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Abstract
Visual analytics systems combine machine learning or other analytic techniques with interactive data visualization
to promote sensemaking and analytical reasoning. It is through such techniques that people can make sense of large,
complex data. While progress has been made, the tactful combination of machine learning and data visualization
is still under-explored. This state-of-the-art report presents a summary of the progress that has been made by
highlighting and synthesizing select research advances. Further, it presents opportunities and challenges to enhance
the synergy between machine learning and visual analytics for impactful future research directions.

Categories and Subject Descriptors (according to ACM CCS): Human-centered computing - Visualization, Visual
analytics

1. Introduction

We are in a data-driven era. Increasingly more domains
generate and consume data. People have the potential to un-
derstand phenomena in more depth using new data analysis
techniques. Additionally, new phenomena can be uncovered
in domains where data is becoming available. Thus, making
sense of data is becoming increasingly important, and this is
driving the need for systems that enable people to analyze
and understand data.

However, this opportunity to discover also presents chal-
lenges. Reasoning about data is becoming more complicated
and difficult as data scales and complexities increase. People
require powerful tools to draw valid conclusions from data,
while maintaining trustworthy and interpretable results.

We claim that visual analytics (VA) and machine learn-
ing (ML) have complementing strengths and weaknesses
to address these challenges. Visual analytics (VA) is a
multi-disciplinary domain that combines data visualization
with machine learning (ML) and other automated tech-
niques to create systems that help people make sense of
data [TC05,KSF∗08,Kei02,KMSZ06]. Over the years, much
work has been done to establish the foundations of this area,

create research advances in select topics, and form a com-
munity of researchers to continue to evolve the state of the
art.

Currently, VA techniques exist that make use of select
ML models or algorithms. However, there are additional
techniques that can apply to the broader visual data analysis
process. Doing so reveals opportunities for how to couple user
tasks and activities with such models. Similarly, opportunities
exist to advance ML models based on the cognitive tasks
invoked by interactive VA techniques.

This state-of-the-art report briefly summarizes the ad-
vances made at the intersection of ML and VA. It describes
the extent to which machine learning methods are utilized in
visual analytics to date. Further, it illuminates the opportuni-
ties within both disciplines that can drive important research
directions in the future. Much of the content and inspiration
for this paper originated during a Dagstuhl Seminar titled,
“Bridging Machine Learning with Information Visualization
(15101)” [KMRV15].
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1.1. Report organization

This report is organized as follows. Section 2 of the report
discusses three categories of models: human reasoning, visual
analytics and information visualization, and machine learning.
The models describing the cognitive activity of sensemaking
and analytical reasoning characterize the processes that hu-
mans engage in cognitively to gain understanding of data.
The models and frameworks for visual analytics depict sys-
tematic descriptions of how computation and analytics can
be incorporated in the systematic construction and design
of visual analytic applications. Finally, the machine learning
community has several models that illustrate how models
are trained, used, and interactively steered.

Section 3 categorizes the integration of machine learning
techniques into visual analytic systems. Section 4 discusses
how such systems have been used in specific domains to solve
real-world challenges. Section 5 discusses a research direc-
tion for integrating steerable dimension reduction techniques
into visual analytics. Finally, Section 6 discusses open chal-
lenges and opportunities for ML and VA. While the current
work shows how some progress has been made in bringing
these two communities closer together, there are several open
challenges.

2. Models and Frameworks

To ground the discussion of embedding ML techniques into
VA systems for data analysis and knowledge discovery, we
describe three categories of models and frameworks below.
First, we discuss existing models meant to describe the cog-
nitive stages people progress through while analyzing data.
These models show the complex processes people go through
to gain insight from data, which developed systems must sup-
port. Second, we discuss existing models and frameworks that
describe interaction and information design of visual analytic
applications. These models illustrate how data transforma-
tion and analytic computation are involved in generating the
visual representations of data in tools. User interaction is
critical in tuning and steering the parameters of these models.
Finally, we show select ML frameworks that emphasize the
importance of training data and ground truth for generating
accurate and effective computational models. In addition, we
describe the main techniques developed in the ML field to
integrate user feedback in the training process.

2.1. Models of Sensemaking and Knowledge
Discovery

One should emphasize that a primary purpose of data analyt-
ics is for people to understand, and gain insights into, their
data [CMS99,Chr06]. Thus, it is important to understand the
cognitive processes of people as they reason about data. It is
from such an understanding that “human-in-the-loop” appli-
cation designs are realized. Prior work exists that provides
models and design guidelines for visual analytics.

Sense-making is the process of “structuring the unknown”

Figure 1: The “sensemaking loop” (from [PC05]) illustrating
the cognitive stages people go through to gain insight from
data.

by organising data into a framework that enables us “to
comprehend, understand, explain, attribute, extrapolate,
and predict” [Anc12]. It is this activity of structuring–the
finding and assembly of data into meaningful explanatory
sequences [LI57]–that enables us to turn ever more com-
plex observations of the world into findings we can under-
stand “explicitly in words and that serves as a springboard
into action” [WSO05]. By attempting to articulate the un-
known, we are driven more by “plausibility rather than
accuracy” [Wei95] as we create plausible explanations that
can be used to evolve and test our understanding of the
situation or the data. Decision makers are often faced with
inaccurate representations of the world [EPT∗05] and have
to fill-in the gaps with strategies such as “story-telling” to
create stories that explain the situation.

One of the earliest models to describe the iterative process
of data analysis as “sensemaking” [RSPC93] is presented
in Figure 1 and illustrates the well-known (and probably
the most frequently cited) Pirolli and Card sensemaking
model [PC05]. Proposed in the context of intelligence analysis,
it is useful for showing how information is handled through
the process of searching and retrieving relevant information,
organizing, indexing and storing the information for later use,
structuring the information to create a schema or a way to
explain what has been observed, the formulation and testing
of hypotheses, which then leads to the determination of a
conclusion, and a sharing of that conclusion. This notional
model depicts the cognitive stages of people as they use
visual analytic tools to gain understanding of their data.

From Pirolli and Card’s perspective, sensemaking can be
categorized into two primary phases: foraging and synthesis.
Foraging refers to the stages of the process where models
filter and users gather collections of interesting or relevant
information. This phase emphasizes the computational ability
of models, as the datasets are typically much larger than
what a user can handle. Then, using that foraged information,
users advance through the synthesis stages of the process,
where they construct and test hypotheses about how the
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foraged information may relate to the larger plot. In contrast
to foraging, synthesis is more “cognitively intensive”, as much
of the insights stem from the user’s intuition and domain
expertise. Most existing visualization tools focus on either
foraging or synthesis, separating these two phases.

As with all models of cognitive processes, there have been
criticisms. For instance, while there are feedback loops and
repeat loops, and cycles within cycles, it still is somewhat a
linear model. It describes the data transaction and informa-
tion handling and transformation processes, “... rather than
how analysts work and how they transition” [KS11]. Human
analysts carry out their work within this framework, but
their thinking and reasoning processes are much less linear
and structured. For example, although recognised as a part
of the sense-making loop, there is little explanation about the
thinking and reasoning strategies that are invoked to formu-
late hypotheses. This is a critical aspect of the sense-making
process: how are explanations of the situation or data formed
in the mind of the human in order that the explanation can
be used to test one’s understanding of the data or situation?
Later in this section, we report on work that is attempting
to unravel this aspect of how analysts think.

Another useful model that can be employed to describe
the human-centered sense-making process is the “data-frame
model” by Klein et al. [KMH06b, KMH06a]. Their model
(Figure 2) depicts an exchange of information between the
human and the data in terms of frames. People make sense of
a situation by interpreting the data they are presented with
in relation to what they already know to create a new under-
standing. A user has an internal “frame” that represents her
current understanding of the world. The data connects with
the frame. As she continues to explore a particular dataset,
her frames of the world are mapped against the information
she uncovers. If the information supports a specific frame,
that frame is thought to strengthen in a process they call
elaboration. As she understands the situation better, she
searches for more relevant information, learning that there
may be other factors to the problem than originally thought
or known, therefore driving the demand for more information,
and building her frame. However, when evidence is discovered
through exploration that contradicts or refutes the existence
of such a mental frame, the frame can either be augmented
or a new one created. This is the important process that
leads her to question her earlier conclusions or assumptions
made to arrive at these conclusions. Additionally new frames
can also be created to reframe the problem. In situations
where data is missing or ambiguous or unknown, reframing
enables her to articulate the problem in different ways that
may allow her to change her information search strategy
and perhaps even her goals. One of the key benefits of the
Data-Frame Model is that it points to the importance of de-
signing visual analytics in a way that encourages analysts to
question their data and their understanding, and to facilitate
visualizations and transformations that enable reframing of
their understanding of the situation.

Recently a set of knowledge generation and synthesis mod-

Figure 2: The Data-Frame Model of Sense-
making [KMH06b].

els have been proposed that comprehensively attack a central
issue of visual analytics: developing a human-computer sys-
tem that enables analytic reasoning to produce actionable
knowledge. The first of these models was proposed by Sacha
et. al. [SSS∗14] and is shown in Figure 3. One sees looping
structures and components familiar from Pirolli and Card’s
sensemaking model, as depicted in Figure 1 above. However,
the computer and human regions of the model, and their re-
lationship with each other, are now explicitly expressed, and
the paper shows a clear relationship, via interaction, between
the human and both the visualization and the model. The pa-
per also describes detailed steps for the data-visualization and
data-model pipelines (the latter in terms of KDD processes
that couple, for example, to machine learning algorithms).
Whereas the sensemaking model was conceptual, this model
is concrete and shows, better than other models, where to put
computing and (via interactive interfaces) human-in-the-loop
steps in order to build an actual system.

The Sacha et al. model has recently been generalized to
produce a more complete knowledge generation and synthesis
(KGS) model [RF16]. The KGS model explicityly accounts for
both Prior Knowledge (placed between Data, Visualization,
and Model in Figure 3) and User Knowledge (placed between
Action and Finding). Prior Knowledge is quite important
for any exploration involving experts or based on expertise;
experts will want to know immediately the relationship of new
knowledge to existing domain knowledge. User knowledge
is built up during complex reasoning, where it can then
be the basis for generating additional knowledge or can be
synthesized with Prior Knowledge to produce more general
truths. The KGS model posits an iterative process that
addresses high level reasoning, such as inductive, deductive,
and abductive reasoning, in the knowledge generation and
exploration loops. It is based on a framework by Gahegan
et al. [GWHR01] that was developed for GIScience but is
generalizable.

These models provide a roadmap for visualization and
analytics processes, and for the role of human-computer in-
teraction. In particular, they illuminate the relationships
among machine learning, visualization, and analytics rea-
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Figure 3: Human-Computer knowledge generation model
of Sacha et al. [SSS∗14].

Figure 4: The information visualization pipeline [Hee06]
depicting the data transformation and visual mapping process
for constructing visualizations.

soning processes including exploration and knowledge gen-
eration. For example, Klein’s data frame model, discussed
above, would fit in this structure, providing a focus for ML
components while the models in Figure 3 would show how
to connect the data frame model with interactive visualiza-
tion and hypothesis-building. There are no VA systems that
embody all the components of the Sacha and KGS models,
but there are some (e.g., VAiRoma [CDW∗16]) that include
parts of the model. Typically in these systems, ML is a static
pre-processing step applied to the data at the beginning.
For example, in VAiRoma time-dependent, hierarchical topic
modeling is applied to large text collections [CDW∗16]. How-
ever, the KGS model shows how interactive ML can be placed
in the human-computer process and how it relates to interac-
tive visualization and reasoning. There is further discussion
of interactivity in VAML systems below. The discussion in
Sacha et al. [SSS∗14] implies two main roles for ML; one is to
transform unstructured or semi-structured data into a form
more meaningful for human exploration and insight discov-
ery. The other is to use unsupervised or semi-supervised ML
to guide the analysis itself by suggesting the best visualiza-
tions, sequences of steps in the exploration, verification, or
knowledge generation processes, guarding against cognitive
bias, etc. In addition, since the KGS model was derived with
reference to cognitive science principles [GRF09], there is a
possibility for merging ML with cognitive models to produce
even more powerful human-machine models. To illustrate,
one could explore Fu and Pirolli’s SNIF-ACT cognitive ar-
chitecture model [FP07], which connects human exploration
and information foraging in a sensemaking context. This
could be married with ML approaches to refine and focus the
parameters of the ML approach for particular exploration
strategies.

2.2. Models of Interactivity in Visual Analytics

Frameworks or pipelines for information visualization have
been previously developed [Hee06,Van05]. For example, the

information visualization pipeline depicted in Figure 5 shows
how data characteristics are extracted and assigned visual
attributes or encodings, ultimately creating a visualization.
The designs of visualizations adhering to this pipeline exhibit
two primary components of the visual interface: the visualiza-
tion showing the information, and a graphical user interface
(GUI) consisting of graphical controls or widgets. The graph-
ical controls in the GUI (e.g., sliders, knobs, etc.) allow
users to directly manipulate the parameters they control. For
example, “direct manipulation” [Shn83] user interfaces for
information visualizations enable users to directly augment
the values of data and visualization parameters to see the
corresponding change in the visualization (e.g., using a slider
to set the range of home prices and observing the filtering
of results in a map showing homes for sale). This model
is a successful user interaction framework for information
visualizations.

Visual analytic systems have adopted this method for user
interaction, but with the distinct difference of including ana-
lytic models or algorithms, as discussed earlier in this section.
For example, in addition to filtering the data by selecting
ranges for home prices, users could be given graphical con-
trols over model parameters such as weighting the mixture
of eigenvectors of a principal component analysis (PCA) di-
mension reduction (DR) model to produce two-dimensional
views showing pairwise similarity of homes across all of the
available dimensions. To users who lack expertise in such
models, this may pose fundamental usability challenges.

In contrast, prior work has proposed frameworks to per-
form model steering via machine learning techniques applied
to the user interactions performed during visual data analysis,
called semantic interaction [EFN12b]. Semantic interaction is
an approach to user interaction for visual data exploration in
which analytical reasoning of the user is inferred and in turn
used to steer the underlying models implicitly (illustrated in
Figure 5). The goal of this approach to user interaction is
to enable co-reasoning between the human and the analytic
model (or models) used to create the visualization (coupling
cognition and computation) without requiring the user to
directly control the models.

The approach of semantic interaction is to overload the
visual metaphor through which the insights are obtained (i.e.,
the visualization of information created by computational
models) and the interaction metaphor through which hy-
potheses and assertions are communicated (i.e., interaction
occurs within the visual metaphor). Semantic interaction
enables users to directly manipulate data within visualiza-
tions, from which tacit knowledge of the user is captured,
and the underlying analytic models are steered. The analytic
models can be incrementally adapted based on the user’s
sensemaking process and domain expertise explicated via
the user interactions with the system (as described in the
models of Section 2.1).

The semantic interaction pipeline (shown in Figure 5) takes
an approach of directly binding model steering techniques
to the interactive affordances created by the visualization.
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Figure 5: The semantic interaction pipeline [EFN12b] show-
ing how the user interactions in a spatial visualization can be
incorporated into the computation of a visual analytic system.

For example, a distance function used to determine the
relative similarity between two data points (often visually
depicted using distance in a spatial layout), can serve as
the interactive affordance to allow users to explore that
relationship. Therefore, the user interaction is directly in the
visual metaphor, creating a bi-directional medium between
the user and the analytic models [LHM∗11].

2.3. Machine Learning Models and Frameworks

There is not as much work in machine learning models and
frameworks. Most of the proposals correspond to some form of
de facto industrial standards, such as the SEMMA (Sample,
Explore, Modify, Model, and Assess) methodology adver-
tised by SAS Institute Inc. Among those, a vendor neutral
framework, CRISP-DM [She00], is somewhat comparable to
knowledge discovery and visual analytics frameworks. There
are six phases in the framework: business (or problem) un-
derstanding; data understanding (developed through explo-
ration of the data and discussion with data owners); data
preparation (including feature extraction, noise removal, and
transformation); modeling; evaluation (testing the quality of
the model, and particularly its generalization performance);
deployment (embedding the model in practice). In some
versions of this framework, there is an additional link from
deployment back to business understanding - this represents
the fact that the underlying data generator may change over
time. The model needs continuous evaluation in deployment
and when performance degrades, the process starts again.
Perhaps more importantly, all the steps of the framework
are embedded in a general loop comparable to the ones ob-
served in other frameworks. This emphasize the feedback
from the latter stage of the process (evaluation in numerous
machine learning applications) to the early stages (e.g. data
preparation in CRISP-DM).

As pointed out in e.g. [ACKK14], the traditional imple-
mentation of the machine learning workflow leads to long
development cycles where end users (who are also domain
experts) are asked to give feedback on the modeling results.
This feedback is used by machine learning experts to tune the
whole processing chain, especially at the data preparation
stage. Ideally, this feedback should take the form of specific
and formal user inputs, for example positive and negative
feedback on exemplars (such as “those two objects should not
belong to the same cluster” or “this object is misclassified”).

User feedback in this formal, expressive form lends it-
self very well to steering and training machine learning
models, for example via interactive machine learning ap-

proaches [PTH13]. Figure 6 shows an early model of inter-
active machine learning that emphasizes the feedback that
users give to train classifiers [FOJ03]. Through multiple iter-
ations of feedback, the classifier gets more training examples,
and is thus able to more closely approximate the phenomena
or concept being classified in the data.

To further establish an ML framework, we note the follow-
ing. Machine learning tasks are traditionally divided into two
broad categories, supervised tasks and unsupervised tasks.
In supervised learning, the goal is to construct a model that
maps an input to an output, using a set of examples of
this mapping, the training set. The quality of the model is
evaluated via a fixed loss criterion. Up till recently, it has
generally been considered that human input is not needed in
the model construction phase. On the contrary, it could lead
to undetected overfitting. Indeed the expected quality of the
model on future data (its so-called generalization ability) is
generally estimated via an independent set of examples, the
test set. Allowing the user (or a program) to tune the model
using this set will generally reduce the generalization ability
of the model and prevent any sound evaluation of this ability
(unless yet another set of examples is available).

Supervision via examples can be seen as a direct form of
user control over the training process. Allowing the user to
modify the training set interactively provides an indirect way
of integrating user inputs into the model construction phase.
In addition, opportunities for user feedback and control are
available before and after this modeling step (e.g., using
the CRISP-DM phases). For instance, user feedback can be
utilized at the feature selection, error preferences, and other
steps. Leveraging those opportunities (including training
set modification) has been the main focus of interactive
machine learning approaches. For instance, tools such as the
Crayons system from [FOJ03] allow the user to add new
training data by specifying in a visual way positive and
negative examples. This specific type of user feedback in the
form of labelling new examples is exactly the focus of the
active learning framework [Set09] in machine learning. This
learning paradigm is a variation over supervised learning
in which ML algorithms are able to determine interesting
inputs for which they do not know the desired outputs (in
the training set), in such a way that given those outputs the
predictive performances of the model would greatly improve.
Interestingly active learning is not the paradigm used in
e.g. [FOJ03]. It seems indeed that in real world applications,
active learning algorithms tend to ask too many questions
and possibly to similar ones, as reported in e.g., [GB11].
More generally, the need for specific and formal user inputs
can create usability issues with regards to people and their
tasks, as pointed out in e.g., [ACKK14,EHR∗14]. That is, the
actions taken by the user to train the systems are often not
the actions native to the exploratory data analysis described
in the previously mentioned frameworks. This is starting
to become more commonly used in the ML community, as
exemplified by [BH12]. In this paper the authors consider
additional questions a system can ask a user, beyond just
labelling. They focus in particular on class conditional queries
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Figure 6: A model for interactive machine [FOJ03] learning
depicting user feedback for model training.

– the system shows the user unlabeled examples and asks
him or her to select one that belongs to a given class (if one
exists).

In unsupervised learning, the data has no input/output
structure and the general goal is to summarize the data in
some way. For instance, as discussed further below, dimension
reduction techniques build low dimensional approximations
of the data from their high dimensional initial representation;
clustering groups data into similar objects; etc. Unsuper-
vised learning is generally considered ill posed in the ML
field in the following sense: most of the tasks of unsupervised
learning (clustering, dimensionality reduction, etc.) have only
an informal description to which numerous formal models
can be related. Those models are very difficult to compare
on a theoretical point of view as well as on a practical one.
In unsupervised learning, the need for user input, steering
and control is therefore broadly accepted and techniques to
include user feedback into e.g., clustering have been studied
for some time. Variations over unsupervised methods that
take explicitly into account some form of additional infor-
mation are generally called semi-supervised methods. The
supervision is frequently provided by external data in an
automated way, but those methods can lead to principled
ways of integrating user feedback.

It should be noted however that most of the methodolog-
ical development in machine learning that can be used to
integrate user feedback, from active learning to triplet based
constraints [vdMW12], are seldom evaluated in the context
of visualization systems. In general, the feedback process is
either simulated or obtained via off line and slow process (e.g.
Amazon’s Mechanical Turk for triplet in [WKKB15]). Thus
while specific frameworks that enable user feedback have
been defined by the ML community, the practical relevance
of the recent ones in the context of interactive visualization
remains untested.

2.4. Comparison to another classification
framework

A recent paper by Sacha et al. [SZS∗16] overlaps with this
STAR Report. It focuses on the specific area of dimensionality
reduction and how these techniques integrate with interactive
visualization in visual analytics systems. The paper builds
around a systematic analysis of visualization literature, which

reveals seven common interaction scenarios. The evaluation
leads to the identification of future research opportunities.

The current paper provides a significantly broader survey
of machine learning methods coupled with interaction, while
Sacha et al. [SZS∗16] probe deeper in one important area.
In addition to dimension reduction, the current paper deals
with ML methods for clustering, classification, and regression.
There is some overlap in the literature covered in the two
papers. However, the literature reviewed in the current paper
cites ML methods that are already coupled with interactive
visualization systems plus those that are not yet (but it
would be beneficial if they were); Sacha et al. deal mostly
with ML methods that are already coupled with interactive
visualizations.

The two papers complement each other with Sacha’s deeper
analysis in DR strengthening the wider analysis in the cur-
rent paper, and vice versa. The human-in-the-loop process
model in [SZS∗16] has similarities with the use of the human-
machine interaction loop in the current paper; they also share
a common origin. The classifications used in Sacha et al’s
structured analysis are different than those in the current
paper’s taxonomy, although one could be mapped into the
other, with modifications. However, there are also multiple
similarities; in particular, classification according to “modify
parameters and computation domain” and “define analytical
expectations” in Sections 3.2 and 3.3 of the current paper
map to various interaction scenarios in Sacha et al. [SZS∗16].
For example, the first classification maps to data manipula-
tion, DR parameter tuning, and DR type selection scenarios
in Sacha et al’s model. The second classification, in permit-
ting the user to tell the system (based on results it gives)
expectations that are consistent with domain knowledge,
maps to feature selection and emphasis and defining con-
straints scenarios. The current paper then goes beyond DR,
including for each classification a discussion of clustering,
classification, and regression methods. This broadens and
strengthens the discussion from Sacha et al. [SZS∗16].

3. Categorization of Machine Learning Techniques
Currently used in Visual Analytics

The visual analytic community has developed systems that
leverage specific machine learning techniques. In this sec-
tion, we give an overview of the existing ways that machine
learning has been integrated into VA applications from two
transversal perspectives: the types of ML algorithms and the
so-called interaction intent. We pay special attention to the
“interaction intent” as described below, because this focuses
on human-in-the-loop aspects that are central to VA systems.
There are also other papers where the main role of visu-
alization is on communicating the results of computations
to improve comprehension [TJHH14] that are not directly
covered in this section. Some of the most significant of these
papers, referring to VA systems, are described in Section 4.

Along the first perspective, we consider the different types
of ML algorithms that have been considered within visual an-
alytics literature. Although one might think of several other
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possible ways to categorize the algorithms [Alp14,FHT01],
here we adopt a high-level task-oriented taxonomy and cate-
gorize the algorithms under the following headings: dimension
reduction, clustering, classification, regression/correlation
analysis. We observe that ML algorithms to tackle these
tasks are frequently adopted in visual analytics applications
since these analytical tasks often require the joint capabilities
of computation and user expertise. To briefly summarize:
i) dimension reduction methods help analysts to distill the
information in high-dimensional data so that conventional vi-
sualization methods can be employed and important features
are identified ii) clustering methods help to identify groups
of similar instances which can be done both in a supervised
or unsupervised manner iii) classification methods are often
supervised and help to build models to associate labels to
data instances, and finally iv) regression/correlation analysis
methods help to investigate relations between features in
the data and to understand/generate causal links to explain
phenomena.

Along the second perspective, we focus on the user side of
the process. We name this aspect as interaction intent and
categorize the actions taken by users within visual analysis
in terms of the methods through which the analyst tries to
improve the ML result.

This perspective of our taxonomy resonates with the “user
intent” categories suggested by Yi et al. [YaKSJ07] for low-
level interactions within InfoVis applications. Our focus,
however, is targeted on higher-level analytical intents within
the narrower scope of visual analytics applications that in-
volve ML methods. With this motivation in mind, we suggest
two broad categories for “intents”: modify parameters and
computation domain and define analytical expectations. Table
1 shows the organization of literature along the dimensions
of algorithm type vs the two categories of user intent. Here
we survey the existing literature within the scope of this
characterization.

3.1. Review Methodology

The literature summarized and categorized in this section
are taken from impactful ML and visualization conferences
and journals. They were chosen and categorized based on
discussions the authors had at the Dagstuhl Seminar titled,
“Bridging Machine Learning with Information Visualization
(15101)” [KMRV15], and later refined through a more exten-
sive literature review.

Within this report, we review existing literature on the
integration of machine learning and visualisation from three
different perspectives – models and frameworks, techniques,
and application areas. When identifying the relevant works
in these domains, we follow a structured methodology and
identified the different scopes of investigation for these three
different perspectives. One important note to make is, due
to our focus on the integration of the two fields, we scanned
resources from both the visualisation and machine learning
domain.

Within the domain of visualisation, we initiated our survey
starting with publications from the following resources:

Journals: IEEE Transactions on Visualization and Com-
puter Graphics, Computer Graphics Forum, IEEE Computer
Graphics and Applications, Information Visualization

Conferences: IEEE Visual Analytics Science and Technol-
ogy (partially published as a special issue of IEEE TVCG),
IEEE Symposium on Information Visualization (InfoVis)
(published as a special issue of IEEE TVCG since 2006),
IEEE Pacific Visualization Symposium (PacificVis), EuroVis
workshop on Visual Analytics (EuroVA)

Within the domain of machine learning, we initiated our
survey starting with publications from the following re-
sources:

Journals: Journal of Machine Learning Research, Neuro-
computing, IEEE Transactions on Knowledge and Data En-
gineering

Conferences: International Conference on Machine Learn-
ing (ICML), ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, European Sympo-
sium on Artificial Neural Networks, Computational Intelli-
gence and Machine Learning (ESANN)

We then scanned the relevant papers identified in the
above resources and performed a backward and forward
literature investigation using Google Scholar. In producing
the taxonomy of works within Section 3, we labelled the
publication both in terms of the analytical task and the
integration strategy incorporated.

3.2. Modify parameters and computation domain

Here we list techniques where interaction has been instru-
mental in modifying the parameters of an algorithm, defining
the measures used in the computations, or even changing
the algorithm used. Another common form of interaction
here is to enable users to modify the computational domain
to which the algorithm is applied. Such operations are of-
ten facilitated through interactive visual representations of
data points and data variables where analysts can select
subsets of data and run the algorithms on these selections
within the visual analysis cycle to observe the changes in
the results and to refine the models iteratively. The types
of techniques described in this section can be considered as
following a “direct manipulation” [Shn83] approach where
the analysts explicitly interact with the algorithm before
or during the computation and observe how results change
through visualization.

Dimension Reduction One class of algorithms that is
widely incorporated in such explicit modification strategy
is dimension reduction. Since high-dimensional spaces are
often cognitively challenging to comprehend, combinations of
visualization and dimension reduction methods have demon-
strated several benefits. Johansson and Johansson [JJ09]
enable the user to interactively reduce the dimensionality
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Modify Parameters &
Computation Domain

Define
Analytical Expectations

Dimension
Reduction

[JJ09], [FJA∗11], [FWG09], [SDMT16],
[WM04], [NM13], [TFH11], [TLLH12],
[JBS08], [ADT∗13], [JZF∗09]

[EHM∗11], [EBN13], [BLBC12],
[HBM∗13], [GNRM08], [IHG13], [KP11],
[PZS∗15], [KCPE16], [KKW∗16]

Clustering [Kan12], [RPN∗08], [SBTK08], [RK04],
[SS02], [LSS∗12], [LSP∗10], [TLS∗14],
[TPRH11a], [AW12], [RPN∗08], [HSCW13],
[TPRH11b], [PTRV13], [HHE∗13], [WTP∗99],
[YNM∗13], [SGG∗14]

[HOG∗12], [CP13], [BDW08], [CCM08],
[BBM04], [ABV14], [KKP05], [KK08]

Classification [PES∗06], [MK08], [MBD∗11], [vdEvW11],
[CLKP10],

[KPB14], [AAB∗10], [AAR∗09],
[KGL∗15]

[Set09], [SK10], [BKSS14], [PSPM15]

Regression [PBK10], [MP13], [MME∗12], [TLLH12],
[KLG∗16]

[MGJH08], [MGS∗14] [LKT∗14] [YKJ16]

Table 1: In Section 3, we review the existing literature in visual analytics following a 2D categorization that organizes the
literature along two perspectives: Algorithm Type (rows) and Interaction Intent (columns).

of a data set with the help of quality metrics. The visually
guided variable ordering and filtering reduces the complexity
of the data and provides the user a comprehensive control
over the whole process. The authors later use this methodol-
ogy in the analysis of high-dimensional data sets involving
microbial populations [FJA∗11]. An earlier work that merges
visualization and machine learning approaches is by Fuchs
et al. [FWG09]. The authors utilize machine learning tech-
niques within the visual analysis process to interactively
narrow down the search space and assist the user in iden-
tifying plausible hypotheses. In a recent paper, Stahnke et
al. [SDMT16] devised a probing technique using interactive
methods through which analysts can modify the parameters
of a multi-dimensional scaling projection. The visualization
plays a key role here to display the different dimension contri-
butions to the projections and to communicate the underlying
relations that make up the clusters displayed on top of the
projection results.

In MDSteer [WM04], an embedding is guided by user in-
teraction leading to an adapted multidimensional scaling of
multivariate data sets. Such a mechanism enables the analyst
to steer the computational resources accordingly to areas
where more precision is needed. This technique is an early
and good example of how a deep involvement of the user
within the computational process has the potential to lead to
more precise results. Nam and Mueller [NM13] provide the
user with an interface where a high-dimensional projection
method can be steered according to user input. They provide
“key” computational results to guide the user to other relevant
results through visual guidance and interaction. Turkay et
al. introduce the dual-analysis approach [TFH11] to support
analysis processes where computational methods such as
dimension reduction [TLLH12] are used. The authors incor-
porate several statistical measures to inform analysts on the
relevance and importance of variables. They provide several

perspectives on the characteristics of the dimensions that
can be interactively recomputed so that analysts are able
to make multi-criteria decisions whilst using computational
methods. Jänicke et al. [JBS08] utilize a two-dimensional
projection method where the analysis is performed on a pro-
jected 2D space called the attribute cloud. The resulting
point cloud is then used as the medium for interaction where
the user is able to brush and link the selections to other
views of the data. In these last group of examples, the capa-
bility to run the algorithms on user-defined subsets of the
data through visually represented rich information is the key
mechanism to facilitate better-informed, more reliable data
analysis processes.

Clustering Clustering is one of the most popular algorithms
that have been integrated within visual analytics applications.
Since visual representations are highly critical in interpreting
and comprehending the characteristics of clusters produced
by the algorithms, direct modification of clustering algo-
rithms are often facilitated through interactive interfaces
that display new results “on-demand”. gCluto [RK04] is an
interactive clustering and visualization system where the au-
thors incorporate a wide range of clustering algorithms. This
is an early example where multiple clustering algorithms can
be run on-the-fly with varying parameters and results can be
visually inspected. In Hierarchical Clustering Explorer [SS02],
Seo and Shneiderman describe the use of an interactive dendo-
gram coupled with a colored heatmap to represent clustering
information within a coordinated multiple view system.

Other examples include work accomplished using the Ca-
leydo software for pathway analysis and associated experi-
mental data by Lex et al. [LSS∗12, LSP∗10]. In their tech-
niques, the authors enable analysts to investigate multiple
runs of clustering algorithms and utilize linked, integrated
visualizations to support the interpretation and validation
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of clusters. Along the same lines, Turkay et al. present an
interactive system that addresses both the generation and
evaluation stages within the clustering process and provides
interactive control to users to refine grouping criteria through
investigations of measures of clustering quality [TPRH11a].
In a follow-up work [TLS∗14], within the domain of clustering
high-dimensional data sets, integrated statistical computa-
tions are shown to be useful to characterize the complex
groupings that analysts encounter in such data sets. Figure 7
demonstrates how the authors incorporated statistical analy-
sis results to indicate important features for data groups. In
this work, the most discriminative features (indicated with
red dots as opposed to blue ones that are less important)
for the clustering result of a high-dimensional data set are
represented as integrated linked views. The user is able to
select these features in one clustering result (e.g., within the
clustering result in the right-most column in Figure 7) and
observe whether the same features are represented in others,
e.g., in the left-most column.

Schreck et al. [SBTK08] propose a framework to interac-
tively monitor and control Kohonen maps to cluster trajec-
tory data. The authors state the importance of integrating
the expert within the clustering process for achieving good
results. Kandogan [Kan12] discusses how clusters can be
found and annotated through an image-based technique. His
technique involves the use of “just-in-time” clustering and
annotation, and the principal role for visualisation and inter-
action is to aid the interpretation of the structures observed,
and provide a deeper insight into why and how particular
structures are formed.

An important role for visualization is to get the user
engaged in progressive and iterative generation of clus-
ters [RPN∗08]. In such approaches, the user is presented
with content that is built step-by-step and gains additional
insight in each iteration to decide whether to continue, alter,
or terminate the current calculations. Such levels of inter-
activity, of course, require the solutions to be responsive
and capable of returning results within acceptable delays.
Ahmed and Weaver [AW12] address this problem through
forward-caching expected interaction possibilities and pro-
viding users with clustering results without breaking the
responsive analytical flow.

Visual analytics applications that involve clustering al-
gorithms within the analysis of complex dynamic networks
have also been developed [HSCW13]. The use of visualisation
is in particular critical with such dynamic relational data
sets due to the limitations in interpreting the algorithmic
results; well-designed combinations of visual summaries can
assist analysts in this respect. In the domain of molecular
dynamics simulation, there are some examples of tight inte-
grations of interactive visualizations, clustering algorithms,
and statistics to support the validity of the resulting struc-
tures [TPRH11b], [PTRV13].

Classification Being a relevant and widely utilized tech-
nique, classification algorithms have also found their place

within visual analytics applications. Common roles for inter-
active visualization are filtering the feature space, iteratively
observing and fixing problems, and when the classification
tasks involve multiple mediums such as space, time and
abstract features, providing multiple perspectives to the al-
gorithmic results.

A conceptual framework on how classification tasks can
be supported by interactive visualizations is presented by
May and Kohlhammer [MK08]. Their approach improved the
classification of data using decision trees in an interactive
manner. They proposed the use of a technique called KVMaps
to inform users on classification quality thus enabling the it-
erative refinement of the results. The authors later proposed
a technique called SmartStripes [MBD∗11] where they inves-
tigated the relations between different subsets of features and
entities. Interactive visual representations have been used to
help create and understand the underlying structures within
decision trees [vdEvW11]. The authors not only presented
the overall structure of decision trees, but also provided in-
tuitive visual representations of attribute importance within
the different levels of the tree. Such interactive visualizations
are critical in unraveling the computed information hidden
within the layers and can be quite instrumental in increasing
the trust in such computational models. Similar insights can
be gained on other models (additive ones, e.g. naive Bayes,
in [PES∗06] and more general ones in [SK10]) by explaining
individual classification. In these papers, the authors display
the contribution of features to the classification made by
the model and enable what-if scenarios, such “how would
the classification change if this particular feature was set to
another value?”

In iVisClassifier by Choo et al. [CLKP10], the authors
improve classification performance through interactive visu-
alizations. Their technique supports a user-driven classifi-
cation process by reducing the search space, e.g., through
recomputing Latent Dirichlet Allocation (LDA) [BNJ03] with
a user-selected subset of data defined through filtering in
additional coordinated views. Klemm et al. [KGL∗15] investi-
gate the use of interactive visualisation to compare multiple
decision trees in investigating relations within non-image
and image based features for a medical application. They
visualise the quality aspects of classifiers to infer observations
on the predictive power of the features.

Krause et al. [KPB14] address the important process of
feature selection within model building for classification pur-
poses. Through visual representations of cross-validation runs
for feature ranking with various algorithms, their method
supports the decisions made while including or excluding
particular features from a classification model (see Figure 8).
Their approach enables users to be part of the predictive
model building process and, as also demonstrated by the
authors, leads to better performing/easier to interpret mod-
els. Their methodology is based on producing glyphs for the
features of a data set to represent how important each one
is within a number of classification models. In addition, the
glyphs are also used as elements for visual selections and
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Figure 7: Visualization of clustering results, together with
associated on-the-fly computations to identify discriminating
features of groups, are used here to aid analysts in interpreting
the clusters and refining them further [TLS∗14].

enable analysts to interactively apply modelling on subsets
of features.

Classification of spatio-temporal patterns is one of the
complex tasks that requires the involvement of user input
and efficient algorithms due to the complex nature of struc-
tures found in such data sets. Andrienko et al. [AAB∗10]
investigate how self organizing maps (SOMs) are integrated
into the visual analysis process. They integrate a SOM ma-
trix where the user can interactively modify the parameters
and observe the changes in the results in various visual repre-
sentations, e.g., where space is represented in time, and the
time is represented in space. Again involving spatio-temporal
data, an interactive process where a clustering algorithm
assists users to pick relevant subsets in building classifiers
has shown to be effective in categorizing large collections of
trajectories [AAR∗09].

Regression Identifying the multivariate relations within
data variables, in particular when their numbers are high,
is one of the critical tasks in most data analysis routines.
In order to evaluate to what degree observed relations can
be attributed to underlying phenomena and to build causal
interpretations, visual analytics approaches have shown good
potential. Visualization has shown to be effective in validat-
ing predictive models through interactive means [PBK10].
The authors visually relate several n-dimensional func-
tions to known models through integrated visualizations
within a model building process. They observed that such
a visualization-powered approach not only speeds up model
building but also increases the trust and confidence in the
results. Mühlbacher and Piringer [MP13] discuss how the
process of building regression models can benefit from inte-
grating domain knowledge. Berger et al. [BPFG11] introduce

Figure 8: Visual summaries to indicate the relevance of
features over cross-validation runs support analysts in making
informed decisions whilst selecting features for a classification
model [KPB14].

an interactive approach that enables the investigation of
the parameter space with respect to multiple target values.
Malik et al. [MME∗12] describe a framework for interactive
auto-correlation. This is an example where the correlation
analysis is tightly coupled with the interactive elements in
the visualization solution. Correlation analysis has been in-
tegrated as an internal mechanism to investigate how well
lower-dimensional projections relate to the data that they
represent [TLLH12]. The use of relational representations
here supports analysts to evaluate how local projection mod-
els behave in preserving the correlative structures in the data.
In a recent paper, Klemm et al. [KLG∗16] demonstrates the
use of visualisation to show all combinations of several inde-
pendent features with a specific target feature. The authors
demonstrate how the use of template regression models, inter-
actively modifiable formulas and according visual representa-
tions help experts to derive plausible statistical explanations
for different target diseases in epidemiological studies.

3.3. Define analytical expectations

Unlike the papers in the previous category where the user
explicitly modifies the parameters and the settings of an
algorithm, the works we review under this section follow a
different strategy and involve users in communicating ex-
pected results to the computational method. In these types of
interactive methods, the user often observes the output of an
algorithm and tell the machine which aspect of the output
is inconsistent with the existing knowledge, i.e., correcting
the algorithm. Furthermore, analysts can also communicate
examples of relevant, domain-knowledge informed relations
to be preserved in the final result. Since this is a relatively
recent approach to facilitate the interaction between the user
and the algorithms, the number of works in this category
is not as high as the previous section. In the following, we
review such works again under a categorization of different
ML algorithm types involved. Notice that integrating user
knowledge in this way in unsupervised learning contexts
falls into the general semi-supervised framework, which is a
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principled way in ML for making unsupervised problems less
ill-posed.

Dimension Reduction Dimension reduction algorithms
are suitable candidates for such approaches due to the often
“unsupervised” nature of the algorithms and the possibility
that errors and losses within the reduction phase are high,
in particular with datasets with high numbers of dimen-
sions. As one of the early works along these lines, Endert
et al. [EHM∗11] introduce observation level interactions to
assist computational analysis tools to deliver more inter-
pretable/reliable results. The authors describe such oper-
ations as enabling the direct manipulation for visual ana-
lytics [EBN13]. In this line of work, the underlying idea is
to provide mechanisms to users to reflect their knowledge
about the data through interactions that directly modify
computational results. One typical interaction is through
moving observations in a projection such that the modi-
fied version is more similar to the expectation of the an-
alyst [EHM∗11, BLBC12]. This line of research has been
expanded to focus on the interpretability of linear [KCPE16]
and non-linear DR models [KKW∗16]. Hu et al. [HBM∗13]
complemented such visualization level interaction methods
with further interaction mechanisms. The authors aim to
understand users’ interaction intent better and give them
mechanisms to also highlight preferences on unmoved points.

In their Model-Driven Visual Analytics system, Garg et
al. [GNRM08] suggest the use of a ”pattern painting” mech-
anism that enables analysts to paint interesting structures in
the visualization which are then turned into logical rules that
can be fed into a projection algorithm to build an effective
model.

An interesting supervised point of view has been proposed
in [IHG13] on the dimension reduction steering. The main
idea is to introduce an information theoretic criterion that
evaluates the uncertainty in the representation, considering
that the original high dimensional points are noisy. Given
this criterion, the authors apply an active learning approach
to select points that are maximally informative: if the user
can move one of those points to its desired position, the
uncertainty of the representation will be maximally reduced
(compared to the reduction expected with other points). The
experimental evaluation shows that the optimal points tend
to be more uniformly distributed over the projected data
set than with other selection methods, possibly reducing
some of the drawbacks of active learning summarized in
e.g. [ACKK14].

Clustering There are a number of works where user knowl-
edge is incorporated to feed a clustering algorithm with
expected results. Hossain et al. makes use of a scattergather
technique to iteratively break up or merge clusters to gen-
erate groupings that meet analysts’ expectations [HOG∗12].
(See Figure 9.) In their technique, the expert iteratively intro-
duces constraints on a number of required relations and the
algorithms take these constraints into consideration to gener-
ate more effective groupings. The users state whether clusters

Figure 9: ScatterGather [HOG∗12] is a technique to interac-
tively gather feedback from analysts in response to algorithmic
output and refine user-generated constraints to improve the
clustering.

in the current segmentation should be broken up further or
brought back together. Upon inspection of a clustering result,
the user interactively constructs a scatter gather constraint
matrix which represents a preferred clustering setting from
her perspective. The algorithm then considers this input
along with the clustering result to come up with an “op-
timized” result. In a number of papers, the user has been
involved even further to modify clustering results. In order
to support a topic modeling task through clustering, Choo
et al. [CP13] enable users to interactively work on topic
clusters through operations such as splitting, merging and
also refining clusters by pointing to example instances or
keywords.

More generally, clustering is one of the first tasks of ma-
chine learning to include ways to take into account expert
knowledge, originally in the form of contiguity constraints
(see [Mur85] for an early survey): the expert specifies a prior
neighborhood structure on data points (for instance related
to geographical proximity) and the clusters are supposed to
respect this structure (according to some notion of agree-
ment). While the original methodology falls typically into
the offline slow steering category, it has been extended to
more general and possibly online steering based on two main
paradigms for constraints clustering [BDW08]: the pairwise
paradigm (with must-link/cannot-link constraints) and the
triplet paradigm (with constraints of the form x must be
closer to y than to z).

An early example of the pairwise paradigm is provided
by [CCM08]. The authors describe a document clustering
method that takes into account feedback of the form: this
document should not belong to this cluster, this document
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should be in this cluster, those two documents should be
(or should not be) in the same cluster (this mixes pointwise
constraints, with pairwise ones). Active learning has been
integrated into this paradigm in [BBM04]. A variation over
the pairwise approach which consists in issuing merge and/or
split requests at the cluster level has been proposed and
studied in [ABV14].

Constraints based on triplet are more recent and were
proposed in the context of clustering by [KKP05,KK08]. The
main advantage of specifying triplet based constraints over
pairwise ones is that they allow relative qualitative feedback
rather than binary ones. They are also known to be more
stable than pairwise comparisons [KG90].

Classification Classification tasks are suitable for methods
where users communicate known/expected/wrong classifi-
cation results back to the algorithm. The ideas employed
under this section show parallels to the Active Learning
methodologies develop in the ML literature [Set09] where
the algorithms have capabilities to query the user for inter-
mediate guidance during the learning process. In their visual
classification methodology, Paiva et al. [PSPM15] demon-
strates that effective classification models can be built when
users’ interactive input, for instance, to select wrongly la-
beled instances, can be employed to update the classification
model. Along the similar lines, Behrisch et al. [BKSS14]
demonstrate how users’ feedback on the relevance of fea-
tures in classification tasks can be incorporated into decision
making processes. They model their process in an iterative
dialogue between the user and the algorithm and name these
stages as relevance feedback and model learning. This work
serves as a good example of how user feedback might lead to
better performing, fit-for-purpose classification models.

Regression Although examples in this category are limited
in numbers, defining the “expected” has shown great poten-
tial to support interactive visual steering within the context
of ensemble simulation analysis [MGJH08,MGS∗14]. In their
steerable computational simulation approach, Matkovic et
al. [MGJH08] demonstrate how a domain expert (an engineer)
can interactively define and refine desired simulation outputs
while designing an injection system. Their three-level steering
process enables the expert to define desired output values
through selections in multiple views of simulation outputs.
The expert then moves on to visually explore the control
variables of the simulation and assess whether they are feasi-
ble and refine/re-run the simulation models accordingly. The
authors went on to incorporate a regression model within
this process to further optimise the simulation results based
on users’ interactive inputs [MGS∗14]. With this addition
to the workflow, the experts again indicate desired output
characteristics visually and a regression model followed by
an optimization supports the process to quickly converge to
effective simulation parameters. The critical role that the
users play in these examples is to express their expert knowl-
edge to identify and communicate suitable solutions to the
algorithmic processes which in turn try and optimize for
those.

4. Application Domains

The integration of ML techniques into VA systems has been
exemplified in different domains, described below. Each of
these domains present unique and important challenges, thus
different combinations of interactive visualizations and ML
techniques are used. Some of these techniques are related to,
but go beyond the classifications in Section 3. For instance,
dimension reduction, clustering, etc. since they must be
closely embedded in the VA system and can be attached
to higher level meanings. However, most are relevant to the
Define Analytical Expectations category in Table 1. The
examples given in this section generally make use of one or
more technique categories in Section 3, depending on the
particular domain for which the applications are designed
for.

4.1. Text Analytics and Topic Modeling

Text corpora are frequently analyzed using visual analytic
systems. Text is a data format that lends itself nicely to
specific computational processes, as well as human reasoning.
Various text analytics methods have seen a lot of use in visual
analytics systems over the past 6-7 years. A main reason is
that these methods have proved useful in organizing large,
unstructured text collections around meaningful topics or
concepts. The text collections considered have been diverse
including research publications, Wikipedia entries, streaming
social media such as Twitter, Facebook entries, patents,
technical reports, and other types.

Visual analytic tools have been used to support informa-
tion foraging by representing high-dimensional information,
such as text, in an easily comprehensible two-dimensional
view. In such views, the primary representation is one where
information that is relatively closer to other information is
more similar (a visualization method borrowed from cartogra-
phy [Sku02]). These applications allow users to find relevant
information and gain new insights into topics or trends within
the data. An early example of combining machine learning
with visual analytics for analyzing text is a system called IN-
SPIRE [WTP∗99]. One of the views of the system, the Galaxy
View shown in Figure 10, displays documents clustered by
similarity. Using dimension reduction techniques, this view
encodes relative similarity as distance (documents near each
other are more similar). The high-dimensional representa-
tion of the text documents is created by keyword extraction
from each document (defining a dimension), and weightings
on the keywords determined computationally using popular
methods such as TF-IDF, etc. [RECC10].

Visual analytic tools have also been used to support syn-
thesis by enabling users to externalize their insights during
an investigation. In a spatial workspace where users can
manually manipulate the location of information, users build
spatial structures to capture their synthesis of the infor-
mation over time - a process referred to as “incremental
formalism” [SM99,SHA∗01]. Andrews et al. found that intel-
ligence analysts can make use of such spatial structures as
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Figure 10: IN-SPIRE [WTP∗99], a VA system for text corpora. IN-SPIRE combines computational metrics with interactive
visualizations.

a means to externalize insights during sensemaking, manu-
ally placing relevant documents in clusters on a large, high-
resolution display [AEN10]. Additionally, they found that the
large display workspace promoted a more spatially-oriented
analysis. Tools, such as I2 Analyst’s Notebook [i2], Jigsaw’s
“Tablet view” [SGL08], nSpace2 [EKHW08, WSP∗06], An-
alyst’s Workspace [AN12], and others have also found it
helpful to provide users with a workspace where spatial rep-
resentations of information can be manually organized.

More recently, researchers have developed techniques such
as Latent Semantic Analysis (LSA) for extracting and repre-
senting the contextual meaning of words [LD97]. LSA pro-
duces a concept space that could then be used for document
classification and clustering. Also, probabilistic topic models
have emerged as a powerful technique for finding semantically
meaningful topics in an unstructured text collection [BL09].
Researchers from the knowledge discovery and visualization
communities have developed tools and techniques to support
visualization and exploration of large text corpora based
on both LSA (e.g., [DWS∗12, CDS09]) and topic models
(e.g., [IYU08,LZP∗09,WLS∗10,OST∗10]).

The Latent Dirichlet Allocation (LDA) model of Blei et
al. [BNJ03], which represents documents as combinations
of topics that are generated, in the unsupervised case, au-
tomatically has proved particularly useful when integrated
in a visual analytics system. The LDA model postulates a
latent topical structure in which each document is character-
ized as a distribution over topics and most prominent words
for each topic are determined based on this distribution.
Each topic is then described by a list of leading keywords
in ranked order. When combined with VA techniques, LDA
provides meaningful, usable topics in a variety of situations
(e.g., [GS04,ZC07,DWCR11]). Recent developments in the
ML community provide ways to refine and improve topic

models by integrating user feedback, e.g. moving words from
one topic to another [HBGSS14].

There have been extensions of LDA-based techniques and
other text analytics by investigating texts in the combina-
tion ¡topic, time, location, people¿. This permits the anal-
ysis of the ebb and flow of topics in time and according
to location [DWCR11,DWS∗12,LYK∗12]. Time-sensitivity
is revealed not only in topics but in keyword distribu-
tions [DWS∗12]. Lately there has been work to add peo-
ple and demographic analysis as well [DCE∗15]. Combining
topic, time, and location analysis leads to identification of
events, defined as “meaningful occurrences in space and
time” [KBK11,DWS∗12,CDW∗16,LYK∗12]. Here the topic
analysis can greatly help in pinpointing the meaning. In
addition, combining topic modeling with named entity ex-
traction methods, such as lingpipe [20008], can greatly en-
hance the time, location, and even people structure since
these quantities can be automatically extracted from the text
content [MJR∗11,CDW∗16].

At this point, it is worthwhile to describe a visual
analytics system that combines all these characteristics.
VAiRoma [CDW∗16] (shown in Figure 11) creates a nar-
rative that tells the whole 3,000 year history of Rome, the
Empire, and the state of Italy derived from a collection of
189,000 Wikipedia articles. The articles are selected from the
nearly 5M English language article collection in Wikipedia
using a short list of keyword, but otherwise the initial topic
modeling and named entity extraction are done automati-
cally. The interface for VAiRoma is displayed in Figure 11.
The individual topics are depicted as color-coded streams in
the timeline view (A). The circular topic view in (C) pro-
vides a compact way of depicting topics, the weights of their
contributions for a given time range, and topic keywords.
The navigable map view in (B) provides immediate updates
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of geographic distribution of articles (based on locating the
geographic entities in the text) in terms of hotspots for a
selected time range and topic. The window (f) lists article
titles for selected geographic view, time range, and topic. In
Figure 11, one can clearly see event peaks for selected topics
having to do with Roman government and military battles in
the period from 500 BC to 500 AD. The interlinked windows
in the interface plus key topics and event peaks permit a user
to quickly peruse the main events in ancient Roman history,
including the rise of Christianity and the Catholic church,
trade with India and the Far East, and other events that one
might not find in looking narrowly at, say, just the history
of the Roman Empire. In this case, the user can focus from
thousands of articles to a few hundred articles overall, which
she can then quickly peruse. See the VAiRoma article for
more details.

VAiRoma shows the power of the overall model depicted
in Figure 3. Though it is not complete w.r.t. this model (no
current VA system is), it provides an integrated approach
to data handling, interactive visualization, ML (in this case
topic modeling) combined with other techniques, and ex-
ploration and knowledge building techniques. It shows the
power of an integrated approach. The approach is general
and is now being applied to large, heterogeneous collections
of climate change documents. In addition, full text journal
article collections are being analyzed using extensions of the
topic modeling and entity extraction methods. This shows
that once ¡topic, time, location, people¿ features and event
signatures can be extracted, analyses based on these ana-
lytics products can integrate a wide range of heterogeneous
collections.

4.2. Multimedia Visual Analytics

Visual analytic applications have also been developed to
allow people to explore multimedia (i.e., images, video, au-
dio). For example, iVisClassifier shows how facial expression
features can be incrementally explored and classified by
a combination of image feature-detection algorithms and
user feedback [CLKP10]. Through interactively adding and
removing images from classifiers, the model learns the fa-
cial expressions that are interesting (and similar) to the
user. It combines analytic models such as feature extraction
and classification with visual analytic approaches. Multi-
Facet is another example of visually analyzing multimedia
data [HHE∗13]. MultiFacet presents facets of each data type
to users as interactive filters. Thus, the process of interac-
tively selecting attributes of different data types helps create
groups of conceptually interesting and related information.

As image and video data is often combined with text data
(or textual metadata attached to the images or videos), fus-
ing the feature space between these datatypes is an open
challenge. Automated approaches are error-prone, and of-
ten require user intervention and guidance when semantic
concepts and relationship need to maintained across data
types [CBN∗12]. Similarly, an example of a much more spe-
cific application is given in [BM13] where the authors present

a steering mechanism for source separation in a single mono-
phonic recording. The user can annotate a standard time-
frequency display to roughly define the different sources.
Errors made by the algorithm can be annotated to improve
further the separation.

4.3. Streaming Data: Finance, Cyber Security,
Social Media

Streaming data is a growing area of interest for visual ana-
lytics. Data are no longer isolated and static, but instead are
part of a sensor-laden ecosystem that senses and stores data
at increasing frequencies. Thus, visual analytic systems that
integrate machine learning models have great potential. Ex-
amples of domains that generate streaming data include the
financial industry, cyber security, social media, and others.

In finance, for example, FinVis is a visual analytics sys-
tem that helps people view and plan their personal finance
portfolio [RSE09]. The system incorporates uncertainty and
risk models to compute metrics about a person’s portfolio,
and uses interactive visualizations to show these results to
users. Similarly, Ziegler et al. presented a visual analytic sys-
tem to help model a user’s individual preferences for short,
medium, and long-term stock performance [ZNK08] and later
extended their approach to real-time market data [ZJGK10].
Figure 12 is an example of how visualisations can provide
an in-depth understanding of the groupings (clusterings) of
financial time series. Here, financial market data for assets
in 3 countries and 28 market sectors from 2006 and 2009 are
depicted. The red bars indicate the crash of the stock market
in 2008 and the visualisation enables the user to identify the
overall changes but also notice subtle variations such as the
lack of a response in some countries for particular sectors.

Cyber security is a domain fraught with fast data streams
and alerts. Examples of machine learning techniques often
incorporated into systems that support this domain include
sequence and pattern-based modeling, rule-based alerting,
and others [BEK14]. People in charge of the safety and relia-
bility of large networks analyze large amounts of streaming
data and alerts throughout their day, thus the temporal com-
ponent of making a decision from the analysis is emphasized.
For example, Fisher et al. presented Event Browser, a vi-
sual analytic system for analyzing and monitoring network
events [FMK12]. Their work emphasizes how different tasks
of the analyst have to happen at different time scales. That
is, some tasks are “real-time”, while others can be taken
“offline” and performed for a longer duration of time. The
persistent updating of new data into the offline tasks presents
challenges.

Social media data can also be analyzed using visual an-
alytic systems. For example, Storylines [ZC07] and Even-
tRiver [LYK∗12] are two examples of how visual analytic
applications can help people understand the evolution of
events, topics, and themes from news sources and social
media feeds. In these systems, similar machine learning tech-
niques are used as for text. However, the temporality of the
data is more directly emphasized and taken into account.

submitted to COMPUTER GRAPHICS Forum (2/2018).



Endert et al. / Integrating Machine Learning into Visual Analytics 15

Figure 11: Overview of VAiRoma Interface. The interface has three main views: Timeline view (A), Geographic view (B)
and Topic view (C). A user-generated annotation is shown in the Timeline view.

Lu et al. [LKT∗14] showed how appropriate social media
analysis could have predictive power, in their case predicting
movie box office grosses from early word of mouth discus-
sion on Twitter, YouTube, and IMDB. A dictionary-based
sentiment analysis was used along with analytics from the
R statistical computing environment and the Weka machine
learning workbench. This permitted a choice of modeling in
terms of multivariate regression, support vector machines,
and neural networks. The paper promoted an integrated vi-
sual analytics approach where the interactive visualizations,
based on D3, permitted users to investigate comments and
sentiment, classify similar movies, and follow trends and
identify features. The user could then improve a base line
regression model based on trends and features identified in
the visaulizations. Results of the use cases were positive
with several of the non-expert participants being able to
outperform experts in predicting opening weekend grosses
for 4 films, according to the criteria set up by the authors.
The paper has the usual limitation of supervised learning
approaches in that a training dataset must first be collected
and analyzed as a preliminary step, but it does successfully
allow for improvement of the analytic model within the VA
environment. Also, like many papers dealing with more com-
plex analysis, it defines a process for best use of the system;
this appears to be an important and effective approach for
VA + ML systems.

Yeon et al. [YKJ16] covered similar ground in their identi-
fication and analysis of interesting past abnormal events as
a precursor for predicting future events. Here, as in Lu et al.
and in other papers using ML, context and analytic power
is obtained from combining multiple sources (in this case
social media and news media). Yeon et al. identify contextual
pattern in these past events, which permit them to make
predictions for future events in similar contexts. An interac-

Figure 12: Aggregated visual representations and clustering
have been used in supporting the real-time analysis of temporal
sector-based market data [ZJGK10].

tive interface involving spatio-temporal depiction of events
plus identification of other features permits the choosing of
interesting events and specification of their contexts. Trends
for the unfolding of future events and possible unfolding story
lines can then be created. The authors evaluated their VA
system with three use cases.

4.4. Biological Data

Biology, and in particular, bio-informatics are fields that are
increasingly becoming data-rich and the use of visualisation
empowered analysis methods are proving highly useful and
effective [GOB∗10]. Although most computational analysis
solutions only incorporate visualization as a communication
medium and do not make use of interaction, there are a num-
ber of examples where VA and ML approaches operate in
integration. Within the context of epigenomic data analysis,
Younesy et al. [YNM∗13] present how a number of ill-defined
patterns and characteristics within the data can be identified
and analysed through the help of interactive visualizations
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and integrated clustering modules. They demonstrate how
user-defined constraints can be utilised to steer clustering
algorithms where the results are compared visually. Grottel
et al. [GRVE07] discuss how interactive visual representa-
tions can be instrumental in interpreting dynamic clusters
within molecular simulations. In addition to these, interac-
tive visualisations have been shown to support bi-cluster
analysis [SGG∗14]. The authors utilize an interactive layout
where fuzzy bi-clusters are investigated for multi-tissue type
analysis. Biclustering is an algorithmic technique to solve for
coordinated relationships computed from high-dimensional
data representations [MO04], and has been used in other
domains, including text analysis [SNR14,SMNR16,FSB∗13].

In addition to the above methods where the focus is mainly
on investigating clusters, there are also works where in-
teractively specified high-dimensional data projections are
utilised to characterize and compare different cancer sub-
types [ADT∗13]. In their tool called viSNE, the authors
demonstrate how user-driven, locally applied projections
preserve particular relations and they argue that such meth-
ods are instrumental in interpreting any multi-dimensional
single-cell technology generated data.

5. Embedding Steerable ML Algorithms into
Visual Analytics

As discussed above at several points and categorized in Sec-
tion 3, one area of research that has been recently attracting
much interest in the machine learning and data visualization
communities is the development of interactive approaches
binding visualizations to steerable ML algorithms. This goes
beyond typical interactive ML methods in that it places
interaction at the same level as visualization and ML, thus
producing a powerful extension of visual analytics. As ex-
plained in [Van05], [PSCO09], interaction provides feedback
in the visualization process, allowing the user to manipulate
the parameters that define a visualization on the basis of
the knowledge acquired in previous iterations. In particu-
lar, low latency interaction with large update rates of the
visual display provides higher levels of user involvement in
the analysis [EMJ∗11], triggering low level attention and
processing mechanisms (such as tracking moving items),
where the user’s senso-motor actions have immediate ef-
fects in the displayed information. Despite interaction mech-
anisms having extensively been discussed in the visualiza-
tion literature [Van05], [PSCO09], the relationships between
these parameters and the resulting visualization are in most
cases of a simple nature, including changes of scale, displace-
ments, brushing, etc., specially for low latency interaction.
As pointed out in [VL13], hardly ever are complex interac-
tions or transformations based on intelligent data analysis
undertaken at this level. This fact is certainly surprising,
especially considering that ML is a mature discipline and the
power of today’s hardware, as well as programming languages
and libraries make it possible to use algorithms (or adapted
versions of them) as intermediates between the user actions
and the visualization, even at low latency levels.

The DR algorithms discussed in Section 3, which con-
struct a mapping from a high dimensional input space onto
a typically 2D or 3D visualization space, would be partic-
ularly useful for extended VA approaches. To build such
mappings, DR algorithms seek to preserve neighborhood
relationships among the items in both spaces, resulting in
representations that follow the so called “spatialization prin-
ciple” (based on the cartographic principle where closeness
≈ similarity [Sku02]). Placing similar items in close positions
results in highly intuitive arrangements of items in a visual
map that serves as a basis for developing insightful visual-
izations of high dimensional elements [Ves99,KP11,EBN13].
Moreover, the connection that DR mappings make between
something that can be “seen” and a high dimensional feature
space suggests using the visual map as a canvas where classi-
cal interaction mechanisms (zoom, pan, brushing & linking,
etc.) can be used to explore high dimensional data.

However, interaction can go far beyond this point by al-
lowing the user to steer the DR algorithm through the vi-
sualization by direct modification of its parameters or by
making transformations on the input data. As discussed in
Section 3, this idea has been explicitly formulated in [CP13]
as iteration-level interactive visualization, which aims at vi-
sualizing intermediate results at various iterations and let-
ting the users interact with those results in real time. In a
slightly more formal way, as shown in [DCV16], an interac-
tive DR algorithm –the argument can be extended to other
ML algorithms– can be considered as a dynamically evolving
system, driven by a context that includes the input data and
the algorithm’s parameters

ẏ = f(y,u), v = g(y) (1)

where y is the internal state of the algorithm, v is the outcome
of the algorithm (e.g. a visualization), which depends on
the internal state, and u = {x,w} is a context vector that
contains the input data x and the algorithm parameters w.
In a general framework, the user will steer the algorithm
by manipulating w based on his/her knowledge acquired
from the visualization v. Under a fixed context u0 –i.e. no
changes in the input data or the algorithm parameters–, the
internal state y in model (1) will keep on changing until it
reaches convergence to a steady state condition 0 = f(y0,u0).
Changes in the algorithms parameters w or in the input
data x will make the internal state evolve to a new steady
state condition 0 = f(y1,u1), and hence result in a new
visualization v1. For a continuous f(·) –typically for non-
convex algorithms, based on gradient descent approaches–
the representation v(t) will smoothly change, resulting in
animated transitions that provide a continuous feedback to
the user. Despite the fact that this behavior opens a broad
spectrum of novel and advanced user interaction modes and
applications, this is still a rather unexplored topic.

Many possibilities may arise from this approach, all based
on changes in different elements of the context vector u:

• One fundamental subset of parameters that conveys a
great deal of user insight are the input data metrics, which
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can be expressed as a weight matrix Ω = (ωrs) being
‖a‖Ω =

∑
r

∑
s
arωrsas, whose parameters are included

in w. Prior knowledge on the relevance of features can
be easily considered allowing user-driven modifications in
the diagonal elements of ωii ⊂ w. An example related to
this idea is the iPCA [JZF∗09], an interactive tool that
visualizes the results of PCA analysis using multiple coor-
dinated views and a rich set of user interactions, including
modification of dimension contributions. A similar idea on
the stochastic neighbor embedding algorithm (SNE) was
also proposed in [DCP∗14].
• The user might also have insight on the similarities be-

tween items. In [BLBC12], a system called dis-function was
developed, featuring DR visualization that allows the user
to modify the distance matrix Dij = ‖ai − aj‖Ω between
items i, j, by moving points in the visualization based
on his/her understanding of their similarity, and see new
results after a recomputation of the projections with the
new metrics.
• Also, prior knowledge on class information can be inserted

by the user, suggesting techniques to increase the similar-
ity of items belonging to the same class. In [PZS∗15] a
method is proposed to allow the user to include prior class
knowledge in the DR projections by extending the original
dataset with transformations of the original feature space
based on his existing class knowledge.
• Finally, the input data x in model (1) may change with

time (x = x(t)), suggesting the use of iDR on streaming
data to provide live visualizations v(t) that convey time
varying information; in this case, user interaction is possi-
ble through timeline sliders, making it possible to explore
how input data items and their relationships evolve in time
by moving back and forth in time.

These cases imply a substantially more advanced kind of
feedback to the user than traditional interaction mechanisms.
Placing these capabilities in a visual analytics framework
greatly empowers them. As described in Figures 2 and 3,
such a framework supports analytic reasoning, the discov-
ery of much deeper insights, and the creation of actionable
knowledge. The mere fact of being part of sensemaking and
knowledge feedback loops (a virtuous cycle) suggests that
there is huge potential and a broad spectrum of possibilities
in the integration of ML algorithms discussed in this paper,
where even the simplest ones may have multiplicative effects.
For certain types of analysis, such as following animated tran-
sitions, this sort of interaction mechanism must be achieved
in a fluid manner, with low latencies and fast update rates.
However, this is not necessarily required for all knowledge
generation and synthesis activities, as discussed next.

Levels of Interactive Response A long-recognized up-
per threshold for latency in WIMP and mobile interfaces
is 0.1 second. Faced with higher latencies, users start to
lose the connection between their actions and the visual re-
sponse, commit more typing or selection errors, and become
frustrated [HB11]. This limit has also been discussed as an
upper threshold for coherent animations (though completely

smooth animations would require a lower latency) and for
a range of interactions in immersive VR. However, the de-
tailed effects of particular latency thresholds depend on the
task. For embedded analytics tools in VA systems, such as
steerable ML methods, it is useful to define a wider range of
interactive responses [RF16]:

• Real-time Regime: ¡ 0.1 second. Interactions such as mov-
ing a time slider to control an animation of time-dependent
behavior or changing the weighting factors of leading di-
mensions in an interactive PCA tool [JZF∗09] to reveal
changes in the projected surface fall into this regime. Such
interactions can be employed for rapid exploration and
spotting of trends.

• Direct Manipulation Regime: 0.1 to 2-3 seconds. Analytic
reasoning tends to involve more complicated interlinking
of rich visualizations with ML methods. For example, the
VAiRoma geographic window shows multiple hierarchical
hotspot clusters (Figure 11) when a time range and topic
are selected, but there is a delay of 2-3 seconds before the
result is displayed. The user must peruse this distribution
and its areas of concentration, which can take several
seconds or more. During interface evaluation the delay was
not noted and does not seem to hinder the user’s reasoning
process [CDW∗16], perhaps because the user is thinking
about the selection when it is made, and what it may
mean, which then flows into her reasoning process once
the result appears. The same seems to be true when the
user makes a selection of a geographic region or a topic and
experiences a similar delay until updates in the timeline
or other linked windows appear.

• Batch Regime: 10 seconds or more. Here the cognitive flow
of human reasoning is interrupted. To minimize effects of
this interruption, the best analytics at this level of response
might be those that launch a new reasoning direction (e.g.,
recalculation of textual topics based on a revised set of
keywords).

These levels of response are related to performance timings
from enactive cognition [GSFS06], suggesting that this model
can be applied here. An important conclusion of this discus-
sion is that it is not necessary to have real-time response
for certain interactive ML algorithms; delays up to 2-3 sec-
onds and perhaps more might be digestible by the user. This
could substantially reduce the burden of interactive response
for ML algorithms. Of course, further user studies of these
algorithms in action should be carried out.

6. Open Challenges and Opportunities for ML and
VA

Collaboration between ML and VA can benefit and drive
innovation in both disciplines. Advances in ML can be used
by VA researchers to create more advanced applications for
data analysis. This includes the optimization of currently
integrated techniques, but also the discovery of additional
techniques that fit into the broad range of analytic tasks
covered by visual analytic applications [AES05, LPP∗06].
Similarly, as advances are made in VA applications, the user
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requirements and needs can drive new ML algorithms and
techniques.

Below, we list a collection of current challenge and oppor-
tunities at the intersection of ML and VA.

6.1. Creating and Training Models from User
Interaction Data

ML models are typically built and modified based on ample
training data that contain positive and negative ground truth
examples. While many domains and tasks can be solved with
ample training data, there exist scenarios, as discussed in this
paper, where not enough training data is available. For these
cases, it becomes important to incorporate user feedback
into the computation in order to guide and parametrize the
computational model being used. This raises the challenges
of how to incorporate user feedback into computation in an
effective and expressive, yet usable manner?

The concept of interactive machine learning has taken into
account user feedback to steer and train these models. For
example, users can provide positive or negative feedback to
give support for or against suggestions or classifications made
by the model. The models adjust over time based on this
input.

However, there is the ability to look beyond labeling, or
confirming and refuting suggestions as way to incorporate
user feedback [ECNZ15] - what about the remaining user
interaction that people perform during visual data explo-
ration? User interaction logs contain rich information about
the process and interests of the user. Examples of the kinds
of inferences that can be made from the user interaction
logs are shown in more detail earlier in the report. Thus,
the opportunity exists for ML techniques to leverage the
real-time user interaction data generated from the analysts
using the system to steer the computation.

Systems that take into account a broader set of user inter-
actions enable people more expressivity in conveying their
mental model, preferences, and subject matter expertise. Fur-
ther, taking into account the broader set of user interaction
allows users of the system to stay more engaged in the act
of visual data exploration, as opposed to actively training
the model and system.

Figure 13 shows a model for how multiple types of user
input can be incorporated into the machine learning mod-
els driving visual analytic techniques. As is shown in this
model, two broad types of models can be created from user
interaction: Data models and User Models. In general, data
models refer to weighted data items and attributes. These
can be weighted computationally, or via user feedback. Fur-
ther, these weights can be computed based on inferences
on the user interaction (i.e., to approximate user interest
of focus). User models typically refer to computational ap-
proximations of the state of the user (e.g., cognitive load,
personality traits [BOZ∗14], etc.)

In addition to steering existing models (such as dimension

Figure 13: A model from [ECNZ15] showing how multiple
types of user input can be used to steer machine learning
models in VA.

reduction models, topic models, etc.), such user feedback can
indicate the need for novel models to be created. By focusing
on the user interaction, new discoveries can be made about
the processes and analytic tasks of people during data analy-
sis. This continued study, or science of, interaction [PSCO09]
can lead to advances in the machine learning community in
the way of new algorithms or techniques that model analytic
tasks or processes of people.

6.2. Balancing Human and Machine Effort,
Responsibility, and Tasks

For mixed-initiative systems, it is a common notion that
there exists a balance of effort between the user and the
machine [Hor99]. This effort can be divided by decomposing
the larger task into sub-tasks that are either better suited
to the person, or more quickly performed by the system.
Similarly, these tasks often break down into being more well-
defined and quantitative (i.e., solved by computation), or
subjective and less formally defined (and thus needing input
from the user). For example, a mixed-initiative visual analytic
system for grouping and clustering can take into account the
exemplar data items that are grouped by the user, generate a
data model from those examples, and organize the remaining
data points [DFB11].

However, there remains the need for generalizable empirical
evidence to inform researchers about how to balance this
effort between the user and the machine. It is not clear the
extent to which tasks should be divided, or co-completed.
Typical data analysis sessions involve many user tasks and
sub-tasks [AES05], and dividing the effort of these tasks
between the user and the system is challenging.

It is also unclear exactly how to measure the amount of ef-
fort expended by both the user and the system. For example,
in a visual analytic system that helps people cluster docu-
ments, Endert et al. used a measure of how many documents
were moved and grouped by the user and how many were
automatically grouped by the system [EFN12a]. However,
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there exist opportunities to consider additional metrics for
the balance of effort in mixed-initiative systems that can
drive the possibility of novel evaluations of effectiveness.

6.3. Complex Computation Systems can lead to
Automation Surprise

By coupling machine learning with visual analytics systems,
we can develop complex systems made up of many inter-
related and inter-dependent “black boxes” of automated com-
ponents for data analysis, knowledge discovery and extraction.
Complex systems will typically comprise many instances of
known and hidden inter-dependencies between components
and yield outputs that are emergent where the interactions
among agents and individual units may be deterministic.
The global behaviour of the system as a whole may conform
with rules that are only sometimes deducible from knowledge
of the interactions and topology of the system. This makes
it difficult to know exactly which inputs contribute to an
observed output, and the extent of each factor’s contribu-
tions [SS11,Orm]. Sarter and Woods [SWB97] observed that
interactions between these tightly coupled automated “black
boxes” can create consequences and automation surprises
that arise from a lack of awareness of system state and the
state of the world. This creates potential for error, compla-
cency from trusting the technology, placing new demands on
attention, coordination and workload.

At the risk of saying the obvious, an approach proposed
by Norman [Nor86] to address some of the problems of
controlling complex systems is based on observability and
feedback. They are crucial for figuring out how a system
works, and they help us affirm the mental models that drive
our thinking and analysis of a problem or a device. Poor
observability of automated advanced intelligent processes
makes it difficult to evaluate if outcomes from the automated
computations are within the bounds of normal or acceptable
behavior, or whether our instructions to the system were
correctly executed or what else was included in the execution
that was not intended. Good mapping between designed
action and desired action helps us anticipate and learn how
to interact with the system. Good mapping also helps us see
the connection between what the system was instructed to
do, and the outcome of carrying out that instruction.

One of the major challenges then, is for visual analytics
designers to create designs that “... facilitate the discovery
of meaningfulness of the situation ... not as a property of the
mind, but rather as a property of the situation or functional
problems that operators are trying to solve ... [by] develop-
ing representations that specify the meaningful properties
of a work domain ... so that operators can discover these
meaningful properties and can guide their actions appropri-
ately” [BF11].

To create such a design, there is a need to have a conception
of the analytical thinking and reasoning process that extends
beyond the information handling and manipulation aspects
that are frequently described. A focus group study with 20

Figure 14: Characterizing the thinking terrain of ana-
lysts [Won14].

intelligence analysts [WV12], think-aloud studies with 6 an-
alysts performing a simulated intelligence task [RAWC14],
and think-aloud studies with 6 librarians carrying out a
surrogate task of creating explanations from a literature
review task [KAW∗13] provide insight into this analytical
thinking and reasoning process. The results of these studies
indicate that analyst make use of the various inference mak-
ing strategies described in Section 2.1 - induction, deduction
and adduction - depending upon what data they have, the
rules for interpreting the data, and premise they are starting
with and the conclusions they would make or would like to
make. Furthermore, very often they would test the validity of
the propositions they arrive at by practicing critical thinking
- where they attempt to assess the quality and validity of
their thinking and the data they use, the criteria they use for
forming judgments, and so forth. In fact, critical thinking is
so important that many intelligence analysis training schools
have introduced it into their training.

One thing else that is observed to happen alongside all
of this is somewhat more subtle: Analysts are constantly
trying to explain the situation, sometimes re-constructing
the situation from pieces of data and from inferential claims;
and then carrying out searches or further analysis to find
necessary data back the claims. This process of explana-
tion is crucial to making sense and how it is used to link
data, context and inferences. It often starts off as a highly
tentative explanation that is based on very weak data or
hunches. The analyst then explores this possibility, making
conjectures, suppositions and inferential claims, from which
they then connect with further data (testing their relevance
and significance), elaborate, question, and often reframe and
discard, their ideas, and eventually building up the story
so that it eventually becomes robust enough to withstand
interrogation.

We see a progression - not necessarily in a linear manner
- where explanations reflect tentative, creative and playful,
and generative thinking, and then transitions towards think-
ing strategies that are more critical, evaluative, deliberate
and final (see Figure 14 for an illustration depicting this
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discussion). One can assume a continuum where at one end
we have a tentative explanation we call a “loose story” that
accounts for the data, and at the other end the loose story
has evolved into a strong and more formal argument such
that it is rigorous and able to withstand interrogation, say,
in a court of law.

At the “formal argument” end of the continuum, there is
much lower uncertainty. The analyst is more definite about
what the data and their relationships mean, and very likely
has become more committed to a particular path of investiga-
tion. At this end, the emphasis is on verifying that the data
used to construct the conclusions, the claims being made
based on the data, and the conclusions themselves, are valid.

The combined machine learning and visual analytics tools
to be built should fluidly link the generative, creative, play-
ful and tentative exploration activities that encourage the
exploration of alternatives, appreciation of the context, and
the avoidance of pre-mature commitment, with the more
evaluative, critical inquiry that leads to a deliberate, final
and rigorous explanation. This is the notion of the design
principle of fluidity and rigour.

6.4. Visualizing Intermediate Results and
Computational Process

Many kinds of ML algorithms undergo a continuous con-
vergence process towards the final solution. In general, only
this final solution is rendered into a visualization, which may
incorporate classical interaction mechanisms (zoom, pan,
brushing, focus&context, etc.). This convergence is often
done within a fixed context, that includes the training set,
the algorithm parameters and the cost function. These ele-
ments often convey a large amount of insight for the user,
but since they remain fixed during convergence users are
deprived of the benefits of interaction. What if the user could
steer these fixed elements “during” convergence?.

A promising topic, involving innovation by both VA and
ML communities, is rendering visualizations of the intermedi-
ate results during convergence, allowing the user to tunesteer
the ML algorithms by changing these elements. Designing ad
hoc ML algorithms with this approach in mind that pave the
way for new and useful kinds of interaction mechanisms opens
new and exciting research paths. There has been some prior
work on this topic. For example, Stolper et al. developed a
system for progressive visual analytics, where intermediate
results of a sequence-mining algorithm running on medical
treatment events can be shown to clinicians [SPG14]. Their
work gave analysts the ability to see broader results sooner
to help decide if the entire computation needed to be ex-
ecuted. Similarly, systems to show partial query results of
large datasets [FPDs12] and partial dimension reduction and
clustering results [TKBH17] have been recently developed..
These works raise important questions about the tradeoff
between accuracy and execution time of these algorithms,
and also about how to incorporate user feedback into com-
putation during runtime.

6.5. Enhancing Trust and Interpretability

A key element of the visualization approach is its ability
to generate trust in the user. Unlike pure machine learn-
ing techniques, in a data visualization the user “sees” the
data and information as a part of the analysis. When the
visualization is interactive, the user will be part of the loop
and involved in driving the visualization. In such a context,
the development of a mental model goes hand in hand with
the visualization, as everything is part of the process. This
tight involvement of the user in the development of the visu-
alization based on the results of previous iterations, along
with the highly visual component of human thinking, can
make this approach generate a great amount of trust in the
user. However, such “trust” can have different meanings at
different levels of cognition. An apparently trustable result
at an intuitive level can arouse suspicions at a higher cog-
nitive level, demanding methods for statistical confirmation
of the results. On a broad view, two different levels can be
identified:

1. A “qualitative level”, that would make heavy use of percep-
tion visualization principles along with interaction mech-
anisms to present data in an intuitive way. The commu-
nication in both senses (from and to the interface) will
typically seek to: a) adapt to individual’s perception mech-
anism so that the information throughput and knowledge
increment on the user is maximized; and b) in a higher
level, to adapt to the human cognitive process so that data
and information is presented in a way that is intuitive
to the user. The means to carry out this approach would
rely on classical visualization methods (adequate use of
visual encodings and spatial layouts) and on interaction
techniques, including brushing, linking, coordinated views,
animated transitions, etc., but also in much more powerful
approaches such as user-driven steering of ML algorithms
(such as DR, clustering, etc.) resulting in the reconfigu-
ration of the visualization on the basis of changes in the
context such as time varying data or changes in the user
focus on different types of analysis.

2. A “quantitative level” is, however, needed to provide sound
statistical validation of the former visualization results.
Taken in an isolated way, this level would lack insight.
However, its outcomes are supposed to be trustworthy so
the user can consider them as definite validations. Quanti-
tative approaches –mainly belonging to the realm of ML–
are in essence deterministic, which makes them less prone
to human errors and reproducible. This helps to stan-
dardize decisions and provides congruence, accurateness,
uniformity and coherence in the results.
However, quantitative approaches tend to avoid the need
for user intervention by trying to automate the process.
In general they do not look for human feedback but un-
dertake as many human tasks as possible in the process,
automating it to the maximum possible extent, aiming to
avoid any kind of human subjectivity and seeking rigor
(statistical, mathematical). But many problems in real
life are built on sparse bits of knowledge coming from
diverse domains. Moreover, such knowledge is often made
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of vague or imprecise mental models. Purely quantitative
approaches cannot operate with such small, diverse and
“fuzzy” bricks; they need solid foundations to be operative.

The previous division is only conceptual. Both approaches
can (and should) be combined. For instance, a statistical
validation of one or more facts can be displayed on top of the
qualitative visualization by making use of visual encodings
and text labels. We encourage visual analytics designers to
seek efficient combinations between qualitative and quan-
titative approaches, looking for concurrent visualization of
actual problem data and sophisticated computed features,
both coexisting in the same representation. The mere fact of
representing statistical validations sharing the same layout
and structure as the original data in a same visualization
allows the user to internalize that quantitative information
allowing her to connect it to its domain knowledge, with an
unquestionable positive effect on trust and confidence in the
results.

6.6. Beyond Current Methods

Currently, many of the applications of machine learning in vi-
sual analytics relate to dimensionality reduction. In addition,
as discussed in Section 4, there are a different sort of ML
methods based on Bayesian inferencing and including topic
modeling and textual analytics approaches. These are becom-
ing more prominent. While these applications are undeniably
an important use of machine learning, we contend that con-
sideration of the role of the user opens up several new fields
of study where machine learning can play an important role.
First amongst these is the role of machine learning in creating
a computational model for the user’s analytical process. This
complements cognitive task analysis and aims to model how
domain expert users use visual analytics to tackle important
tasks, and how they reason about the problem. This will
enable better system design to support expert strategies and
provide support to less-trained users.

Every user interaction has two primary functions: i) to
communicate a direct explicit intent from the user to the
analytical system and receive an appropriate response (e.g.
if the user requests a zoom into a particular area, the system
should create that zoomed-in visual display), and ii) to carry
out an indirect implicit piece of analytical reasoning.

The point is that every user choice in the visual analytics
frame is equivalent to a statistical choice in the mathematical
frame: we need users to make appropriate choices that do
not invalidate the (implied) statistical analysis that they are
carrying out. Motivated by the analysis of how users carry out
visual analytics, particularly the concepts of sense-making
and knowledge generation, the first step to understanding
the details of this process is to compile a complete log of
users’ analytical process and the information that they record.
This is the base dataset that can be used for traceability,
responsibility and provenance: providing an argued case for
others (such as collaborators or managers) to critique and use
to make decisions. However, beyond this use, the database is

also a resource to mine in order to clarify the decisions that
are made in the course of visual analytics, leading to the
potential to develop adaptable interfaces and a greater depth
of understanding of users’ mental models, which can then
be used to guide other, perhaps less skilled or experienced,
users.

It would not be feasible (nor practically useful) to track
every single change in a visualisation. It is essential that
the process involves minimal interruption to cognitive flow
(so as to avoid damaging the very process we are trying to
understand). However, it would be helpful to prompt the
user for feedback (preferably in visual ways), in the form of
annotations, at certain key points of the analysis. We propose
using machine learning (e.g. to look for breakpoints in the
way information is displayed) as cues for these prompts. The
process model can also learn from user interaction (with
appropriate additional guidance). For example, if the user
‘undoes’ a particular action, it could mean “I don’t want this:
my choice was wrong” or “The visualisation is useful, but it
is a dead end and I need to back-track”. Other simple user
interactions that can connect to reasoning processes include
brushing data points (which corresponds to selecting and
labelling a subset of data) and linking (which corresponds
to hypothesising correlations between variables and data
points).

As a complement to this database of successful analytic
practice, what many users need is a way of avoiding bad
practice (or errors). A catalogue of ‘typical’errors that is
searchable (using case-based reasoning tools) could be crowd-
sourced from teachers (and their students!) or training
courses.

How can machine learning aid the understanding of user
processes? At the simplest level, user interactions are a linear
sequence of actions: discovering the underlying sequence and
the transitions between items is relatively straight-forward,
since a Markov (or hidden Markov) model can easily be
trained to uncover this structure. However, an unstructured
and unannotated sequential list does not contain enough
structure to infer the analytical process. Firstly, we need to
understand the reasons why a user has made choices (which
requires annotations). Secondly, it is clear that the analytical
process is not a simple sequence of logical choices leading
inexorably to a goal. Instead, the process involves exploratory
analysis – trying a range of options and assessing which is
the most successful – and back-tracking when results show
that a particular line of inquiry is fruitless. These transform
what is, in terms of a graphical model, a one-dimensional
structure, into a tree or directed acyclic graph.

The theory of Bayesian belief networks (BBNs) is rele-
vant here. There are two aspects of the model that can be
learned: the conditional probability tables (CPTs) for the
links from all the parents of a particular node; and the struc-
ture of the network (the presence or absence of directed links)
which represents the conditional (in)dependence of variables.
Learning the CPTs for a given network structure is straight-
forward: with suitably chosen Bayesian priors (a Dirichlet
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distribution), it is a matter of counting co-occurrences of
value pairs in a dataset [SDLC93]. Learning the structure of
a BBN is much more complex: in fact, the general case is NP-
hard [Chi96]. Some special cases (such as trees) are tractable,
but in this domain it is preferable to fix the structure based
on our understanding of the users’ analytical process. Models
for this process, such as CRISP-DM [WH00] (used in data
mining) or those drawn from the infovis community (such
as the semantic interaction pipeline), are currently rather
high-level, and a more detailed task analysis is necessary
before the requisite level of detail for a full computational
model can be achieved.

Once a computational user model for the analytic process
is established, there are a number of other ways machine
learning and visual analytics can be brought into dialogue.

1. Semi-automated report generation. Machine learning can
be used to infer links and relations between concepts, data,
and analytical results, while frequentist or Bayesian statis-
tical analysis can be used to attach a statistical significance
to each finding. This could be presented to the user as a
checklist of automatically discovered analytical findings
(or hints) that the user can accept or reject.

2. Annotations can be categorised using automated topic
analysis (for example by Natural Language Processing that
uses probabilistic graphical models [LHE10]). The value
of this is to link annotations and find common approaches
to tasks.

3. Model-based layout. The goal is to provide a semi-
automated way of modifying the layout of visual infor-
mation. One aspect of this is related to the steerable DR
discussed in Section 5. This can be extended to learning
the criteria that analysts use: for example, how the user
selects principal components.

4. Extreme value theory [DHF07] to identify low-frequency
(but potentially high-value) data points or variables. Re-
cent research in this area supports the automated identifi-
cation of outliers even in the multivariate case.

5. Integrated prior knowledge and data. Often the expert
user will have a great deal of prior cognitive knowledge
embodied in a computational model of a physical system
(e.g. geochemists supporting hydrocarbon exploration; me-
teorologists). Machine learning can be used to generate an
emulator, a technique for model reduction that reduces the
exceptionally high computational burden imposed by many
physical models, while retaining the key features of the
original model and allowing much greater user interaction
for tasks such as sensitivity analysis and control [CO10].

It is clear from the discussion throughout this paper that
there are barriers to the closer integration of machine learning
and visual analytics. One of the main technical barriers is
that the current software tools are strongly divided between
the research communities. Visualization tools are strong
at close control over the form and layout of information,
and user interaction: Some tend to be written as bespoke
integrated tools, such as Tableau (http://www.tableau.com),
Orange (orange.biolab.si) and JMP (www.jpm.com). On the
other hand, the most advanced machine-learning tools are

often written as libraries in numerical or statistical languages
(such as Matlab, e.g. [Nab02] and R), as well, as in high level
general purpose languages, like Java (with Weka, a widely
used collection of ML algorithms for data mining tasks, or
the Stanford NLP tools with advanced ML algorithms for
natural language processing) or Python (with powerful and
widely adopted data analysis and ML libraries like scipy,
scikit-learn, pandas, etc.); all of them focus on supporting
the (often) challenging task of learning complex models from
data but provide limited graphical display and interaction.
The best solution to this problem, short of reimplementing
large toolkits in other languages is to take a client-server
approach: a backend server running a good mathematical
package for the machine-learning components complemented
by web services and html+js clients, able to take advantage
of the huge and growing spectrum of javascript libraries and
frameworks (such as d3js) to provide interactive information
visualisation.

7. Conclusions

This paper provides a comprehensive survey of machine learn-
ing methods, and visual analytics systems that effectively
integrate machine learning. Based on this survey, we present
a set of opportunities that offer a rich set of ideas to further
the integration between these two scientific areas. Among
these are formalizing and establishing steerable ML, gener-
ally providing coupled interaction and visualization methods
that offer substantially more advanced user feedback. There
is the opportunity to better determine how tasks should be
divided between humans and machines, perhaps in a dynamic
manner, including determining metrics for a balance of effort
between these two components. The paper shows how recent
models and frameworks could be used to develop consider-
ably more powerful visual analytic systems with integrated
machine learning. The summary and discussion presented
in this paper seeks to excite and challenge researchers from
the two disciplines to work together to tackle the challenges
raised, ultimately creating more impactful systems to help
people gain insight into data.
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