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a b s t r a c t

A classical symptom of rotating machines faults in vibration signals is the presence of
repetitive transients, whose distinctive signature is both impulsive and cyclostationary.
Typical approaches for their detection proceed in the time or frequency domains, with
tools such as the spectral kurtosis, the kurtogram, or the envelope spectrum. The object of
this paper is to extend and somehow connect these concepts in order to capture the
signature of repetitive transients in both domains. Motivated by ideas borrowed from the
field of thermodynamics where transients are seen as departures from a state of
equilibrium, it is proposed to measure the negentropy of the squared envelope (SE) and
of the squared envelope spectrum (SES) of the signal. This defines the SE infogram, the SES
infogram, and their average which is theoretically maximum for a Dirac comb according to
Hirschman’s uncertainty principle. It is demonstrated that the joint consideration of the
infograms significantly extends the domain of applicability of the kurtogram, in particular
to situations corrupted with impulsive noise or when the relaxation time of the transients
is low as compared to their rate of repetition. This is illustrated on both synthetic and
actual vibration signals. This paper is part of a special issue in honor of Professor Simon
Braun and pays tribute to his early contribution to the field of mechanical signature
analysis.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

One of the fundamental premises of vibration-based condition monitoring is that the abnormal states of a machine lead
to symptomatic vibrations that can be easily distinguished from a healthy reference. This is the concept of mechanical
signature analysis that was early investigated in Simon Braun’s pioneer work of among others. When concerned with
rotating machines, incipient faults often produce series of transients, which leaves good hope for their early detection.
Typical examples are rolling element bearing faults and gear faults—as explained in Simon Braun’s book and early papers
[1,2]. Indeed, whenever a fault produces impacts in the machinery (i.e. when some mechanical parts strike each other), the
corresponding mechanical signature is likely to take the form of repetitive transients.

Because of their distinctive characteristics, the detection of repetitive transients has been approached from several angles. One of the
earliest strategies was to quantify the intensity of the impacts by means of scalar indicators such as the crest factor, the peak-to-peak,
d envelope spectrum; SFTF, short-time-Fourier-transform; SK, spectral kurtosis; SNR, signal-to-noise
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the kurtosis [3], or “vector” indicators such as the shock spectrum [4]. In essence, these techniques characterize the impulsiveness of a
series of transients. With the advent of digital spectral analyzers, it was then recognized that repetitive transients could also be detected
from their characteristic frequencies. Based on empirical grounds, the envelope spectrumwas early proposed as a powerful diagnostic
tool [5]. A related approach introduced by Simon Braun in Ref. [6] proposed to synchronously average the energy of repetitive
transients; incidentally, this led the foundations of cyclostationary analysis – without naming it so at that time – which aims at
characterizing the cyclic nature of signals. These techniques have been recently formalized bymaking explicit use of the cyclostationary
framework developed in the field of communication engineering [7]. Another family of approaches is based on time-frequency and
time-scale analyses; incidentally, the latter often happen to boil down to particular cases of envelope spectrum analysis where various
bandpass filters are designed by means of wavelet or other kinds of related transforms.

The specialized literature on these matters is nowadays considerable and an exhaustive survey has become out of reach.
Two recent contributions will be considered only which are in the direct continuation of the aforementioned historical
works. The first one is the spectral kurtosis (SK) and its related kurtogram and second one is the spectral correlation.

The SK was introduced in Refs. [8–10] to detect and localize in frequency the presence of impulsiveness in a signal. It is
essentially a distribution of the kurtosis as a function of frequency, notwithstanding the theoretical technicalities that this
definition implies. Because the SK strongly depends on the frequency resolution, it has been suggested to display it as a
function of both frequency and frequency resolution, which leads to the concept of kurtogram; in short, a high value of the
kurtogram indicates high impulsiveness in the corresponding frequency band. Several research works have recently
investigated various implementations (e.g. based on wavelets, wavelet packets, dual-tree wavelets, etc. [11–19]) of the
kurtogram in order to improve its efficiency. However, one of the most serious limitations of the kurtogram is its inability to
recognize whether a series of transients is repetitive or not. Actually, it is known that the value of the kurtosis decreases
when the repetition rate of the transients increases. One extreme is when the transients become so frequent that they
overlap over each other, in which case the kurtosis vanishes [20]. The other extreme is when the transients become so
spaced apart that there is only one left in the recorded signal, in which case the kurtosis is maximal. This is also the exact
reason why the kurtogram is unfortunately found so sensitive to impulsive noise and can sometimes lead to misleading
interpretations. This issue was addressed in Ref. [21] which proposed an interesting alternative – the protrugram – based on
the kurtosis of the envelope spectrum rather than the signal. However, despite its merits, the protrugram has the dual
limitations of the SK and it raises the question of which mathematical expression to use in its definition among many
possible choices.

Besides the SK, the spectral correlation (or its normalized version, the spectral coherence) is probably one of the most
efficient tools nowadays available to detect the presence of repetitive transients in a signal. Such an ability is rigorously
demonstrated within the framework of cyclostationary signals [22–25]. In brief, the spectral correlation may be seen as a
waterfall of envelope spectra for all carrier frequencies of the signal. Its application to the diagnosis of rolling element
bearings has been shown to return excellent results in a variety of configurations [24–31]. Unfortunately, the computation of
the spectral correlation might still be prohibitive in certain applications, which places it as a second choice behind the
kurtogram. A very illuminating link between the spectral correlation and the SK was recently elucidated in Ref. [32]: given a
frequency band, the kurtosis is nothing but the sum of all the peaks of the squared envelope spectrum normalized by the
zero-frequency peak. High kurtosis values therefore mean that the envelope spectrum is non-flat and possesses high non-
zero frequency peaks. In words, not only can the spectral correlation detect repetitiveness of a phenomenon, but it can also
characterize its impulsiveness through the number of its harmonics.

The aim of the present research work is to proceed with the concept of the kurtogram and to modify its definition in
order to fix its shortcomings. The idea is to make it sensitive to the cyclic property of repetitive transients – actually to
cyclostationarity in general –while still preserving its simplicity. The proposed solution is motivated by both the protrugram
[21] and the link between the kurtosis and the envelope spectrum elucidated in Ref. [32]. Inspired by concepts of
thermodynamics, a transient is seen as a departure from the state of equilibrium of the system of interest. In the time
domain, this corresponds to local fluctuations of the signal energy that comes with a decrease of the entropy of its squared
envelope (SE). If the energy fluctuations are cyclic, this also comes with local fluctuations in the envelope spectrum (in the
form of peaks) and therefore with a decrease of the entropy of the Fourier transform of the SE. Interestingly, the sum of the
entropies in the time and frequency domains achieves a lower bound, as first shown by Hirschman in 1957 [35], a result
known as the “entropic uncertainty principle” [36]. In the case of discrete-time signals – which is of concern here – it has
recently been shown that the entropic bound is achieved by a Dirac comb which, incidentally, stands as a perfect
idealization of a series of transients. These theoretical results suggest the use of the entropy – or its opposite, the
“negentropy” – as a substitute of the kurtosis. The negentropy provides (i) two rigorous measures of impulsiveness, one in
the time domain (on the SE) and another one in the frequency domain (on the envelope spectrum) which (ii) are additive
and (iii) whose average is indicative of a distance to a Dirac comb. The related quantities, when displayed as functions of
frequency and frequency resolutions, are coined the “SE infogram”, the “SES infogram”, and the “average infogram”. The first
one reflects the impulsiveness of a signal, the second one its cyclic content, and the last one its resemblance to a Dirac comb.

The paper is organized as follows. Section 2 revisits the interpretation of the SK from a thermodynamical point of view
and addresses its limitation for the detection of repetitive transients. Section 3 introduces the spectral negentropy and the
related infograms together with the entropic uncertainty principle. Section 4 provides some recommendations as how to
compute and interpret the infograms. Finally, Section 5 illustrates the use of the infograms on synthetic and actual vibration
signals.
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2. Characterization of repetitive transients: The interplay between non-stationarity and non-Gaussianity

The type of faults whose detection is of interest in this paper produces a repetition of transients. This is a very distinctive
signature that combines the characteristic of impulsiveness on the one hand with that of cyclostationarity – i.e. periodicity
of the energy – on the other hand. It therefore makes sense to exploit these two features conjointly in designing a detection
strategy. Interestingly, impulsiveness is one manifestation of nonstationarity that is usually detected by means of nonlinear
tools – i.e. tools dedicated to the analysis of non-Gaussian signals – such as the SK. This section attempts to draw
connections between the properties of impulsiveness, nonlinearity, and cyclostationarity through the idea of energy
fluctuations of a signal.

2.1. Informative events

Just as for music or speech signals, information in vibration signals is usually conveyed by nonstationary events. In the
context of condition monitoring, it means that any change in the structure of the signal will possibly disclose information
about the underlying system. Of concern here are abnormal transients generated by incipient faults, which will locally
change the frequency spectrum and the amplitude of the signal at the times of their occurrence. That is, the energy flow of
the signal will suddenly experience unexpectedly large fluctuations in some frequency bands. At the same time, this is
accompanied by a gain of information. This vision has interesting thermodynamical roots. Let us first start by a short
reminder of the concept of entropy which is central to both thermodynamics and the theory of information. For a discrete
stochastic process that is allowed to explore a set of states indexed by i, with probabilities pi, the entropy is generally
defined as H¼ �Pipi ln pi. This definition is common to statistical thermodynamics (Boltzmann’s entropy) and signal
processing (Shannon’s entropy). It might subsequently differ in how the probabilities pi are defined in each case. In
thermodynamics, pi is the probability of occupation of state i in the phase space spanned by the degrees of freedom of the
system, for instance the positions and the velocities of all particles in the system. In signal processing, pi is usually the
probability that the signal takes a given amplitude Ai.

In thermodynamics, the less-informative macro-state of a system is that which allows its degrees of freedom to explore
the maximum number of configurations, or “completions”. This is the state of equilibrium – or thermalization – where the
strength of the energy fluctuations is uniform over the whole system, characterized by a constant temperature and
maximum entropy—see Fig. 1(a). In signal processing terminology, the system is stationary. Information is produced when,
for some reason, the system is momentarily driven outside its state of equilibrium and in particular when this is
accompanied by the production of structured patterns—Fig. 1(b). In that situation, the system experiences deviations away
from its mean energy level until the perturbation eventually dies out. At the same time, entropy varies away from its
maximum level by an amount that is indicative of the degree of structure that has been produced. Because any departure
from equilibrium must have a cause, the decrease of entropy is also indicative of the action of an external force acting on the
system and thus of an increase of knowledge about its status. In signal processing terminology, the system has undergone a
transient and therefore has become nonstationary. This brief analogy with thermodynamics unveils the profound links
between nonstationarity, energy fluctuations, entropy, and information that underline this paper. It will also justify the
specific definition of entropy to be introduced in Section 3.

2.2. The signature of transients

2.2.1. Out-of-equilibrium fluctuations
In light of the above discussion, a transient corresponds to a departure from equilibrium of a system away from its state

of equipartition of energy and maximum entropy. In order to assess the production of information associated with it, it thus
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Fig. 1. (a) Thermalization corresponds to the state of equilibrium of a system, characterized by the equipartition of the energy εx , a uniform temperature T,
and maximum entropy: the system is stationary. (b) A transient drives the system out of its equilibrium state, generates energy fluctuations, lowers the
entropy and produces information associated with structured patterns: the system is nonstationary.



Fig. 2. Illustration of the concept of squared envelope as a mean of measuring the energy fluctuations in a signal (reproduced from Ref. [26]).
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makes sense to measure the energy fluctuation in the signal. Formally, let consider a discrete-time signal,
x nð Þ; n¼ 0;…; L�1, of length L and let xðn; f ;Δf Þ denotes its complex envelope in a frequency band ½f �Δf =2; f þΔf =2�—
see Fig. 2. The instantaneous flow of energy in the band is returned by the SE

εxðn; f ;Δf Þ ¼ xðn; f ;Δf Þ
�� ��2 ð1Þ

and its average value is

εx f ;Δfð Þ ¼ εx n; f ;Δfð Þ� �¼ 1
L

XL�1

n ¼ 0

εx n; f ;Δfð Þ ð2Þ

which in the thermodynamic analogy, equals kBTS, the system temperature TS times the Boltzmann constant kB. Therefore,
the strength of the energy fluctuations may be measured by the variance of the energy flow, that is

Var εxðn; f ;Δf Þ
� �¼ εxðn; f ;Δf Þ2

D E
�εx ðf ;Δf Þ2; ð3Þ

or its normalized version, the (squared) coefficient of variation

Vxðf ;Δf Þ ¼
Var εxðn; f ;Δf Þ

� �
εxðf ;Δf Þ2

¼
εxðn; f ;Δf Þ2
D E

εxðf ;Δf Þ2
�1: ð4Þ

When the system has thermalized (i.e. it has reached its thermodynamical equilibrium), it is known from the principle of
maximum entropy [34] that the energy fluctuations are distributed according to a Chi-squared probability law—or
equivalently the complex envelope is distributed according to a circular complex Gaussian law. Therefore, Vxðf ;Δf Þ¼1.
Alternatively, in the non-equilibrium regime resulting from the presence of a transient, the energy fluctuations are
characterized by Vxðf ;Δf Þ41. This is the signature to be tracked in the signal as a function of frequency f and frequency
resolution Δf .

2.2.2. Connection of nonstationarity and nonlinearity: The spectral kurtosis
Interestingly, for a zero-mean signal the normalized variance of the energy flow is closely linked to the SK; specifically,

Kxðf ;Δf Þ ¼ Vxðf ;Δf Þ�1¼
x n; f ;Δfð Þ
�� ��4D E
x n; f ;Δfð Þ
�� ��22D E �2 ð5Þ

where it is reminded that the kurtosis of a complex variable subtracts 2 instead of 3 for a real variable. It is seen that the kurtosis is
advantageously nil when the signal is stationary. This equality draws a correspondence between nonstationarity on the one hand –

which is measured by the variance of the energy flow, Vxðf ;Δf Þ – and nonlinearity on the other hand – which is measured by the
SK Kxðf ;Δf Þ. The origin of this observation is the following. In the proposed setting, all statistics have been defined according to the
time averaging operator instead of the ensemble average (i.e. the expected value), which is justified under the ergodic assumption
(ergodicity guarantees that all time averages converge to deterministic quantities, yet not necessarily the same ones as in the
ensemble average). As a consequence, nonstationary events such as transients squeeze the time histogram of the signal into a
super-Gaussian density (leptokurtic) with a positive excess kurtosis. Loosely speaking, the type of nonstationarity addressed in this
work is thus equivalent to non-Gaussianity (i.e. nonlinearity) “along the time axis”. The concept was formalized by means of
“conditionally non-stationary” processes in Ref. [8]. The conclusion of this subsection is that the information released by transient
energy fluctuations may be equivalently addressed in the nonstationary or the nonlinear settings depending on the points of view.

2.2.3. The kurtogram
In practice, the SK is found strongly dependent on the frequency resolution Δf . Ideally, 1=Δf should be longer than the

relaxation time (or duration) τ of transients and shorter than the mean spacing T between them, viz: τo1=Δf oT . For this reason,
it is often convenient to scrutinize the SK – or any related quantity such as those to come later—in two dimensions as a function of
both f and Δf . This leads to the concept of “kurtogram” [10] and, in Section 4, of “infogram”, which will play a central role in
this paper.
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2.3. The signature of repetitive events

2.3.1. The squared envelope spectrum
So far the former discussion did not specifically account for a possible structure into the occurrence of transients. Indeed,

the SK is ideally suited to the detection of a single or a few transients, but not necessarily to the situation when their rate of
repetition becomes high. By way of an example, let us consider a series of transients with relaxation time 1=Δf and mean
rate of occurrence equal to p events per second. Then it can be shown (see Appendix A.1) that the SK is

Kx f ;Δfð Þ �Δf
p
; ð6Þ

which falls to zero as p increases (see Ref. [20] for a related discussion on the scalar kurtosis). Into addition, no account is taken of
the periodic timing of repetitive transients (the above formula applies equally to a Poisson random point process or to a Dirac
comb), although this is a distinctive feature of faults in rotating machines. Note that repetitive faults are not periodic in general, but
rather cyclostationary, which means that their energy flow instead of their waveform is periodic. An extreme example is given by
white noise endorsing a periodic amplitude modulation, which is surely not a periodic signal, yet still exhibiting a marked rhythm.
As demonstrated in several publications [29,30], the discrete Fourier transform (DFT) of the energy flow – the “squared envelope
spectrum” (SES) – thus evidences a spectrum of harmonics equispaced by the fault frequency α0, i.e.

Ex α; f ;Δfð Þ ¼
XL�1

n ¼ 0

εx n; f ;Δfð Þe� j2παnFs ¼
X

iAZ
Ex;iðf ;Δf Þδ α� iα0ð Þ ð7Þ

where δ is the discrete Dirac symbol (i.e. δ αð Þ is nil everywhere except at α¼ 0 where it is one), Ex;iðf ;Δf Þ stands for the Fourier
coefficient of εxðn; f ;Δf Þ at frequency iα0, and Fs is the sampling frequency. This opens the door to a family of cyclostationary
techniques based on the exploration of the energy distribution Ex α; f ;Δfð Þ spanned by the “spectral” (or “carrier”) frequency f and
the “cyclic” (or “modulation”) frequency α [26,31]. A different route is taken in this paper after unveiling the connection between
the SES and the SK.

2.3.2. Connection between the SES and the SK
The SES aims at detecting periodicity in the energy fluctuations of a signal and therefore computes the Fourier

coefficients of εðn; f ;Δf Þ instead of its variance as done for the SK—compare Eqs. (5) and (7). Interestingly, the SES amounts
to a decomposition of the SK in the cyclic frequency domain as recently shown by Borghesani et al. [32]. Using Parseval
identity on the DFT, it readily comes that

εx n; f ;Δfð Þ
�� ��2D E
εx n; f ;Δfð Þ2
D E ¼

Ex α; f ;Δfð Þ
�� ��2D E
Ex 0; f ;Δfð Þ
�� ��2 ð8Þ

where the summation Ex α; f ;Δfð Þ
�� ��2D E

¼ L�1 PL�1

k ¼ 0
Ex αk; f ;Δfð Þ
�� ��2D E

is taken over the DFT frequencies αk ¼ kFs=L. Formula (8)

draws a remarkable connection between the SK and the SES for cyclostationary signals: upon inserting Eq. (7) into Eq. (8), it
is seen that

Kx f ;Δfð Þ ¼
X

iAZ

Ex;iðf ;Δf Þ
�� ��2
Ex;0ðf ;Δf Þ
�� ��2�2¼ 2

X
i40

Ex;iðf ;Δf Þ
�� ��2
Ex;0ðf ;Δf Þ
�� ��2�1; ð9Þ

that is the SK is the sum of the harmonics in the SES normalized by the squared mean energy. Since it grows with the
number of harmonics in the SES, the SK actually returns a measure of impulsiveness in the time domain. For the sake of
coherence with the discussion of the previous subsection, let us take the example of a series of repetitive transients with
relaxation time 1=Δf and rate of repetition p (the signal is now cyclostationary). Since the corresponding SES is a Dirac comb

with spacing p and bandwidth Δf , it comes that there are Δf =p peaks of magnitude Ex;iðf ;Δf Þ
�� ��2 � Ex;0ðf ;Δf Þ

�� ��2 in the
frequency band ½�Δf =2oαrΔf =2]; thus, according to Eq. (9), Kx f ;Δfð Þ �Δf =p, which is identical to result (6) and means
that the SK actually counts the number of prominent harmonics in the SES. The latter interpretation of the SK is one step
forward to the notion of a measure of information to be discussed in Section 3.2.

2.3.3. The protrugram
As demonstrated in the previous subsection, the detection of repetitive transients may be well achieved by testing for the

presence of harmonics in the SES. Of obvious interest is to proceed in this direction without having to know explicitly the fault
frequencies entering in Eq. (7). In this respect, advantage can be taken of the property that harmonics in the SES may be seen as
transients associated with high fluctuations of the energy flow along the cyclic frequency (α) axis. As a consequence, the harmonic
structure of the SES may be detected – and the information coming with it measured – following similar lines as for transients in
the time domain. The ideawas first formulated in Ref. [21] where it was proposed to compute the kurtosis of the SES, this leading to
the concept of “protrugram”. A consensual definition of the protrugram is still an open question, since the kurtosis may be applied
either on the complex Fourier transform, or on its magnitude, its squared magnitude, etc. The protrugram also suffers from the
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same drawback as the kurtogram: it is maximum for a single harmonic in the SES, that is a pure tone (or purely sinusoidal
modulation) in the time domain. Therefore it is still not ideal for the detection of repetitive transient, but it suggests an interesting
direction towards this objective.
3. Spectral negentropy: Measuring information in energy fluctuations

3.1. Motivations

The previous sections have pointed out that the SK, despite being ideally suited to the detection of a single impulse, is not
optimal for the detection of repetitive transients. Besides, the concept of protrugram has highlighted that the signature of
repetitive transients in time is also a series of repetitive transients in frequency (i.e. harmonics in the SES). Formally, the
invariant is a Dirac comb which has the same structure in both domains.

One could think of devising a combination of time-domain and frequency-domain SKs (of the kurtogram and
protrugram), such that a maximum value is reached when one (or both) of them is (are) high. However, as far as the
author knows, a mathematical basis for such a construction is missing and there is no justification that its maximization
would generally correspond to the requested signal. Instead, this paper proposes to replace the kurtosis by another measure
of impulsiveness, the negentropy, which happens to provide an uncertainty principle on the balance of impulsiveness in the
time and frequency domains. It will also happen to be maximized by the ideal Dirac comb.
3.2. Entropy and information

Entropy is a versatile concept that measures the disorder in a system. It was first introduced by Clausius in the 1850s to
appraise the quantity of energy “burnt” as heat and remained quite an abstract concept of thermodynamics until Boltzmann
showed in the 1870s that entropy actually counts the number of configurations the degrees of freedom of a system can take
given some constant macroscopic variables such as temperature. In particular, it is a fundamental principle of statistical
thermodynamics that a system reaches maximum entropy when it is in equilibrium. The concept was later rediscovered in
the 1940s by Shannon in the context of communication theory to measure the amount of information transmitted by a
channel. The equivalence between thermodynamical entropy and information was eventually recognized by Brillouin [33].
Referring back to our introductory discussion in Section 2.2, it makes sense that entropy could be just as good a measure as
kurtosis to detect out-of-equilibrium perturbations in a system and to measure the information associated with them.

The proposed definition of entropy proceeds from interpreting the (square of the) instantaneous energy flow in a signal as a
probability distribution. Note in passing that this is coherent with the quantummechanics interpretation of the squared magnitude
of a wave function as the probability density of finding a particle in a given place at a given time. Hence, the “spectral entropy” in
frequency band ½f �Δf =2; f þΔf =2� reads

Hε f ;Δfð Þ ¼ � εx n; f ;Δfð Þ2

εx n; f ;Δfð Þ2
D E ln

εx n; f ;Δfð Þ2

εx n; f ;Δfð Þ2

 !* +
ð10Þ

where care has been taken to normalize the energy flow by its averaged value as requested for εx n; f ;Δfð Þ2= εx n; f ;Δfð Þ2
D E

to be

interpreted as a probability distribution (the reason for taking the square of the energy in the definition of entropy is to allow the
introduction of the Hirschman’s uncertainty principle in the next section). With this definition, it can be shown using calculus of
variation that the maximum value of entropy Hε f ;Δfð Þ is reached when the energy flow is constant, which is fully coherent with
the thermodynamic interpretation of Section 2.2— see Fig. 1. On the contrary, the lowest entropy (an unbounded quantity according
to the proposed definition) happens when the energy flow condense to a single impulse. The spectral entropy thus shows an
opposite behavior to the SK; according to Eq. (10), it can actually be seen as a version of the SK weighted by

� ln εx n; f ;Δfð Þ2= εx n; f ;Δfð Þ2
D E� �

. To be completely analogous to the SK, the negative of the spectral entropy should thus be

considered—see Fig. 3. This defines the “spectral negentropy”:

ΔIε f ;Δfð Þ ¼ �Hε f ;Δfð Þ: ð11Þ

The concept of negentropy—a contraction for “negative entropy” –was initially elaborated by Schrödinger in the 1940s. It
represents the inclination of a system to increase its degree of organization. As demonstrated by Brillouin [33], negentropy is
equivalent to a gain of information – hence the proposed notation ΔI – which may be construed as the logarithm of the
number of configurations that the experimenter has learned in attempting to describe the state of the system. This brings us
back to the discussion of Section 2.3.2 where information was approached with the occurrence of a transient. Spectral
negentropy can be similarly defined in the frequency domain on the SES, i.e. as

ΔIE f ;Δfð Þ ¼ �HE f ;Δfð Þ ¼ Ex α; f ;Δfð Þ
�� ��2
Ex α; f ;Δfð Þ
�� ��2D E ln

Ex α; f ;Δfð Þ
�� ��2
Ex α; f ;Δfð Þ
�� ��2D E

0
@

1
A* +

; ð12Þ



Table 1
Expressions of the spectral negentropies and their average for some typical signals sampled at rate Fs (see Appendix A.3). (δΔf stands for an impulse of
temporal width 1=Δf , ΠΔf for the unitary rectangle function with width Δf , and γ � 0:5772 is Euler constant)

Squared envelope (SE) Squared envelope spectrum (SES) ΔIε f ;Δfð Þ ΔIE f ;Δfð Þ Infogram
ΔI1=2 f ;Δfð Þ

εxðn;Δf Þ is WCCGNa Ex αð Þ is WCCGN 1–γ � 0:422 1�γ � 0:4228 1�γ � 0:4228
εx n;Δfð Þ is the SE of WCCGN No simple expression, but

asymptotically WCCGN
3�2γ� ln 2� 1:1525 � 0:4228

(asymptotically)
� 1.5752
(asymptotically)

SE is sinusoidal (i.e. the signal is cyclostationary):

εx n;Δfð Þ ¼ A cos 2πα0Fsnþϕ
� � Ex αð Þ ¼ 1

2LAe
jϕδ α�α0ð Þ, αZ0 ln Δf

Fs

� �
ln LFsΔf
� �

1
2 ln L

SE of a single impulse:εx n;Δfð Þ ¼ AδΔf ðn�n0Þ Ex αð Þ ¼ Ae� j2πn0
α
FsΠΔf ðαÞ ln LΔfFs

� �
ln Fs

Δf

� �
1
2 ln L

SE of a Dirac comb:εx n;Δfð Þ ¼ A
PK�1

m ¼ 0
δΔf ðn�mNÞ

with L¼ KN

Ex αð Þ ¼ KA
PN�1

p ¼ 0
δ α�pKFsð ÞΠΔf ðαÞ ln NΔf

Fs

� �
ln K Fs

Δf

� �
with

K ¼ L=N

1
2 ln L

a WCCGN: white circular complex Gaussian noise. A circular complex Gaussian random variable, z¼ aþ jb, is such that a and b are independently and
identically distributed according to a real Gaussian.
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Fig. 3. Comparison of the functional forms of the energy variance VðxÞ, the kurtosis KðxÞ, and the negentropy –HðxÞ.
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where the average over the cyclic frequency range α is as defined in Eq. (8). The minimum value of ΔIE f ;Δfð Þ corresponds to
a flat SES (i.e. an impulse in the time domain) and the maximum to a single harmonic in the SES (i.e. a pure sinusoidal SE).
This is the reverse behavior of ΔIε f ;Δfð Þ.

Expressions of ΔIε f ;Δfð Þ and ΔIE f ;Δfð Þ are given in Table 1 for some typical signals. It is seen that they are measures of
the degree of structure (or organization) of a signal in the time and in the frequency domains, respectively. As a
consequence, the spectral negentropy ΔIε f ;Δfð Þ and ΔIE f ;Δfð Þ should be considered jointly in order to have a full
discrimination between different types of signals.

3.3. Hirschman’s entropic uncertainty principle

From the above discussion, it is now clear that a signal made of repetitive transients will produce high values of the
spectral negentropy in both the time and the frequency domains. Because entropies are extensive quantities, it makes sense
to consider the weighted average

ΔIρ f ;Δfð Þ ¼ ρΔIϵ f ;Δfð Þþð1�ρÞΔIE f ;Δfð Þ ð13Þ
for some 0rρr1. Interestingly, this quantity achieves an upper bound for ρ¼ 1=2. Using a result due to Hirschman [35–
39], it can be shown that the average spectral negentropy has a bounded information capacity that grows with the signal
length, i.e.

ΔI1=2 f ;Δfð Þr1
2
ln L ð14Þ

where the upper-bound is achieved by a Dirac comb1 (see Appendix A.2). This result is of fundamental importance, since a
Dirac comb is the idealization of the repetitive transients that are of interest herein. Although it is very unlikely to occur in
practice (because it would require its period to be an exact multiple of the sampling period and the acquisition time to be an
1 It is discussed in Refs. [38,39] that for continuous-time (finite-energy) signals, the upper-bound is achieved by the Gaussian pulse whereas, quite
surprisingly, for discrete signals it is achieved by a Dirac comb.
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exact multiple of the period), it gives an indication that repetitive transients are close to the maximum information possibly
returned by ΔI1=2 f ;Δfð Þ, that is 0:5 ln L [nats]2.

Expressions of the spectral entropies are reported in Table 1 for some typical signals. It is noteworthy that, in accordance
with the theorem of Appendix A.2, the single impulse and the sinusoidal SE (as returned by a cyclostationary signal) also
produce maximum information. The single impulse is actually a particular instance of a Dirac comb whose period equals the
signal length; the sinusoidal SE is the dual signal in the frequency domain. These two cases can be easily discriminated by
comparing their spectral negentropies, ΔIε f ;Δfð Þ and ΔIE f ;Δfð Þ, as illustrated in Fig. 4. In particular, ΔIε f ;Δfð Þ is found
independent of the signal duration for a pure sine while it grows with the number of samples L for a single impulse, whereas
the opposite behavior holds true for ΔIE f ;Δfð Þ:

Next, the behaviors of the spectral entropies are illustrated by means of numerical simulations. The following signals are
synthesized for various lengths L:
1)
Fig
thic
dia
Gau
the
a white Gaussian random noise,

2)
 a non-linear noise defined as the 5th power of white Gaussian random noise,

3)
 a second-order cyclostationary signal defined as the multiplication of white Gaussian random noise with a pure sine with

period N¼ 30,

4)
 a pure Dirac impulse,

5)
 a Dirac impulse in white Gaussian noise with crest factor 50,

6)
 a Dirac comb with period N¼ 30,

7)
 a Dirac comb with period N¼ 30 in white Gaussian noise with SNR¼20 dB, and

8)
 a Dirac comb with 3% random fluctuations around the mean period N¼ 30 (see Ref. [40]).

The corresponding spectral negentropies ΔIε and ΔIE are displayed in full band Δf ¼ Fs in Fig. 4(a) and (b), respectively,
together with their average ΔI1=2, in Fig. 4(c). It is seen that the simulations correctly follows the theoretical results of Tab. 1. White
Gaussian noise correctly takes values ΔIε � 1:15 and ΔIE � 0:42, whereas non-linear noise exhibits a dependence of ΔIε on the
signal length L that reveals its impulsive nature. Cyclostationary noise has a constant ΔIε but evidences an increase of ΔIE with the
signal length because of the presence of harmonics in its SES. The Dirac impulse hasΔIε linearly increasing with ln L and a constant
ΔIE . Given a constant crest-factor, the linear increase of ΔIε drops down in the presence of noise after a certain signal duration that
correspond to SNR� �25dB. The Dirac comb correctly shows a linear increase of ΔIE like ln K ¼ ln L� ln N � ln L�3:4, which is
slightly affected by moderate noise (SNR¼20 dB). However, even a small random fluctuation (3%) of the comb period significantly
lowers the theoretical value of ΔIE; this is because it has a low-pass effect in the SES that limits the number of harmonics. Finally,
the average ΔI1=2 clearly singles out the Dirac comb and the Dirac impulse as its maximizers, as expected from Hirschman’s
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uncertainty principle. Non-linear noise and cyclostationary noise also correspond to high values in ΔI1=2, which evidences the
presence of informative transients and structured non-stationarities, respectively.
4. Recommendations for computing and interpreting the infogram

4.1. Analysis strategy: The infogram

Just as the kurtogram displays the values of the spectral kurtosis for different frequency resolutions Δf ’s, the proposed
strategy is to display the spectral negentropies ΔIϵ f ;Δfð Þ, ΔIE f ;Δfð Þ, and ΔI1=2 f ;Δfð Þ in the f ;Δfð Þ plane as an image. This
defines the “SE infogram”, the “SES infogram”, and the “average infogram”, respectively. This way, impulsive events can be
detected and localized in frequency by high values of the SE infogram ΔIϵ f ;Δfð Þ in some frequency bands
f �Δf =2; f �Δf =2;
	 


, repetitive (cyclostationary) events by high values of the envelope spectrum ΔIE f ;Δfð Þ, and events that
are closed to maximize Hirschman’s uncertainty principle by high values of the average infogram ΔI1=2 f ;Δfð Þ.
4.2. Algorithmic implementation

Technically speaking, the algorithmic implementation of the infogram follows similar lines as for the SK. The first task is
to design a filterbank that decomposes the signal through a series of subbands. Various architectures are possible as
demonstrated in the literature, such as multirate filters, wavelets, wavelet packets, dual tree wavelets, etc [12–18]. In this
paper, an implementation based on the short-time Fourier transform (STFT) is used due its simplicity and high flexibility.
Namely, let xðnÞ be sampled at frequency Fs and wðnÞ an analysis window (symmetric and positive) of length Nw ¼ Fs=Δf

	 

(where the brackets extract the closest integer to the number they are embracing). Then, the squared magnitude of the
short-time Fourier coefficient,

εxðn; f k;Δf Þ ¼
XNw þnR�1

m ¼ nR

x mð Þwðm�nRÞe� j2π
f k
Fs
m

�����
�����
2

; ð15Þ

returns an estimate of the energy flow at time t ¼ nR=Fs and frequency f k ¼ kFs=Nw, with Δf � Fs=Nw. The advantage of the
STFT is to easily allow a cascade of different resolutions Δf ’s to be explored in the kurtogram or infogram. In this work, the
frequency axis is successively segmented according the following law

Δfð Þi ¼
Fs
2i

ð16Þ

where index i stands for the level of the decomposition and is allowed to take non-integer values. For instance, typical
values for the STFT lengths are Nw ¼ 1; 2; 4; 6; 8; 12; 16; 24; 32; 48; … (where even values are retained only to speed up
the computation of the STFT) which corresponds to a cascade of levels i¼ 0; 1; 2; 2:585; 3; 3:585; 4; 4:585; 5; 5:585; …
The proposed decomposition interleaves divisions of the frequency bands by two and three [10]. In addition, since the
bandpass filters of the STFT filterbank are not ideal, there is a significant fraction of overlap between contiguous frequency
bands. For all these reasons there is little risk to miss an informative band, even though the paving is rather coarse as
compared to a “continuous” decomposition.

At this stage, attention should be paid to the following points:
1)
2 Th
the subband signals should be in the analytic form (i.e. with nil components at negative frequencies), and

2)
 the energy flow should be critically sampled such that εxðn; f k;Δf Þ remains a white process when the underlying

signal is white.
The STFT guarantees point (1) by construction, except at the zero and folding frequencies where the signal is real. One
way to fix it is to consider the analytic signal right from the beginning before passing it through the filterbank. Point (2) is
fulfilled by setting the value of increment R according to the window length in the STFT: with a Hann window w, this is
achieved by taking R¼Nw=4 except at the zero and folding frequencies where R¼Nw=2 when the signal is analytic (this is
because the spectrum has half-bandwidth there).

The energy flow estimated by Eq. (15) is then used to compute the spectral negentropies according to Eqs. (10)–(12),
where the SES is defined as the DFT of the SE as in Eq. (7). Note that it is wise to remove the zero-frequency component,
Ex 0; f ;Δfð Þ ¼ Lεx , from the computation of the spectral negentropy (12) because it generally corresponds to a transient in
the SES.
e nat is the unit of information based on the natural logarithm. It corresponds to 1= log 2� 1:44 bits.



J. Antoni / Mechanical Systems and Signal Processing 74 (2016) 73–9482
4.3. Normalization

Just as the SK is theoretically zero for stationary Gaussian signals, it may be convenient to normalize the infogram such
that it is zero under the same circumstance. This amounts to systematically subtracting the theoretical values ΔIε � 1:1525
and ΔIE � 0:4228 given in Table 1 for a stationary Gaussian signal. In practice, the computation of the spectral entropies
where found extremely sensitive to departure of the filterbank frequency gains from ideal filters and to the discontinuity
imposed by the analytical signal at the zero and folding frequencies of the spectrum. In such cases, it may be better
recommended to learn the expected values of the infogram under the stationary Gaussian assumption by Monte–Carlo
simulations.

Finally, confidence intervals can possibly be computed to test against the null hypothesis of the infogram based on the
following approximate formulae of the standard deviation:

std ΔIεð Þ � 6:0ffiffi
L

p

std ΔIEð Þ � 1:5ffiffi
L

p :

8<
: ð17Þ

4.4. Discrete random separation

Because the spectral negentropy of the SES is sensible to cyclostationary signals, it matters to decide whether first-order
cyclostationarity (periodic components) or second-order cyclostationarity (random components) is of concern. As discussed
in Refs. [23] and [26], the former type usually characterizes gears whilst the latter better characterizes bearings. Thus,
whether gear or bearing faults are of concern, the SES infogram should be either computed on the deterministic part of the
signal or on its random residual part. Techniques as how to separate these two parts are summarized in Ref. [41] (see also
[42] for a modern view of the synchronous average).

4.5. Pre-whitening

It was empirically found that pre-whitening the signals before computing the spectral negentropy can make a real
difference. This practice is well-known in detection theory and its benefit was clearly demonstrated in the cyclostationary
context where the pre-whitened version of the spectral correlation – the “spectral coherence” – usually better enhances the
signal of interest [24]. Recently, Ref. [43] showed that pre-whitening can also help to unmask the weak bearing signals from
the strong interfering vibrations of gears. For all these reasons, pre-whitening the signals prior to the computation of the
infogram is surely a good recommendation. Pre-whitening can be achieved using several efficient implementations which
are not discussed here, such as linear prediction, cepstrum editing, FFT-filters, etc.

A flowchart of the algorithm is given in Fig. 5.

5. Experimental results

5.1. Numerical experiments

This section aims at illustrating the use of the infogram and in particular at demonstrating some of its advantages as
compared to the kurtogram. There are at least two situations which the kurtogram has trouble with. The first one is in the
presence of impulsive noise and the second one when the rate of repetition of the transients is high with respect to their
bandwidth.

5.1.1. Impulsive noise
The following example illustrates the failure of the kurtogram in the presence of impulsive noise. A series of transients is

synthesized according to the model of Ref. [40] as the impulse responses of a single-degree-of-freedom system with
normalized resonance frequency at 0.2 Fs ¼ 1ð Þ and damping ratio of 8.3% to a series of Diracs with mean spacing N¼ 120
with 5% random jitter and 10% random amplitude modulation. This is known to simulate rather realistically the vibration
produced by a faulty rolling element bearing. The impulsive noise is similarly modeled as the response of a single-degree-of-
freedom system, with normalized resonance frequency at 0.35 and damping ratio of 1.6% to a Dirac impulse located at time
instant n¼ 1000. The resulting synthetic signal of length L¼ 105 is displayed in Fig. 6(a) and (b) after addition of white
Gaussian noise with SNR¼�12 dB. Fig. 6(c) displays the corresponding power spectral density with highlights of the
resonances that carry the series of transients and the impulsive noise.

The kurtogram Kx f ;Δfð Þ and the infograms ΔIϵ f ;Δfð Þ, ΔIE f ;Δfð Þ, and ΔI1=2 f ;Δfð Þ are displayed in Fig. 7(a–d). It is seen that
the impulsive noise at frequency 0.35 dominates both the kurtogram and the SE infogram ΔIϵ f ;Δfð Þ about levels 7 to 8 and
masks the signature of the series of transients. However, the SES infogram ΔIE f ;Δfð Þ shows a radically different behavior: it
is insensitive to the impulsive noise and clearly reveals the series of transients at frequency 0.35 from levels 4 to 6. The
comparison of ΔIϵ f ;Δfð Þ and ΔIE f ;Δfð Þ is thus indicative of the existence of two informative events with different structures.



Fig. 5. Flowchart of the algorithm for computing the infograms.
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Eventually, the average infogram ΔI1=2 f ;Δfð Þ evidences the two events, yet indicating that impulsive noise is closer to the
upper bound of the Hirschman’s uncertainty principle in this example.
5.1.2. High repetition rate of the transients
Another drawback of the kurtogram is to take smaller and smaller values as the repetition rate of the transient increases.

This is reflected by formula (6): Kxðf ;Δf Þ �Δf =p. The same behavior holds true for the SE infogram ΔIε f ;Δfð Þ which,
according to Tab.1, equals ln Δf =p

� 

for a Dirac comb with fundamental frequency p¼ Fs=N. However, the opposite trend is

observed in the SES infogram ΔIE f ;Δfð Þ which equals ln Lp=Δf
� 


in this case so that, in theory, the average infogram
ΔI1=2 f ;Δfð Þ ¼ ð1=2Þln L is found independent of the comb frequency p. This attracting property is illustrated here on
synthetic signals.
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Series of transients are simulated according to the same model as in the previous example with resonance frequency 0.2,
damping ratio 8%, and increasing mean periods N¼ 50; 200; 1000. The signals are further buried in white Gaussian noise
with constant SNR¼�6 dB, as displayed in Fig. 8.

The corresponding kurtogram and infograms are displayed in Figs. 9–11. It is seen that with N¼ 50, neither the
kurtogram nor the SE infogram can detect the presence of the series of transients, whereas it appears clearly in the SES
infogram and in the average infogram—see Fig. 8. As seen in Fig. 8(a), this is a situation with high overlap between
successive transients, such that pcΔf . The same conclusion basically holds for N¼ 200, although a close inspection of the
kurtogram and SE infogram shows that some information is present—see Fig. 10. As seen in Fig. 8(c), this is the situation
where the effective length of the transients happens to coincide with the period, that is p�Δf . Finally, when the transients
become well separated, p{Δf—see Fig. 8(e)—the kurtogram and the SE infogram become fully efficient and the average
infogram is virtually identical to the latter—see Fig. 11.
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5.2. Vibration-based diagnosis of rolling element bearing: Experiment 1

The kurtogram and infograms are now illustrated on actual vibration signals. In order to allow fair comparison with
previously published results, the same data as used in Section 4.2 of Ref. [10] are analyzed here, except that a STFT
implementation is used instead of a multirate filterbank, which leads to slightly different results and definition of the
analysis levels in Eq. (16)). The signals have been recorded on a test-rig at the University of New South Wales, Sydney. The
system is a one-stage gearbox with primary and secondary shafts supported by ball bearings (12 elements, ball
diameter¼7.12 mm, ball pitch diameter¼38.5 mm, load angle¼01). The rotational speed of the secondary shaft is 10 Hz.
The sampling frequency is 48 kHz. Two bearing faults are investigated here: an inner race fault with theoretical
BPFI¼71.10 Hz and an outer race fault with theoretical BPFO¼48.90 Hz. All signals have been preprocessed as advocated
in Sections 4.4 and 4.5: first the synchronous average has been subtracted in order to remove all periodic components due to



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1
2

2.6
3

3.6
4

4.6
5

5.6
6

6.6
7

7.6
8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1
2

2.6
3

3.6
4

4.6
5

5.6
6

6.6
7

7.6
8

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1
2

2.6
3

3.6
4

4.6
5

5.6
6

6.6
7

7.6
8

0.5

1

1.5

2

1
2

2.6
3

3.6
4

4.6
5

5.6
6

6.6
7

7.6
8

0.2

0.4

0.6

0.8

1

1.2

normalized frequency

le
ve

l: 
lo

g 2
(N

w
)

normalized frequency

le
ve

l: 
lo

g 2
(N

w
)

normalized frequency 

le
ve

l: 
lo

g 2
(N

w
)

le
ve

l: 
lo

g 2
(N

w
)

[n
at

s]

normalized frequency

[n
at

s]

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 10. (a) Kurtogram, (b) SE infogram ΔIε f ;Δfð Þ, (c) SES infogram ΔIE f ;Δfð Þ, (d) average infogram ΔI1=2 f ;Δfð Þ. Case with N ¼ 200.
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gears and therefore to enhance the bearing vibrations; second, the residual signals have been pre-whitened (note these two
steps lead to further differences as compared to the results of Ref. [10]).

The kurtogram and infograms in healthy state are displayed in Fig. 12(a–d). On the one hand, the kurtogram and
especially the SE infogram evidence high values below level 3 around 20 kHz. Because there is no equivalence in the SES
infogram, the corresponding event is expected to be impulsive noise. This is confirmed by filtering the signal in band
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Fig. 12. Analysis of a vibration signal from a healthy bearing. (a) Kurtogram, (b) SE infogram ΔIε f ;Δfð Þ, (c) SES infogram ΔIE f ;Δfð Þ, (d) average infogram
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Fig. 13. (a) Healthy vibration signal and its filtered versions in bands (b) [4500;7500] Hz and (d) [19,750;20,250] Hz together with their respective squared
envelope spectra (c) and (e).
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[19,750;20,250] Hz which maximizes the SE infogram, as shown in Fig. 13(d–e). On the other hand, the SES infogram shows
a marked distribution around 5 kHz which is also noticeable in the kurtogram and SE infogram; this is therefore
symptomatic of a repetitive and slightly impulsive event. The corresponding filtered signal is shown in Fig. 13(b–c) which
clearly evidences second-order cyclostationarity: the envelope spectrum shows harmonics of the gearmesh frequency at
320 Hz (especially the third one). Although no fault was known in the gearbox, such a strong modulation is indicative of
abnormal stress on the gears.

None of the above events are actually symptomatic of a rolling element bearing fault, yet they are informative in their
own right. At the same time, this example illustrates the robustness of the SES infogram against impulsive noise and its
capability to detect cyclostationarity.

A similar analysis is now conducted on the signal captured with an inner race fault. Fig. 14 evidences high values of the
kurtogram and infograms in several regions. On the one hand, the kurtogram and SE infogram clearly indicate presence of
impulsivity; on the other hand, the SES infogram confirms the corresponding events are cyclostationary in several frequency
bands. This suggests there are several regions which are likely to contain repetitive transients. The filtered signals in bands
[19,000;21,000] Hz, [23,625;24,000], and [9500;11,000] are displayed in Fig. 15 together with their SES. They all reveal the
signature of an inner race fault with estimated BPFI¼71.12 Hz, although the information is extracted from somewhat
different frequency bands; actually, even the full-band signal clearly shows up the fault as indicated by the high value of the
SES infogram at level 1. This shows that the kurtogram and infogram may be complementary rather than redundant.
Besides, the SES infogram singles out some cyclostationary events below 5 kHz which do not find equivalence in the
kurtogram and SE infogram; this is suspected to corresponds to gear vibrations and is readily confirmed by inspection of the
bandpass signals (not displayed here).

The analysis of the vibration signal with an outer race fault is displayed in Fig. 16. On the one hand, the kurtogram and
the SE infogram have very similar distributions – although their local maxima are different – with high values above 8 kHz.
On the other hand, the SES infogram reveals a completely different distribution mostly concentrated below 8 kHz; the most
prominent intersection with the SE infogram is in the frequency band [15,500;17,500] Hz, which might be of special interest.
Fig. 17 returns the filtered in this band and evidences the outer race fault at BPFO¼49.10 Hz. Another region of interest is
around 5 kHz, where the bandpass signal (not displayed) evidences again strong modulation by the gears. Interestingly, the
average infogram returns a complete picture of all nonstationary events in the signal which are seen to occupy the full
frequency band in this case.

In this example, the kurtogram and SE infogram have efficiently detected the bearing faults, whereas the SES infogram
have evidenced strong gear modulations. This situation is in accordance with the analysis of Section 5.1.2 where the rate of
repetition of the transient is much lower than their spectral content, i.e. when condition p{Δf holds. This example
illustrates the capacity of the spectral and cyclic negentropies to identify nonstationary events of different nature, which
might be of considerable importance for differential diagnosis.
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5.3. Vibration-based diagnosis of rolling element bearing: Experiment 2

The last experiment now demonstrates an instance where the SES infogram can detect a fault where the kurtogram and
SE infogram fail. An inner race fault was introduced in the bearing of a high speed machinery by producing 8 small
indentations distributed along the inner race of width 0.2 mm each. The estimated BPFI is around 1400 Hz. The rotational
speed of the shaft is 200 Hz and the sampling frequency is 50 kHz. The signal was pre-whitened before processing as
advocated in Section 4.5. As demonstrated in Section 5.1.2, the very high repetition rate of the fault is troublesome for the
kurtogram or the SE infogram in this instance. This observation is confirmed in Fig. 18(a–b). On the contrary, the SES
infogram evidences a marked maximum in the frequency band [18,000;23,000] Hz where, after bandpass filtering the
signal, the inner race fault appears as a highly ringing signal with modulation at the expected BPFI—see Fig. 19.
6. Conclusion

The aim of this paper was to improve the state-of-the-art in detecting repetitive transients, a typical signature of faults in
rotating machines. A distinctive feature of repetitive transients is to be impulsive in both the time and the frequency
domains: the envelope spectrum shows a series of harmonics which is not accounted for in traditional approaches based on
the kurtosis and its extensions such as the kurtogram. Motivated by ideas borrowed from the field of thermodynamics
where transients are seen as departures from a state of equilibrium, it has been proposed to detect repetitive transients by
the associated increase of negentropy in the SE of the signal and in its envelope spectrum. The spectral negentropy of the SE
and of the SES return two new quantities: the “SE infogram” and “SES infogram”, respectively. Whereas the first one has an
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Fig. 16. Analysis of a vibration signal with an outer race fault: (a) Kurtogram, (b) SE infogram ΔIε f ;Δfð Þ, (c) SES infogram ΔIE f ;Δfð Þ, (d) average infogram
ΔI1=2 f ;Δfð Þ.
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interpretation in all points similar to that of the kurtogram, the second one brings new information on the repetitiveness –
or cyclostationarity – of the transients that have been missing so far. One advantage of the SE infogram and SES infogram is
to share the same unit – “nat”, a unit of information – and thus they are additive. Among all possible linear combinations,
the classical average – coined the average infogram – enjoys a special status: as a consequence of Hirschman’s entropic
uncertainty principle, it is theoretically maximized by a Dirac comb—an idealization of the signature of repetitive transients.
In practice, the joint analysis of the SE and SES infograms makes possible the discrimination between transient events of
different natures. In particular, as compared to the kurtogram, repetitive transients are detected (1) even in the presence of
strong impulsive noise and (2) independently of their rate of repetition (whereas the kurtogram becomes less and less
effective as the repetition rate of the transients increases). In practice, the usefulness of the average infogram was yet found
less obvious and it could probably be ignored in some applications. More generally, the proposed infograms may also
become difficult to interpret – at least in an automated way – when high values appear in several different frequency bands.
The analysis effort thus grows proportionally with the number of frequency bands where the signal has to be demodulated
and the envelope spectra computed. This drawback is shared by the kurtogram and, in such a situation, it might be
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Fig. 18. Analysis of a vibration signal with a high-frequency inner race fault. (a) Kurtogram, (b) SE infogram ΔIε f ;Δfð Þ, (c) SES infogram ΔIE f ;Δfð Þ, (d)
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questionable whether an analysis by means of the spectral correlation or coherence (which is nothing else than a cascade of
envelope spectra in all possible frequency bands) should not be preferred. A less obvious drawback of the infogram is to
depend on the record length and on the sampling frequency (see Table 1); although this property can be used to recognize
the signature of repetitive transients from other types of signals, it may also prevent the direct comparison of infograms
obtained by different experimenters (i.e. on different record lengths or with different sampling frequencies).

This research work was initially motivated by a number of preliminary ideas such as the protrugram [21] and the
relationship between the kurtosis and the SES [32]. One of the objectives was to attempt to combine them in a unified
framework. In particular, unexpected connections have been foreseen between the concepts of nonstationarity (cyclosta-
tionarity) and nonlinearity (kurtosis). The capability of the SES infogram to detect and filter out cyclostationary components
is surely worth further investigation, especially because it is much faster to compute than tools such as the spectral
correlation. Another perspective is to investigate the possibility of improving the definition of the spectral negentropy of the
SES, for instance by using spectral smoothing or windowing in the SES domain. Comparison with other criteria apt to
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appraise harmonic structures in the SES would also be of interest [44]: the author has found fairly good results with as
simple a criterion as the crest factor of the SES, which is unfortunately not additive in the sense of the Hirschman
uncertainty principle.
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Appendices

A.1. Proof of Eq. (6)

A frequency resolution Δf imposes a temporal width of 1=Δf to the impulses. Given a sampling frequency Fs and a total
acquisition time T ¼ L=Fs, the signal is thus equivalent to a point process with LΔf =Fs samples, out of which a fraction p=Δf is
non-zero on the average. Let A be the impulses height; therefore,

Kxðf ;Δf Þ �
p
ΔfA

4

p
ΔfA

2
� �2�2�Δf

p
ð18Þ

A.2. Proof of Eq. (14)

The proof is based on the following theorem due to DeBrunner et al. [38]:

Theorem: The only sequences x nð ÞAℂ; n¼ 0;…; L�1, with
PL�1

n ¼ 0
xðnÞ
�� ��2 ¼ 1 and X kð Þ ¼ L�1=2x nð Þe� j2πnk=L for which

H1
2
¼ �1

2

XL�1

n ¼ 0

x nð Þ
�� ��2 ln x nð Þ

�� ��2� �
þ
XL�1

k ¼ 0

X kð Þ
�� ��2 ln X kð Þ

�� ��2� � !
ð19Þ

is minimal are obtained from the Kronecker delta sequence by applying any composition of periodization, translation,
modulation, the DFT, and multiplication by a complex number of unit magnitude.

Accommodating Eq. (19) with the definitions (10) and (12) used in this paper, it immediately results that the quantity in
Eq. (13) is upper bounded by a Dirac comb when ρ¼ 1=2. The bound is found by calculating ΔIϵ f ;Δfð Þ and ΔIE f ;Δfð Þ in this
special instance. Setting

x nð Þ ¼
XK�1

m ¼ 0

Aδðn�mNÞ ð20Þ

with L¼ KN, one has

ΔIϵ f ;Δfð Þ ¼ ln N ð21Þ
and

ΔIE f ;Δfð Þ ¼ ln K ð22Þ
Therefore ΔIϵ f ;Δfð ÞþΔIϵ f ;Δfð Þ ¼ ln Nþ ln K ¼ ln L.

A.3. Results in Table 1

After passing through a bandpass filter of bandwidth Δf , the Dirac comb is equivalent to another comb with period N=r,
sampling rate Fs=r, and length L=r, with r¼ Fs=Δf . The results then follow from the proof in Appendix A.2. The results for the
sinusoidal SE and the single impulse follows from those of the Dirac comb by setting N¼ 1 and K ¼ 1, respectively. The
spectral negentropy ΔIε f ;Δfð Þ for a white circular complex Gaussian envelope is obtained from considering the expected
value

E
εx n;Δfð Þ
�� ��2
E εx n;Δfð Þ
�� ��2 ln εx n;Δfð Þ

�� ��2
E εx n;Δfð Þ
�� ��2

( )
¼ E zj j2 ln zj j2� � ð23Þ

where z is circular complex Gaussian with unit standard deviation. Setting u¼ zj j2 whose half follows a Chi-squared
distribution with 2 degrees of freedom, Eq. (23) is thus returned by the integralZ þ1

0
u ln ue�udu¼ 1�γ ð24Þ
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Since the Fourier transform of a Gaussian process is also Gaussian, the same result holds for ΔIE f ;Δfð Þ. The spectral
negentropy of the SE of a white circular complex Gaussian noise is similarly calculated as

E
εx n;Δfð Þ
�� ��4
E εx n;Δfð Þ
�� ��4 ln εx n;Δfð Þ

�� ��4
E εx n;Δfð Þ
�� ��4

( )
¼ E zj j4 ln zj j4� �

E zj j4� � � ln E zj j4� � ð25Þ

wherein E zj j4� �¼ R þ1
0 u2e�udu¼ 2 and E zj j4 ln zj j4� �¼ R þ1

0 u2 ln u2e�udu¼ 6�4γ. Thus ΔIε f ;Δfð Þ ¼ 3�2γ� ln 2.
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