδt(z1)−Ψδt(z2)‖Lq ≤ C‖z1 − z2‖L3q (1 + ‖z1‖2L3q + ‖z2‖2L3q )
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leads that

‖Y δt(t)− Ŷ (t)‖Lq ≤ C(T, q)

(
‖Y δt(δt)− Ŷ (δt)‖Lq + sup

s∈[0,T ]

(
1 + ‖Ŷ (s)‖2L3q + ‖ω(s)‖2L3q

+ ‖XN (bscδt)‖2L3q

)(∫ T

δt

∥∥∥Ŷ (s) + ω(s)−XN (bscδt)
∥∥∥q
L3q

) 1
q

ds

)
.

Since for t ≤ δt,

sup
t∈[0,δt]

‖Y δt(t)− Ŷ (t)‖Lq ≤ C
∥∥∥∫ t

0

S(t− s)Ψδt(Y
δt(s) + ω(s))ds

∥∥∥
Lq

+ C
∥∥∥ ∫ t

0

S(t− s)Ψδt(X
N (bscδt))ds

∥∥∥
Lq

≤ Cδt sup
s∈[0,T ]

(
1 + ‖Y δt(s)‖3L3q + ‖ω(s)‖3L3q + ‖XN (s)‖3L3q

)
.

Taking expectation, together with the above results and a priori estimate in Lemma
3.1, Hölder inequality and Minkowski’s inequality, leads that, for p ≥ q, η < 1

q ,

E
[

sup
t∈[δt,T ]

‖Y δt(t)− Ŷ (t)‖pLq
]

≤ C(T, η, p, q)

(
E
[
‖Y δt(δt)− Ŷ (δt)‖pLq

]
+ E

[
sup

s∈[0,T ]

(
1 + ‖Ŷ (s)‖2pL3q + ‖ω(s)‖2pL3q

+ ‖XN (bscδt)‖2pL3q

)(∫ T

δt

∥∥∥Ŷ (s) + ω(s)−XN (bscδt)
∥∥∥q
L3q

ds
) p
q

])
≤ CδtE

[
sup

s∈[0,T ]

(
1 + ‖Y δt(s)‖3qL3q + ‖ω(s)‖3qL3q + ‖XN (s)‖3qL3q

)]
+ CE

[
sup

s∈[0,T ]

(
1 + ‖Ŷ (s)‖2pL3q + ‖ω(s)‖2pL3q + ‖XN (bscδt)‖2pL3q

)
(∫ T

δt

∥∥∥Ŷ (s) + ω(s)−XN (bscδt)
∥∥∥q
L3q

ds
) p
q

]
≤ CδtE

[
sup

s∈[0,T ]

(
1 + ‖Y δt(s)‖3pL3q + ‖ω(s)‖3pL3q + ‖XN (s)‖3pL3q

)]
+ C

∥∥∥ sup
s∈[0,T ]

(
1 + ‖Ŷ (s)‖2pL3q + C‖ω(s)‖2pL3q + ‖XN (bscδt)‖2pL3q

∥∥∥
L2(Ω)

×
∥∥∥(∫ T

δt

∥∥∥Ŷ (s) + ω(s)−XN (bscδt)
∥∥∥q
L3q

ds
) 1
q
∥∥∥p
L2p(Ω)

.
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By Minkowski’s inequality and (12) in Lemma 3.4, we get for η < 1
q ,∥∥∥(∫ T

δt

∥∥∥Ŷ (s) + ω(s)−XN (bscδt)
∥∥∥q
L3q

ds
) 1
q
∥∥∥
L2p(Ω)

≤
(∫ T

δt

(
E
[∥∥∥Ŷ (s) + ω(s)−XN (bscδt)

∥∥∥2p

L3q

]) q
2p

ds
) 1
q

≤ C
(

1 +
(∫ T

δt

bsc−ηqδt ds
) 1
q
)
δtmin( 1

4 ,η) ≤ C(T, p, q, ‖X0‖L9q )δtmin( 1
4 ,η),

which combing with the above estimation, yields that

E
[

sup
t∈[δt,T ]

‖Y δt(t)− Ŷ (t)‖pLq
]
≤ C(T, p, q, ‖X0‖L9q )δtmin( 1

4 ,η).

By the continuity of Y δt(t) and Ŷ (t), together the above estimations, we have for

E
[

sup
t∈[0,T ]

‖Y δt(t)− Ŷ (t)‖pLq
]
≤ E

[
sup

t∈[δt,T ]

‖Y δt(t)− Ŷ (t)‖pLq
]

+ E
[

sup
t∈[0,δt]

‖Y δt(t)− Ŷ (t)|pLq
]

≤ C(T, p, q, ‖X0‖L9q )δtmin( 1
4 ,η),

which establishes the first assertion (10). For the estimation (11), we use (13) to

estimate the term E
[

supt∈[0,T ] ‖Y δt(t) − Ŷ (t)‖pLq
]

and the arguments are similar.

�

By this variational approach, we can deduce that if d = 1, Q = I, p ≥ q = 2m,
m ∈ N+, β > 0, η < 1

q , X0 ∈ Wβ,q ∩ E . Then the strong convergence rate result

still holds, i.e.,∥∥∥ sup
t∈[0,T ]

‖XN (t)−X(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T, p, q,X0)δtmin( 1
4 ,
β
2 +η),

by using the estimation

‖Ψδt(z1)−Ψδt(z2)‖Lq ≤ C‖z1 − z2‖Lq (1 + ‖z1‖2E + ‖z2‖2E)

and the procedures of Theorem 3.1. This above result gives the answer to the
problem about the strong convergence rates of splitting schemes appeared in [4].

Remark 3.1. This above variational approach, combining with some further
analysis on the discrete stochastic convolution, may also be available for obtaining
the optimal strong convergence rates of other splitting schemes, such as the split-
ting exponential Euler scheme and the splitting implicit Euler scheme in [4]. This
extension will be studied in future works.

To conclude this section, we give extensions of Theorem 3.1, when Eq. (1) is
driven by a Q-Wiener process, in dimension d ≤ 3. We only sketch the proofs of the
parts which require nontrivial modifications. Note that the order of convergence
depends on the Hölder regularity exponents for the process X.

Corollary 3.1. Let d ≤ 3, p ≥ q = 2m, m ∈ N+, β1 > 0, η < 1
q . Assume

that X0 ∈Wβ1,q ∩ E and that the operators A and Q satisfy: Aek = −λkek, Qqk =
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√
qkek, qk > 0, k ∈ N+, with eigenfunctions such that ‖ek‖E ≤ C, ‖∇ek‖ ≤ Cλ

1
2

k .

Suppose that
∑
k∈N+

qkλ
2β−1
k <∞, for some 0 < β < 1

2 . Then we have

∥∥∥ sup
t∈[0,T ]

‖XN (t)−X(t)‖Lq
∥∥∥
Lp(Ω)

≤ C(T, p, q,X0)δtmin(β,
β1
2 +η).

Proof. To prove that Lemma 3.1 holds true, it is sufficient to check the es-
timate E[ sup

t∈[0,T ]

‖ω(t)‖pE ] ≤ C(T, p,Q) for p ≥ 1. This is a consequence of [10,

Theorem 5.25].
It now remains to explain modifications concerning Lemma 3.4. More precisely,

the control of the term I3 is modified as follows:

E[Ip3 ] ≤ C(p)E
[∥∥∥ ∫ bscδt

0

(
S(s− r)− S(bscδt − r)

)
dW (r)

∥∥∥p
Lq

]
+ C(p)E

[∥∥∥ ∫ s

bscδt
S(s− r)dW (r)

∥∥∥p
Lq

]
≤ C

(∫ bscδt
0

∑
k∈N+

(e−λk(s−r) − e−λk(bscδt−r))2qkdr
) p

2

+ C
(∫ s

bscδt

∑
k∈N+

e−2λk(s−r)qkdr
) p

2

≤ C
( ∑
k∈N+

λ−1
k (1− e−λk(s−bscδt))qk

) p
2

+ C
( ∑
k∈N+

qk
λk

(1− e−2λk(s−bscδt))
) p

2

≤ C(
∑
k∈N+

qkλ
2β−1
k )

p
2 δtβp.

Applying the same techniques as above concludes the proof of Corollary 3.1. �

Corollary 3.2. Let d = 1, β > 0 and p ≥ 2. If Q ∈ L0
2, X0 ∈ Hβ ∩ E, then

there exists a constant C = C(X0, Q, T, p) such that∥∥∥ sup
t∈[0,T ]

‖XN (t)−X(t)‖
∥∥∥
Lp(Ω)

≤ Cδt 1
2 .

If d = 2, 3, ‖(−A)
1
2Q‖L0

2
< ∞, X0 ∈ Hβ ∩ E, then there exists a constant C ′ =

C ′(X0, Q, T, p) such that∥∥∥ sup
t∈[0,T ]

‖XN (t)−X(t)‖
∥∥∥
Lp(Ω)

≤ C ′δt 1
2 .

Proof. We first show the first assertion. The assumptions ensures that the
method to obtain the strong convergence rates of the splitting scheme in the case
Q = I is also available for the case Q ∈ L0

2. We only need to show that the a
priori estimate of ω, and I3 possess higher convergence speed than the case Q = I.
The Sobolev embedding theorem, the regularity result of stochastic convolution in
[10, Theorem 5.15] and Burkerholder inequality yield that for p ≥ 2, there exsits
1
4 < β < 1

2 such that

E[ sup
t∈[0,T ]

‖ω(t)‖pE ] ≤ E[ sup
t∈[0,T ]

‖(−A)βω(t)‖p] ≤ C(Q,T, p),
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and

E[Ip3 ] ≤ C(p)E
[∥∥∥ ∫ bscδt

0

(
S(s− r)− S(bscδt − r)

)
dWQ(r)

∥∥∥p]
+ C(p)E

[∥∥∥ ∫ s

bscδt
S(s− r)dWQ(r)

∥∥∥p]
≤ C(p)E

[( ∫ bscδt
0

∥∥∥(−A)−
1
2 (S(s− bscδt)− I)

∥∥∥2∥∥∥(−A)
1
2S(bscδt − r)Q

∥∥∥2

L0
2

dr
) p

2
]

+ C(p)E
[( ∫ s

bscδt

∥∥∥S(s− r)Q
∥∥∥2

dr
) p

2
]
≤ C(Q)δt

p
2 .

The above properties, combined with the procedures in the proof of Theorem 3.1
shows the first assertion.

DenoteWγ =
∫ t

0
(t−s)−γS(t−s)(−A)

1
2 dWQ(s). When d = 2, 3, ‖(−A)

1
2Q‖L0

2
<

∞, Sobolev embedding theorem H1+2β ↪→ E , 1
4 < β < 1

2 , together with the the

fractional method and Lemma 3.2, yields that for p > 2, 1
4 < β < 1

2 , 1
2 > γ > β+ 1

p ,

E
[

sup
s∈[0,T ]

‖ω(s)‖pE
]
≤ E

[
sup

s∈[0,T ]

‖ω(s)‖pH1+2β

]
≤ CE

[
sup

s∈[0,T ]

‖GγWγ(s)‖pH2β

]
≤ C

∫ T

0

E
[
‖Wγ(s)‖pH2β

]
ds

≤ C
(∫ T

0

s−2γ‖S(s)(−A)
1
2Q‖2L0

2
ds
) p

2 ≤ C(T,Q, p).

Combining with the continuity of stochastic convolution

E[Ip3 ] ≤ C(p)E
[( ∫ bscδt

0

∥∥∥(−A)−
1
2 (S(s− bscδt)− I)

∥∥∥2∥∥∥(−A)
1
2S(bscδt − r)Q

∥∥∥2

L0
2

dr
) p

2
]

+ C(p)E
[( ∫ s

bscδt

∥∥∥S(s− r)Q
∥∥∥2

dr
) p

2
]
≤ C(Q)δt

p
2 .

The a priori estimate of E[ sup
t∈[0,T ]

‖ω(t)‖pE ] and some procedures in the proof of

Theorem 3.1, we get the second assertion. �

4. Higher strong convergence rate using exponential integrability
properties (regular noise, dimension 1)

This section is devoted to two contributions. First, we investigate exponential
integrability properties of the exact and numerical solutions X and XN , in dimen-
sion d = 1, 2, 3. We also derive useful a priori estimates in the H2 norm. This
requires additional regularity conditions on the operator Q, and the initial condi-
tion X0: it is assumed that ‖(−A)

1
2Q‖L0

2
< ∞ and X0 ∈ H2. Second, we prove

that the splitting scheme, Eq. (2), in the one-dimensional case d = 1, has a strong
order of convergence equal to 1. Note that this higher order of convergence may be
obtained since the stochastic convolution is not discretized. Up to our knowledge,
this is the first proof that a temporal discretization scheme has a strong order of
convergence equal to 1 for the stochastic Allen-Cahn equation.

Like in Section 3, it is assumed for simplicity that the initial condition X0 is
deterministic. The extension of the results below to random X0 is straightforward
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under appropriate assumptions: for instance, conditions of the type E[ec‖X0‖2H1 ] <
∞ for some c <∞ are required when studying exponential integrability properties.

4.1. A priori estimates and exponential integrability properties. In
order to show an improved strong error estimate, with order 1 in some cases, we need
to prove additional a priori estimates, and to study the exponential integrability
properties for d = 1, 2, 3, in some well-chosen Banach spaces.

We first state the following result. The proof is standard, using Itô’s formula
and the one-sided Lipschitz condition on F , and it is thus left to the interested
readers.

Lemma 4.1. Assume that d ≤ 3, ‖(−A)
1
2Q‖L0

2
< ∞ and X0 ∈ H1. Let p ≥ 1.

Then the solution X of Eq. (1) satisfies the a priori estimates

E
[(

sup
t∈[0,T ]

‖X(t)‖2 +

∫ T

0

‖X(t)‖2H1dt+

∫ T

0

‖X(t)‖4L4dt
)p]
≤ C(X0, T,Q, p)

and

E
[(

sup
t∈[0,T ]

‖X(t)‖2H1 +

∫ T

0

‖X(t)‖2H2ds
)p]
≤ C(X0, T,Q, p).

To show the exponential integrability of X, we quote an exponential integra-
bility lemma, see [8, Lemma 3.1], see also [6] for similar results.

Lemma 4.2. Let H be a Hilbert space, and let X be an H-valued adapted sto-

chastic process with continuous sample paths, satisfying Xt = X0 +
∫ t

0
µ(Xr)dr +∫ t

0
σ(Xr)dWr for all t ∈ [0, T ], where almost surely

∫ T
0

(‖µ(Xt)‖+‖σ(Xt)‖2)dt <∞.

Assume that there exist two functionals U and U ∈ C2(H;R), and α ≥ 0, such
that for all t ∈ [0, T ]

DU(x)µ(x) +
tr
[
D2U(x)σ(x)σ∗(x)

]
2

+
‖σ∗(x)DU(x)‖2

2eαt
+ U(x) ≤ αU(x).

Then

sup
t∈[0,T ]

E
[

exp

(
U(Xt)

eαt
+

∫ t

0

U(Xr)

eαr
dr

)]
≤ eU(X0).

We are now in position to state a first exponential integrability result, which
will be improved below. For the reader’s convenience, we omit standard truncations
and regularization procedures.

Proposition 4.1. Let d ≤ 3, and assume that ‖(−A)
1
2Q‖L0

2
< ∞ and X0 ∈

H1. Then for any ρ, ρ1 > 0, there exist α = λ(ρ,Q) ∈ (0,∞) and α1 = λ(ρ1, Q) ∈
(0,∞), such that

E
[

exp
(
e−αtρ‖X(t)‖2 + 2ρ

∫ t

0

e−αs‖∇X(s)‖2ds+ 2ρ

∫ t

0

e−αs‖X(s)‖4L4ds
)]
≤ eρ‖X0‖2 .

and

E
[

exp
((
e−α1tρ1‖∇X(t)‖2 + 2ρ1

∫ t

0

e−α1s‖AX(s)‖2ds
))]
≤ eρ1‖∇X0‖2 .
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Proof. Define µ(x) = Ax − x3 + x, σ(x) = Q, U(x) = ρ‖x‖2 and U1(x) =
ρ1‖∇x‖2. Then note that for ρ > 0,

〈DU(x), µ(x)〉+
1

2
tr[D2U(x)σ(x)σ∗(x)] +

1

2
‖σ(x)∗DU(x)‖2

= 2ρ〈x,Ax− x3 + x〉+ ρ‖Q‖2L0
2

+ 2ρ2‖Q∗x‖2

≤ −2ρ‖∇x‖2 + 2ρ‖x‖2 − 2ρ‖x‖4L4 + ρ‖Q‖2L0
2

+ 2ρ2‖x‖2‖Q‖2L0
2

≤ −2ρ‖∇x‖2 − 2ρ‖x‖4L4 + ρ‖Q‖2L0
2

+ (2ρ+ 2ρ2‖Q‖2L0
2
)‖x‖2.

Let α ≥ 2ρ+ 2ρ2‖Q‖2
L0

2
, and define

U(x) = 2ρ‖∇x‖2 + 2ρ‖x‖4L4 − ρ‖Q‖2L0
2
.

Then one may apply Lemma 4.2, which yields

E
[

exp
(
e−αtρ‖X(t)‖2 + 2ρ

∫ t

0

e−αs‖∇X(s)‖2ds+ 2ρ

∫ t

0

e−αs‖X(s)‖4L4ds
)]

≤ E
[
e

ρ‖Q‖2
L02

λ eρ‖X0‖2
]
≤ eρ‖X0‖2 .

The second inequality is obtained with similar arguments and the fact that H1 =
H1

0 :

〈DU1(x), µ(x)〉+
1

2
tr[D2U1(x)σ(x)σ∗(x)] +

1

2
‖σ(x)∗DU1(x)‖2

≤ −2ρ1〈Ax,Ax〉 − 6ρ1〈∇x,∇xx2〉+ ρ1‖∇Q‖2L0
2

+ (2ρ1 + 2ρ2
1‖∇Q‖2L0

2
)‖∇x‖2.

It remains to apply Lemma 4.2, to get for α1 ≥ 2ρ1 + 2ρ2
1‖∇Q‖2L0

2
,

E
[

exp
((
e−α1tρ1‖X(t)‖2 + 2ρ1

∫ t

0

e−α1s‖AX(s)‖2ds
))]

≤ E
[
e

ρ1‖∇Q‖
2
L02

α1 eρ1‖∇X0‖2
]
≤ eρ1‖∇X0‖2 .

This concludes the proof of Proposition 4.1. �

The use of Gagliardo–Nirenberg–Sobolev inequalities (see e.g. [24]) then al-
lows us to improve the result of Proposition 4.1 as follows: we control exponential

moments of the type E
[

exp
( ∫ T

0
c‖X(s)‖2Eds

)]
with arbitrarily large parameter

c ∈ (0,∞). This result is crucial in the approach used below to obtain higher rates
of convergence for the splitting scheme.

Proposition 4.2. Let d ≤ 3, and assume that ‖(−A)
1
2Q‖L0

2
< ∞ and X0 ∈

H1. Then the solution X of (1) satisfies, for any c > 0,

E
[

exp
(∫ T

0

c‖X(s)‖2Eds
)]
≤ C(c, d, T,X0, Q) <∞.

Proof. Assume first that d = 1. Then we use the Gagliardo–Nirenberg–

Sobolev inequality ‖X‖E ≤ C1‖∇X‖
1
3 ‖X‖

2
3

L4 .
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Thanks to Young’s inequality, for all ε ∈ (0, 1), there exists C1(ε) ∈ (0,∞) such
that

‖X‖2E ≤ C1‖∇X‖
2
3 ‖X‖

4
3

L4 ≤
(
ε‖∇X‖2 + ε‖X‖4L4 + C1(ε)

)
.

Choose ε = ε(c) ≤ ρ
ceαT

≤ 1. Then, using Cauchy-Schwarz inequality, one gets

E
[

exp
(∫ T

0

c‖X(s)‖2Eds
)]

≤ E
[

exp
(∫ T

0

εc‖∇X‖2 + εc‖X‖4L4 + C1(ε, c)
)
ds
)]

≤ eC1(ε,c)T

√
E
[

exp
(∫ T

0

2εc‖∇X‖2ds
)]√

E
[

exp
(∫ T

0

2εc‖X‖4L4ds
)]

≤ C(c, 1, T,X0, Q),

thanks to Proposition 4.1, since 2εc ≤ ρ
ceαT

. This concludes the treament of the
case d = 1.

When d = 2, resp. d = 3, we apply the Gagliardo-Nirenberg-Sobolev inequality,

‖X‖E ≤ C2‖AX‖
1
3 ‖X‖

2
3

L4 , resp. ‖X‖E ≤ C3‖AX‖
3
5 ‖X‖

2
5

L4 . In both cases, applying
Young’s inequality, for any ε ∈ (0, 1), there exists Cd(ε) ∈ (0,∞) such that

‖X‖2E ≤
(
ε‖AX‖2 + ε‖X‖4L4 + Cd(ε)

)
.

Choose ε = ε(c) ≤ min( ρ
ceαT

, ρ1
eα1T

) ≤ 1. Then

E
[

exp
(∫ t

0

c‖X(s)‖2Eds
)]

≤ E
[

exp
(∫ T

0

εc‖AX‖2 + εc‖X‖4L4 + Cd(ε, c)
)
ds
)]

≤ C(ε, c, Cd, T )

√
E
[

exp
(∫ T

0

2εc‖AX‖2ds
)]√

E
[

exp
(∫ T

0

2εc‖X‖4L4ds
)]

≤ C(c, Cd, T,X0, Q),

using Proposition 4.1, and the condition on ε.
This concludes the proof of Proposition 4.2. �

To conclude this section, we give an additional a priori estimate, with higher
order spatial regularity for the solution X of Eq. (1).

Proposition 4.3. Let d ≤ 3, ‖(−A)
1
2Q‖L0

2
< ∞ and X0 ∈ H2. Then the

solution X ∈ H2, a.s. Moreover for any p ≥ 2,

sup
s∈[0,T ]

E
[
‖X(s)‖pH2

]
≤ C(T,Q,X0, p).

Proof. By the mild form of Y , we get

‖Y (t)‖H2 ≤ ‖S(t)X0‖H2 +
∥∥∥∫ t

0

S(t− s)F (Y + ω(s))ds
∥∥∥
H2
.
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The boundedness of S(·) and the calculus inequality in the Sobolev spaces (see e.g.
[23]) leads that

‖S(t− s)F (Y (s) + ω(s)))‖H2

≤ C
(
‖Y (s) + ω(s)‖H2 + ‖X(s)‖H2‖X(s)‖2E + ‖X(s)2‖H2‖X(s)‖E

)
≤ C

(
‖Y (s) + ω(s)‖H2 + ‖X(s)‖H2‖X(s)‖2E + ‖X(s)‖2H2‖X(s)‖E

)
.

Gronwall inequality, together with Sobolev embedding theorem, implies that

‖Y ‖H2 ≤ C exp(C

∫ T

0

‖X(s)‖E‖X(s)‖H2ds)(
sup
t∈[0,T ]

‖S(t)X0‖+

∫ T

0

(1 + ‖X(s)‖E‖X(s)‖H2)‖ω(t)‖H2dt
)
.

Taking expectation, the exponential integrability in Proposition 4.2, and the regu-
larity of the stochastic convolution,

sup
t∈[0,T ]

E
[
‖Aω(s)‖p

]
≤ sup
t∈[0,T ]

E
[
‖A
∫ t

0

S(t− s)dWQ(s)‖p
]

≤ C sup
t∈[0,T ]

E
[( ∫ t

0

‖(−A)
1
2S(t− s)(−A)

1
2Q‖2L0

2
ds
) p

2
]
≤ C(T,Q, p),

yields that

E[‖X(s)‖pH2 ] ≤ CE[‖ω(s)‖pH2 ] + C
(
E
[

exp(2pC

∫ T

0

‖X(s)‖E‖X(s)‖H2ds)
]) 1

2

×
(

sup
t∈[0,T ]

‖S(t)X0‖2pH2 + E
[( ∫ T

0

‖X(s)‖E‖X(s)‖H2‖ω(s)‖H2ds
)2p]) 1

2

.

By Gagliardo–Nirenberg inequality in d = 1, 2, 3, and Young inequality, we get

‖X(s)‖E‖X(s)‖H2 ≤ C‖X(s)‖H2‖∇X(s)‖ 1
2 ‖X(s)‖

1
2

L4

≤ ε‖X(s)‖2H2 + ε‖∇X(s)‖2 + ε‖X(s)‖4L4 + C(ε), d = 1

‖X(s)‖E‖X(s)‖H2 ≤ C‖X(s)‖
4
3

H2‖X(s)‖
2
3

L4

≤ ε‖X(s)‖2H2 + ε‖X(s)‖4L4 + C(ε), d = 2

‖X(s)‖E‖X(s)‖H2 ≤ C‖X(s)‖
8
5

H2‖X(s)‖
2
5

L4

≤ ε‖X(s)‖2H2 + ε‖X(s)‖4L4 + C(ε), d = 3.

Combining with Proposition 4.1, we get the boundedness of this exponential mo-

ment exp
(
C
∫ T

0
‖X(s)‖E‖X(s)‖H2ds

)
. The estimation of E

[( ∫ T
0
‖X(s)‖E‖X(s)‖H2‖ω(s)‖H2ds

)2p]
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is similar. Gagliardo–Nirenberg–Sobolev inequality, together with Sobolev embed-
ding L4 ↪→ H1, yields that for d = 1,

E
[( ∫ T

0

‖X(s)‖E‖X(s)‖H2‖ω(s)‖H2ds
)2p]

≤ CE
[
(

∫ T

0

‖X(s)‖2H2ds)2p
]

+ CE
[ ∫ T

0

‖X(s)‖4pH1‖ω(s)‖4pH2ds
]
,

for d = 2,

E
[( ∫ T

0

‖X(s)‖E‖X(s)‖H2‖ω(s)‖H2ds
)2p]

≤ CE
[
(

∫ T

0

‖X(s)‖2H2ds)2p
]

+ CE
[ ∫ T

0

‖X(s)‖4pH1‖ω(s)‖6pH2ds
]
,

for d = 3,

E
[( ∫ T

0

‖X(s)‖E‖X(s)‖H2‖ω(s)‖H2ds
)2p]

≤ CE
[
(

∫ T

0

‖X(s)‖2H2ds)2p
]

+ CE
[ ∫ T

0

‖X(s)‖4pH1‖ω(s)‖10p
H2 ds

]
.

Combining the a priori estimate in Lemma 4.1 and the above inequalities, we finish
the proof. �

4.2. Strong convergence order 1 of the splitting scheme. In this part,
we focus on the sharp strong convergence rate of XN in d = 1. The main reason
why we could not obtain higher strong convergence rate in d = 2, 3 is that this
splitting up strategy will destroy the exponential integrability in L4([0, T ];L4) and
L2([0, T ];H2) of the original equation and that the a priori estimate of the auxiliary
process ZN in H2 can not be obtained, since the Sobolev embedding E ↪→ H1 does
not hold. We also remark the a priori estimate in Lemma 4.3 holds for d = 2, 3. The
study of higher strong convergence order for numerical schemes in high dimensional
case will be studied in future works.

We first state the main result of this section.

Theorem 4.1. Assume that d = 1, ‖(−A)
1
2Q‖L0

2
< ∞ and X0 ∈ H2. The

proposed method possesses strong convergence order 1, i.e, for any p ≥ 1,

sup
n≤N

E
[∥∥∥X(tn)−XN (tn)

∥∥∥p] ≤ Cδtp.
To obtain the higher strong order of the splitting scheme, we consider the

following auxiliary predictable right continuous process ZN such that ZN (tn) =
XN (tn), n ≤ N . The process ZN is defined by recursion. Let ZN (0) := X0 and on
each subinterval [tn−1, tn], 1 ≤ n ≤ N ,

ZN (t) = Φt−tn−1
(ZN (tn−1)), t ∈ [tn−1, tn),

ZN (tn) = S(δt)Φδt(Z
N (tn−1)) +

∫ tn

tn−1

S(tn − s)dWQ(s).

Since when t ∈ [tn−1, tn),

dZN = F (ZN (t))dt,
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we rewrite the definition of ZN into an integration form,

ZN (t) = ZN (tn−1) +

∫ t

tn−1

F (ZN (s))ds, t ∈ [tn−1, tn),

(14)

ZN (tn) = S(δt)ZN (tn−1) +

∫ tn

tn−1

S(δt)F (ZN (s))ds+

∫ tn

tn−1

S(tn − s)dWQ(s).

(15)

Letting n be n− 1 in the above equation and then plugging it into Eq. (14) yields
that

ZN (t) = S(δt)ZN (tn−2) +

∫ tn−1

tn−2

S(δt)F (ZN (s))ds+

∫ t

tn−1

F (ZN (s))ds

+

∫ tn−1

tn−2

S(tn−1 − s)dWQ(s), t ∈ [tn−1, tn).

Repeating this process, we get, for t ∈ [tn−1, tn),

ZN (t) = S(tn−1)X0 +

∫ tn−1

0

S(tn−1 − bscδt)F (ZN (s))ds

+

∫ t

tn−1

F (ZN (s))ds+

∫ tn−1

0

S(tn−1 − s)dWQ(s),

and

ZN (tn) = S(tn)X(0) +

∫ tn

0

S(tn − bscδt)F (ZN (s))ds+

∫ tn

0

S(tn − s)dWQ(s).

4.2.1. A priori estimate for the auxiliary process. In order to get the strong
convergence order, we also need the following a priori estimations of ZN .

Lemma 4.3. Assume that d = 1, ‖(−A)
1
2Q‖L0

2
< ∞, ‖X0‖H1 < ∞. Then for

p ≥ 2, the auxiliary process ZN satisfies

E
[

sup
s∈[0,T ]

‖ZN (s)‖pH1

]
≤ C(X0, p, T,Q).

Proof. We first show the estimation of sup
s∈[0,T ]

E[‖ZN (s)‖pH1 ] ≤ C(T, p,Q,X0).

Since similar arguments in Lemma 3.1 implies that sup
s∈[0,T ]

E[‖ZN (s)‖p] ≤ C(T, p,Q,X0),

it sufficient to show sup
s∈[0,T ]

E[‖∇ZN (s)‖p] ≤ C(T, p,Q,X0). For simplify the pre-

sentation, we only present the case p = 2. Consider the linear SPDE dẐ =

AẐdt+ dWQ(t) in local interval [tn−1, tn] with Ẑ(tn−1) = Φδt(Z
N (tn−1)), we have

Ẑ(tn) = ZN (tn). By Itô formula, we have

‖∇ZN (tn)‖2 = ‖∇Φδt(Z
N (tn−1))‖2 − 2

∫ tn

tn−1

〈AẐ,AẐ〉ds

+ 2

∫ tn

tn−1

〈∇Ẑ,∇dW (s)〉+

∫ tn

tn−1

‖∇Q‖2L0
2
ds.
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Then taking expectation yields that

E[‖∇ZN (tn)‖2] ≤ E[‖∇Φδt(Z
N (tn−1))‖2] +

∫ tn

tn−1

‖∇Q‖2L0
2
ds.

Since Φt−tn−1
ZN (tn−1) is the solution of dZ̃ = F (Z̃)dt with Z̃(tn−1) = ZN (tn−1),

the similar arguments yields that

‖∇Φt−tn−1(ZN (tn−1))‖2 ≤ eCδt‖∇ZN (tn−1)‖2.

Combing the above estimations, we have for t ∈ [tn−1, tn),

E
[
‖∇ZN (t)‖2

]
≤ eCδtE

[
‖∇ZN (tn−1)‖2

]
≤ eCδt

(
eCδtE

[
‖∇ZN (tn−2)‖2

]
+ Cδt

)
≤ eCT ‖X0‖2 + C(Q,T ),

which implies that sup
s∈[0,T ]

E[‖∇ZN (s)‖2] ≤ C(T, 2, Q,X0). Similarly, we obtain the

uniformly boundedness of sup
s∈[0,T ]

E
[
‖ZN (s)‖pH1

]
, p ≥ 2.

Now we are in position to show the desired result. By the argument in Lemma
3.1, we have E[ sup

n∈N
‖X(tn)‖pLq ] ≤ C, q = 2m. Then we aim to prove that E[ sup

n∈N
‖∇X(tn)‖p] ≤

C. By the similar procedure of the previous proof of Lemma 3.1, we get

‖∇
(
XN (tn)− ω(tn)

)
‖2 ≤ (1 + δt)

∥∥∥∇(Φδt(X
N (tn−1))− Φδt(ω(tn−1))

)∥∥∥2

+ Cδt(1 + ‖ω(tn−1)‖6H1).

Now, consider the SDEs dZ̃i = F (Z̃i)dt with different inputs Z̃1(tn−1) =

XN (tn−1)) and Z̃2(tn−1) = ω(tn−1), we get d(Z̃1 − Z̃2) = (F (Z̃1) − F (Z̃2))dt
for t ∈ [tn−1, tn]. Further calculations, together with Gagliardo–Nirenberg, Holder
and Young inequalities, yield that

‖∇
(

Φt−tn−1
(XN (tn−1))− Φt−tn−1

(ω(tn−1))
)
‖2

≤ ‖∇(XN (tn−1)− ω(tn−1))‖2 −
∫ t

tn−1

〈(Z̃1 − Z̃2)∇(Z̃2
1 + Z̃1Z̃2 + Z̃2

2 ),∇Z̃1 −∇Z̃2〉ds

≤ ‖∇(XN (tn−1)− ω(tn−1))‖2 + C

∫ t

tn−1

‖∇Z̃1 −∇Z̃2‖2ds

+ C

∫ t

tn−1

‖∇(Z̃2
1 + Z̃1Z̃2 + Z̃2

2 )‖2‖(Z̃1 − Z̃2)‖2Eds

≤ ‖∇(XN (tn−1)− ω(tn−1))‖2 + C

∫ t

tn−1

‖∇Z̃1 −∇Z̃2‖2ds

+ C

∫ t

tn−1

(‖Z̃1‖4H1 + ‖Z̃2‖4H1)‖Z̃1 − Z̃2‖2ds.
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On the other hand, the monotonicity of F yields that the solution of dZ̃ = F (Z̃)dt
satisfies for t ∈ [tn−1, tn],

sup
t∈[tn−1,tn]

‖Z̃(t)‖2H1 ≤ eCδt(1 + ‖Z̃(tn−1)‖2H1).

The above inequality yields that

‖∇
(

Φt−tn−1(XN (tn−1))− Φt−tn−1(ω(tn−1))
)
‖2

≤ eCδt(‖∇(XN (tn−1)− ω(tn−1))‖2 + eCδtδt(1 + ‖XN (tn−1)‖6H1 + ‖ω(tn−1)‖6H1).

Then discrete Gronwall’s inequality leads that

‖XN (tn)‖2H1 ≤ C‖X0‖2H1 + C‖ω(tn)‖2H1 + C

n−1∑
j=0

δt(1 + ‖XN (tj)‖6H1 + ‖ω(tj)‖6H1).

Taking expectation, we obtain for any p ≥ 2,

E
[

sup
n≤N
‖XN (tn)‖pH1

]
≤ C

(
1 + ‖X0‖pH1 + sup

n≤N
E
[
‖XN (tn)‖3pH1

]
+ E

[
sup
n≤N
‖ω(tn)‖3pH1

])
.

Denote Wγ =
∫ t

0
(t − s)−γS(t − s)(−A)

1
2 dWQ(s). By the fractional method and

Lemma 3.2, we have for β < 1
2 , 1

2 > γ > β + 1
3p ,

E
[

sup
s∈[0,T ]

‖ω(s)‖3pH1

]
≤ E

[
sup

s∈[0,T ]

‖ω(s)‖3pH1+2β

]
≤ CE

[
sup

s∈[0,T ]

‖GγWγ(s)‖3pH2β

]
≤ C

∫ T

0

E
[
‖Wγ(s)‖3pH2β

]
ds

≤ C
(∫ T

0

s−2γ‖S(s)(−A)
1
2Q‖2L0

2
ds
) 3p

2 ≤ C(T,Q, p),

which implies that E
[

sup
n≤N
‖XN (tn)‖pH1

]
≤ C(T,X0, p,Q). Then the definition of

ZN yields that

E
[

sup
s∈[0,T ]

‖ZN (s)‖pH1

]
≤ C

(
1 + E

[
sup
n≤N
‖XN (tn)‖3pH1

])
≤ C(T,X0, Q, p),

which completes the proof. �

Similar to the procedures in the proof of Proposition 4.2, we show the following
exponential integrability of ZN which is the key to get the higher strong convergence
rate. The rigorous proof is that in each local interval, we first apply the truncated
argument and the spectral Galerkin method, then use the Itô formula and Fatou
lemma to get the evolution of Lyapunouv functions. For convenience, we omit these
procedures.

Proposition 4.4. Assume that d = 1, ‖(−A)
1
2Q‖L0

2
<∞, ‖X0‖H1 <∞. Then

we have for any c > 0,

E
[

exp
(∫ T

0

c‖ZN (s)‖2Eds
)]
≤ C(X0, T,Q, c).(16)
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Proof. In each subinterval [tn−1, tn], we define the process Ẑ as the solution of

dẐ = AẐdt+dWQ(t), with Ẑ(tn−1) = ΦδtZ
N (tn−1). Denote µ(x) = Ax, σ(x) = Q,

U(x) = ρ‖x‖2 and U1(x) = ρ1‖∇x‖2. we get for ρ, ρ1 > 0,

〈DU(x), µ(x)〉+
1

2
tr[D2U(x)σ(x)σ∗(x)] +

1

2
‖σ(x)∗DU‖2

= 2ρ〈x,Ax〉+ ρ‖Q‖2L0
2

+ 2ρ2‖Qx‖2

≤ −2ρ‖∇x‖2 + ρ‖Q‖2L0
2

+ 2ρ2‖Q‖2L0
2
‖x‖2.

Lemma 4.2 yields that for α ≥ 2ρ2‖Q‖2
L0

2
,

E
[

exp
(
e−αtnρ‖ZN (tn)‖2

)]
≤ eCδtE

[
exp

(
e−αtn−1ρ‖ΦδtZN (tn−1)‖2

)]
.

Since Φt−tn−1Z
N (tn−1) is the solution of dZ̃ = F (Z̃)dt with Z̃(tn−1) = ZN (tn−1)

in [tn−1, tn], similar calculation, together with Hölder and Young inequality, yields

E
[

exp
(
e−αtn−1ρ‖ΦδtZN (tn−1)‖2

)]
= E

[
exp

(
e−αtn−1ρ‖ZN (tn−1)‖2 − e−αtn−12ρ

∫ tn

tn−1

‖ZN (s)‖4L4ds

+ e−αtn−12ρ

∫ tn

tn−1

‖ZN (s)‖2ds
)]

≤ eCδtE
[

exp
(
eαtn−1ρ‖ZN (tn−1)‖2 − e−αtn−1ρ

∫ tn

tn−1

‖ZN (s)‖4L4ds
)]

≤ eCδtE
[

exp
(
e−αtn−1ρ‖ZN (tn−1)‖2

)]
.

Then repeating the above procedures,

E
[

exp
(
e−αtnρ‖ZN (tn)‖2

)]
≤ eCδtE

[
exp

(
e−αtn−1ρ‖ZN (tn−1)‖2

)]
≤ eCtneρ‖X0‖2 .

For t ∈ [tn−1, tn), we similarly have

E
[

exp
(
e−αtρ‖ZN (t)‖2 +

∫ t

0

e−αsρ‖ZN (s)‖4L4ds
)]

≤ E

[
E
[

exp
(
e−αtρ‖ZN (t)‖2 +

∫ t

tn−1

e−αsρ‖ZN (s)‖4L4ds
)∣∣∣Ftn−1

]
× exp

(∫ tn−1

0

e−αsρ‖ZN (s)‖4L4ds
)]

≤ eCδtE
[

exp
(
e−αtn−1ρ‖ZN (tn−1)‖2 +

∫ tn−1

0

e−αsρ‖ZN (s)‖4L4ds
)]

≤ eCtneρ‖X0‖2 .



STRONG CONVERGENCE RATE OF SPLITTING APPROXIMATION FOR SACE 27

Next, we focus on the exponential integrability in H1. Since dẐ = AẐdt+ dWQ(t)

in [tn−1, tn], with Ẑ(tn−1) = ΦδtZ
N (tn−1), for ρ1 > 0, we have

〈DU1(x), µ(x)〉+
1

2
tr[D2U1(x)σ(x)σ∗(x)] +

1

2
‖σ(x)∗DU1(x)‖2

= −2ρ1〈Ax,Ax〉+ ρ1‖∇Q‖2L0
2

+ 2ρ2
1‖∇Q‖2L0

2
‖∇x‖2,

which yields that for α1 ≥ 2ρ2
1‖∇Q‖2L0

2
,

E
[

exp
(
e−α1tnρ1‖∇ZN (tn)‖2

)]
≤ eCδtE

[
exp

(
e−α1tn−1ρ1‖∇ΦδtZ

N (tn−1)‖2
)]
.

Then the fact that Φt−tn−1
ZN (tn−1) is the solution of dZ̃ = F (Z̃)dt in [tn−1, tn],

with Z̃(tn−1) = ZN (tn−1), yields that for α1 ≥ 2ρ̃1, ρ̃1 = e
2ρ21‖∇Q‖

2

L0
2
T
ρ1,

E
[

exp
(
e−α1tn−1ρ1‖∇ΦδtZ

N (tn−1)‖2 +

∫ tn

tn−1

e−α1s

2ρ1〈∇ZN (s), (ZN (s))2∇ZN (s)〉ds
)]

≤ eCδtE
[

exp
(
e−α1tn−1ρ1‖∇ZN (tn−1)‖2

)]
Repeating the above procedures and taking α1 ≥ max(2ρ2

1‖∇Q‖2L0
2
, 2e

2ρ21‖∇Q‖
2

L0
2
T
ρ1),

we obtain

sup
t∈[0,T ]

E
[

exp
(
e−α1tρ1‖∇ZN (t)‖2

)]
≤ Ceρ1‖∇X0‖2 .

Now, we are in position to show the desired result (16). Gagliardo–Nirenberg–

Sobolev inequality ‖ZN‖E ≤ C1‖∇ZN‖
1
3 ‖ZN‖

2
3

L4 , together with Hölder and Young
inequalities, implies that

E
[

exp
(∫ T

0

c‖ZN (s)‖2Eds
)]

≤ E
[

exp
(∫ T

0

1

2
ε1‖∇ZN (s)‖2 +

1

2
ε2‖ZN (s)‖4L4 + C(ε1, ε2, c))ds

)]
≤ C(T, ε1, ε2, c)

√
E
[

exp
(∫ T

0

ε1‖∇ZN (s)‖2ds
)]√

E
[

exp
(∫ T

0

ε2‖ZN (s)‖4L4ds
)]
.

Choosing ε2 ≤ e−αT ρ, we have√
E
[

exp
(∫ T

0

ε2‖ZN (s)‖4L4ds
)]
≤ eCT e

ρ
2 ‖X0‖2 .

Taking ε1 ≤ e−α1T ρ1
T , together with Jensen inequality, yields that√

E
[

exp
(∫ T

0

ε1‖∇ZN (s)‖2ds
)]
≤ sup
s∈[0,T ]

√
E
[

exp
(
Tε1‖∇ZN (s)‖2

)]
≤ eCT e

ρ
2 ‖∇X0‖2 .

The above two estimations leads the desired result.
�
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4.2.2. Strong convergence order 1 of the splitting scheme. After establish the a
priori estimates and the exponential integrability of both the exact and numerical
solutions, we are in position to give the other main result on the strong convergence
rate of the splitting scheme.

Proof of Theorem 4.1. The mild representation of X (5) and XN (8) yields
that

‖X(tn)−XN (tn)‖ ≤
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)(F (X(s))− F (ZN (s))ds
∥∥∥

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

(S(tn − s)− S(tn − tj))F (ZN (s))ds
∥∥∥ := II1 + II2.

By the smoothing properties of S(t), H1 is an algebra and |F (z)| ≤ C(1+ |z|3),
for 0 < η < 1, II2 is treat as follows:

II2 =
∥∥∥ ∫ tn

0

(−A)ηS(tn − s)(−A)−η(I − S(s− bscδt))F (ZN (s))ds
∥∥∥

≤ Cδt 1
2 +η
(

1 + sup
s∈[0,T ]

∥∥∥ZN (s)
∥∥∥3

H1

)∫ tn

0

∥∥∥(−A)ηS(tn − s)
∥∥∥ds

≤ Cδt 1
2 +η
(

1 + sup
s∈[0,T ]

∥∥∥ZN (s)
∥∥∥3

H1

)
.

For convenience, we introduce the mapping G such that F (z1)−F (z2) = G(z1, z2)(z1−
z2), z1, z2 ∈ R, where G(z1, z2) = −(z2

1 + z2
2 + z1z2) + 1. II1 is decomposed as

II1 ≤
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)G(X(s), ZN (s))(X(tj)− ZN (tj))ds
∥∥∥

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)G(X(s), ZN (s))(X(s)−X(tj))ds
∥∥∥

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)G(X(s), ZN (s))(ZN (s)− ZN (tj))ds
∥∥∥

:= II11 + II12 + II13.

Direct calculations, together with Sobolev embedding and Gagliardo–Nirenberg
inequality, yields that

II11 ≤ C
n−1∑
j=0

∫ tj+1

tj

(
‖X(s)‖2E + ‖ZN (s)‖2E + 1

)
ds‖X(tj)− ZN (tj)‖.
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and

II13 ≤ 2C

n−1∑
j=0

∫ tj+1

tj

(
1 + ‖X(s)‖2L6 + ‖ZN (s)‖2L6

)∥∥∥ZN (s)− ZN (tj)
∥∥∥
L6
ds

≤ 2C

n−1∑
j=0

∫ tj+1

tj

sup
s∈[0,tn]

(
1 + ‖X(s)‖2L6 + ‖ZN (s)‖2L6

)∥∥∥∫ s

tj

F (ZN (r))dr
∥∥∥
L6
ds

≤ 2Cδt sup
s∈[0,tn]

(
1 + ‖X(s)‖4L6 + ‖ZN (s)‖4L6 + ‖ZN (s)‖6L18

)
≤ 2Cδt sup

s∈[0,tn]

(
1 + ‖X(s)‖4H1 + ‖ZN (s)‖6H1

)
.

For II12, we have

II12 ≤
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)G(X(tj), Z
N (tj))(X(s)−X(tj))ds

∥∥∥
+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)
(
G(X(s), ZN (s))−G(X(tj), Z

N (s))
)

(X(s)−X(tj))ds
∥∥∥

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)
(
G(X(tj), Z

N (s))−G(X(tj), Z
N (tj))

)
(X(s)−X(tj))ds

∥∥∥
:= II121 + II122 + II123.

Using the mild form of X(s) (5) and Sobolev embedding H1 ↪→ E , we have

III121 ≤
n−1∑
j=0

∫ tj+1

tj

∥∥∥S(tn − s)G(X(tj), Z
N (tj))

∫ s

tj

S(s− r)F (X(r))dr
∥∥∥ds

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)G(X(tj), Z
N (tj))

∫ s

tj

S(s− r)dWQ(r)ds
∥∥∥

+ C

n−1∑
j=0

δt2(‖X(tj)‖2E + ‖ZN (tj)‖2E)‖(−A)X(tj)‖

≤ Cδt sup
s∈[0,tn]

(
1 + ‖X(s)‖5H1 + ‖ZN (s)‖5H1

)
+ C

n−1∑
j=0

δt2(‖X(tj)‖2H1 + ‖ZN (tj)‖2H1)‖(−A)X(tj)‖

+
∥∥∥ n−1∑
j=0

∫ tj+1

tj

S(tn − s)G(X(tj), Z
N (tj))

∫ s

tj

S(s− r)dWQ(r)ds
∥∥∥.
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For the last term, taking expectation, together with the independence of increments
of Wiener process, the adaptivity of X, Fubini theorem and Burkholder-Davis-
Gundy inequality, yields that for p ≥ 2,

E
[∥∥∥ n−1∑

j=0

∫ tj+1

tj

S(tn − s)G(X(tj), Z
N (tj))

∫ s

tj

S(s− r)dWQ(r)ds
∥∥∥p]

= E
[∥∥∥ n−1∑

j=0

∫ tj+1

tj

∫ tj+1

r

S(tn − s)G(X(tj), Z
N (tj))S(s− r)dsdWQ(r)

∥∥∥p]

≤ C(p)E
[( n−1∑

j=0

∫ tj+1

tj

∥∥∥∫ tj+1

r

S(tn − s)G(X(tj), Z
N (tj))S(s− r)dsQ

∥∥∥2

L0
2

dr
) p

2
]

≤ C(p)δtp
( n−1∑
j=0

∫ tj+1

tj

(
‖X(tj)‖2Lp(Ω;L6) + ‖ZN (tj)‖2Lp(Ω;L6) + 1

) ∑
k∈N+

∥∥∥Qek∥∥∥2

H1
ds
) p

2

≤ C(T,Q,X0, p)δt
p.

The definition ofG implies thatG is symmetric and |G(z1, z2)−G(z1, z3)| ≤ |z1||z2−
z3|+ |z2 − z3||z2 + z3|. Based on this property, we estimate III122 and III123 as

III122 + III123

≤ 2C

n−1∑
j=0

∫ tj+1

tj

‖X(s)−X(tj)‖2L6(‖X(s)‖L6 + ‖X(tj)‖L6 + ‖ZN (s)‖L6)ds

+ 2C

n−1∑
j=0

∫ tj+1

tj

‖X(s)−X(tj)‖L6‖ZN (s)− ZN (tj)‖L6(‖ZN (s)‖L6 + ‖ZN (tj)‖L6 + ‖X(tj)‖L6)ds.

The continuity of X, the right continuity of ZN and Sobolev embedding theorem
lead that for s ∈ [tj , tj+1), η < 1,

‖X(s)−X(tj)‖L6

≤ ‖(S(s)− S(tj))X(0)‖L6 + ‖
∫ s

0

S(s− r)F (X(r))dr −
∫ tj

0

S(tj − r)F (X(r))dr‖L6

+ ‖
∫ s

0

S(s− r)dWQ(r)−
∫ tj

0

S(tj − r)dWQ(r)‖L6

≤ Cδt 1
2 ‖X0‖H2 + ‖

∫ tj

0

(S(s− r)− S(tj − r))F (X(r))dr‖L6 + ‖
∫ s

tj

S(s− r)F (X(r))dr‖L6

+ ‖
∫ tj

0

(S(s− r)− S(tj − r))dWQ(r)‖L6 + ‖
∫ s

tj

S(s− r)dWQ(r)‖L6

≤ Cδtmin( 1
2 ,η) sup

r∈[0,T ]

(
‖X0‖H2 + ‖X(r)‖H1 + ‖X(r)‖3H1

)
+
∥∥∥∫ s

tj

S(s− r)dWQ(r)
∥∥∥
L6

+ ‖
∫ tj

0

(S(s− r)− S(tj − r))dWQ(r)‖L6 ,
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where the two stochastic convolution terms can be bounded by Sobolev embedding
L6 ↪→ H1 and similar estimations for I3 in Corollary 3.2, and

‖ZN (s)− ZN (tj)‖L6

≤ ‖
∫ s

tn−1

F (ZN (r))dr‖L6 ≤ Cδt sup
r∈[0,T ]

(
1 + ‖ZN (r)‖H1 + ‖ZN (r)‖3H1

)
.

The above estimations, together with Young and Hölder inequality, implies that

III122 + III123

≤ 2Cδtmin(1,2η) sup
s∈[0,tn]

(
1 + ‖X0‖4H2 + ‖X(s)‖12

H1 + ‖ZN (s)‖12
H1

)
+ 2C sup

s∈[0,tn]

(
‖ZN (s)‖H1 + ‖X(s)‖H1

) n−1∑
j=0

∫ tj+1

tj

(∥∥∥∫ s

tj

S(s− r)dWQ(r)
∥∥∥2

H1

+ ‖
∫ tj

0

(S(s− r)− S(tj − r))dWQ(r)‖2H1

)
ds.

Since ‖X(tn) − ZN (tn)‖ ≤ II11 + II2 + II13 + II121 + II122 + II123, the discrete
Gronwall’s inequality in [7, Lemma 2.6] yields that

‖X(tn)− ZN (tn)‖ ≤ C exp
(

2

n−1∑
j=0

∫ tj+1

tj

‖X(s)‖2E + ‖ZN (s)‖2Eds
)

×
(
II2 + II13 + II121 + II122 + II123

)
.

Then taking expectation, together with Hölder inequality, the a priori estimates
in Lemma 4.1, Propositions 4.3 and 4.4, the continuity of stochastic convolution in
the proof of Corollary 3.2 and exponential integrability of X and ZN in Propositions
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4.2 and 4.4, we obtain for p ≥ 1, 1
2 < η < 1,

sup
n≤N

E
[
‖X(tn)−XN (tn)‖p

]
≤ C(p)

1
4

√
E
[

exp(4p

∫ T

0

‖X(s)‖2E)
]

1
4

√
E
[

exp(4p

∫ T

0

‖ZN (s)‖2E)
]

(√
E[II2p

2 ] +

√
E[II2p

13 ] +

√
E[II2p

121] +
√

E[(II122 + II123)2p]
)

≤ Cδt( 1
2 +η)p

√
E
[
1 + sup

s∈[0,T ]

∥∥∥ZN (s)
∥∥∥6p

H1

]
+ Cδtp

√
E
[

sup
s∈[0,T ]

(
1 + ‖X(s)‖8pH1 + ‖ZN (s)‖12p

H1

)]
+ Cδtp

√
E
[

sup
s∈[0,T ]

(
1 + ‖X(s)‖10p

H1 + ‖ZN (s)‖10p
H1

)]

+ Cδtp
N−1∑
j=0

δt

√
E
[
‖(−A)X(tj)‖2p(‖X(tj)‖4pH1 + ‖ZN (tj)‖4pH1)

]
+ Cδtmin(1,2η)p

√
E
[
1 + ‖X0‖8pH2 + sup

s∈[0,T ]

(
‖X(s)‖24p

H1 + ‖ZN (s)‖24p
H1

)]

≤ C(T, p,Q,X0)δtp
(

1 +

N−1∑
j=0

δt
1
4

√
E
[
‖(−A)X(tj)‖4p

]
1
2

√
E
[
‖X(tj)‖8pH1 + ‖ZN (tj)‖8pH1

])
≤ C(T, p,Q,X0)δtp,

which completes the proof.
�

As a direct consequence of the Theorem 4.1 above, we have the following
stronger error estimation.

Corollary 4.1. Assume that d = 1, ‖(−A)
1
2Q‖L0

2
< ∞ and X0 ∈ H2. Then

for any p ≥ 1 and 0 < η < 1,∥∥∥ sup
n≤N
‖X(tn)−XN (tn)‖

∥∥∥
Lp(Ω)

≤ Cδtη.

Proof. Since for any q′ ≥ 1, based on Theorem 4.1, we have

E
[

sup
n≤N

∥∥∥X(tn)−XN (tn)
∥∥∥q] ≤ ∑

n≤N

E
[∥∥∥X(tn)−XN (tn)

∥∥∥q] ≤ Cδtq−1.

We completes the proof by taking 1− 1
q

′ ≥ η and q′ ≥ p. �
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