E. Aguiar, A. Ambrose, G. A. Chawla, N. V. Goodrich, V. Et-brockman et al., Engagement vs Performance: Using Electronic Portfolios to Predict First Semester Engineering Student Persistence, Journal of Learning Analytics, vol.1, issue.3, pp.7-33, 2014.
DOI : 10.18608/jla.2014.13.3

URL : http://epress.lib.uts.edu.au/journals/index.php/JLA/article/download/4076/4417

J. Ahn, What can we learn from Facebook activity? Using social learning analytics to observe new media literacy skills, Proceedings of the Third International Conference on Learning Analytics and Knowledge (LAK'13), pp.8-13, 2013.
DOI : 10.1145/2460296.2460323

V. Aleven, B. Mclaren, I. Roll, and K. Et-koedinger, Toward meta-cognitive tutoring: A model of help seeking with a cognitive tutor, International journal of artificial intelligence in education, vol.16, issue.2, pp.101-128, 2006.

L. Ali, M. Hatala, D. Ga?evi?, and P. H. Et-winne, Leveraging MSLQ Data for Predicting Students Achievement Goal Orientations, Journal of Learning Analytics, vol.1, issue.3, pp.157-160, 2014.
DOI : 10.18608/jla.2014.13.11

URL : http://www.learning-analytics.info/journals/index.php/JLA/article/download/4215/4426

S. Amershi and C. Et-conati, Combining Unsupervised and Supervised Machine Learning to Build User Models for Exploratory Learning Environments, JEDM, vol.1, issue.1, pp.71-81, 2009.
DOI : 10.1145/1216295.1216315

URL : http://www.cs.ubc.ca/~conati/my-papers/IUI07-10604SaleemaCAMERA.pdf

J. R. Anderson, The architecture of cognition, 1983.
URL : https://hal.archives-ouvertes.fr/hal-00699788

T. Anderson, The virtual conference: Extending professional education in cyberspace, International Journal of Educational Telecommunications, vol.2, issue.23, pp.121-135, 1996.

K. E. Arnold and M. D. Pistilli, Course signals at Purdue, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, LAK '12, pp.267-270, 2012.
DOI : 10.1145/2330601.2330666

K. E. Arnold, Signals: Applying academic analytics, Educause Quarterly, vol.33, pp.1-10, 2010.

I. Arroyo, K. Ferguson, J. Johns, T. Dragon, H. Meheranian et al., Repairing disengagement with non-invasive interventions, Proceedings of the International Conference on Artificial Intelligence in Education, pp.195-202, 2007.

R. Baker, S. M. Gowda, and A. T. Et-corbett, Automatically detecting a student's preparation for future learning: Help use is key, Proceedings of the 4th international conference on educational data mining, pp.179-188, 2011.
DOI : 10.1007/978-3-642-30950-2_57

R. Baker, A. T. Corbett, K. R. Koedinger, S. E. Evenson, I. Roll et al., Adapting to When Students Game an Intelligent Tutoring System, Proceedings of the 8th International Conference on Intelligent Tutoring Systems, pp.392-401, 2006.
DOI : 10.1007/11774303_39

URL : https://hal.archives-ouvertes.fr/hal-00190177

R. Baker, A. M. De-carvalho, J. Raspat, V. Aleven, A. T. Corbett et al., Educational Software Features that Encourage and Discourage "Gaming the System, Proceedings of the 14th International Conference on Artificial Intelligence in Education, pp.475-482, 2009.

R. Baker and G. Siemens, Learning Analytics and Educational Data Mining: Towards Communication and Collaboration, Proceedings of the 2nd international conference on learning analytics and knowledge, pp.252-254, 2012.

R. Baker and G. Et-siemens, Educational Data Mining and Learning Analytics, Cambridge Handbook of the Learning Sciences, pp.253-274, 2014.
DOI : 10.1002/9781118956588.ch16

R. Baker and K. Et-yacef, The State of Educational Data Mining in 2009: A Review and Future Visions, JEDM, vol.1, issue.1, pp.3-17, 2009.

N. Balacheff, Didactique et intelligence artificielle, pp.9-42, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00190648

N. R. Balacheff, M. J. Noirfalise, and . Perrin-glorian, Conception, propriété du système sujet/milieu, Actes de la VII° Ecole d'été de didactique des mathématiques, pp.215-229, 1995.

N. Balacheff and N. Et-gaudin, Students conceptions: an introduction to a formal characterization, Cahier Leibniz, vol.65, pp.1-21, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00001510

N. Balacheff and K. Et-lund, Multidisciplinarity vs. Multivocality, the case of "learning analytics", Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.8-13, 2013.
DOI : 10.1145/2460296.2460299

URL : https://hal.archives-ouvertes.fr/hal-00805362

C. R. Beal, L. Qu, and H. Et-lee, Classifying learner engagement through integration of multiple data sources, AAAI'06. Proceedings of the 21st National Conference on Artificial Intelligence, pp.151-156, 2006.

C. R. Beal, L. Qu, and H. Et-lee, Mathematics motivation and achievement as predictors of high school students' guessing and help-seeking with instructional software, Journal of Computer Assisted Learning, vol.23, issue.6, pp.507-514, 2008.
DOI : 10.3102/00028312023004614

D. Ben-naim, M. Bain, and N. Marcus, A user-driven and data-driven approach for supporting teachers in reflection and adaptation of adaptive tutorials, Proceedings of the 2nd International Conference on Educational Data Mining, pp.21-30, 2009.

J. P. Benzekri, Analyse des données, 1973.

M. Bienkowski, M. Feng, and B. Et-means, Enhancing Teaching and Learning Through Educational Data Mining and Learning Analytics : An Issue Brief, 2012.

S. P. Borgatti, A. Mehra, D. J. Brass, and G. Et-labianca, Network Analysis in the Social Sciences, Science, vol.1, issue.1, pp.323-892, 2009.
DOI : 10.1146/annurev.soc.25.1.467

A. J. Bowers, Analyzing the Longitudinal K-12 Grading Histories of Entire Cohorts of Students: Grades, Data Driven Decision Making, Dropping Out and Hierarchical Cluster Analysis. Practical Assessment, Research & Evaluation, issue.7, pp.15-16, 2010.

M. Brown, Learning Analytic : Moving from Concept to Practice, 2012.

E. Brynjolfsson, M. H. Lorin, and H. K. Et-heekyung, Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? Récupéré du site Social Science Research Network, Working Paper Series, 2011.
DOI : 10.2139/ssrn.1819486

URL : http://ebusiness.mit.edu/research/papers/2011.12_Brynjolfsson_Hitt_Kim_Strength in Numbers_302.pdf

B. Shum, S. Et-ferguson, and R. , Social Learning Analytics, Journal of Educational Technology & Society, vol.15, issue.3, pp.3-26, 2012.

R. A. Calvo and S. K. Et-d-'mello, New Perspectives on Affect and Learning Technologies, 2011.
DOI : 10.1007/978-1-4419-9625-1

J. P. Campbell, P. B. Deblois, and D. G. Et-oblinger, Academic Analytics: A New Tool for a New Era, pp.40-57, 2007.

H. Cen, K. Koedinger, and B. Et-junker, Learning Factors Analysis ??? A General Method for Cognitive Model Evaluation and Improvement, Proceedings of the 8th International Conference on Intelligent Tutoring Systems, pp.164-175, 2006.
DOI : 10.1007/11774303_17

H. Cen, K. Koedinger, and B. Et-junker, Comparing Two IRT Models for Conjunctive Skills, 9th International Conference on Intelligent Tutoring Systems Proceedings (p, pp.796-798, 2008.
DOI : 10.1007/978-3-540-69132-7_111

URL : http://pact.cs.cmu.edu/koedinger/pubs/Cen%2C%20Koedinger%20%26%20Junker%2008.pdf

S. Charleer, J. L. Santos, J. Klerkx, and E. Duval, Improving Teacher Awareness Through Activity, Badge and Content Visualizations, New Horizons in Web Based Learning: Proceedings of the 1st International Workshop on Open Badges in Education, pp.143-152, 2014.
DOI : 10.1007/978-3-319-13296-9_16

A. Clauset, M. E. Newman, and C. Et-moore, Finding community structure in very large networks, Physical Review E, vol.23, issue.6, 2004.
DOI : 10.1140/epjb/e2004-00125-x

URL : http://arxiv.org/abs/cond-mat/0408187

D. Clow, MOOCs and the funnel of participation, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.185-189, 2013.
DOI : 10.1145/2460296.2460332

A. Cooper, A Brief History of Analytics, The University of Bolton Récupéré sur http, CETIS Analytics Series, vol.1, issue.9, p.529, 2012.

A. T. Corbett and J. R. Et-anderson, Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modelling and User-Adapted Interaction, pp.253-278, 1995.

D. Mello, S. Olney, A. Et-person, and N. , Mining Collaborative Patterns in Tutorial Dialogues, JEDM, vol.2, pp.2-37, 2010.

T. H. Davenport, J. G. Haris, and R. Et-morison, Analytics at Work. Smarter Decisions, Better Results, 2010.

S. Dawson, A study of the relationship between student social networks and sense of community, Journal of Educational Technology & Society, vol.11, issue.3, pp.224-238, 2008.

S. Dawson, D. Ga?evi?, G. Siemens, and S. Et-joksimovic, Current state and future trends, Proceedins of the Fourth International Conference on Learning Analytics And Knowledge, LAK '14, pp.24-28, 2014.
DOI : 10.1145/2567574.2567585

D. Liddo, A. Buckingham-shum, S. Quinto, I. Bachler, M. Et-cannavacciuolo et al., Discourse-centric learning analytics, Proceedings of the 1st International Conference on Learning Analytics and Knowledge, LAK '11, p.27, 2011.
DOI : 10.1145/2090116.2090120

G. Dekker, M. Pechenizkiy, and J. Et-vleeshouwers, Predicting students drop out: a case study, Proceedings of 2nd international conference on educational data mining, pp.41-50, 2009.

N. M. Dowell and A. C. Et-graesser, Modeling Learners??? Cognitive, Affective, and Social Processes through Language and Discourse, Journal of Learning Analytics, vol.1, issue.3, pp.183-186, 2014.
DOI : 10.18608/jla.2014.13.18

E. Duval, Attention Please! Learning Analytics for Visualization and Recommendation, LAK '11 Proceedings of the 1st International Conference on Learning Analytics and Knowledge, pp.9-17, 2011.

A. Essa and H. Et-ayad, Student success system, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, LAK '12, pp.158-161, 2012.
DOI : 10.1145/2330601.2330641

U. Fayyad, S. G. Piatetsky, and P. Smyth, From Data Mining to Knowledge Discovery in Databases, pp.37-54, 1996.

M. Feng, N. Heffernan, and K. Et-koedinger, Addressing the assessment challenge with an online system that tutors as it assesses. User modeling and user-adapted interaction, pp.243-266, 2009.

R. Ferguson, The construction of shared knowledge through asynchronous dialogue, Thèse de doctorat, 2009.

R. Ferguson, The state of learning analytics in 2012: A review and future challenges, 2012.

R. Ferguson and D. Et-clow, Consistent Commitment: Patterns of engagement across time in Massive Open Online Courses (MOOCs), Journal of Learning Analytics, vol.2, issue.3, pp.55-80, 2015.
DOI : 10.18608/jla.2015.23.5

R. Ferguson, D. Clow, R. Beale, A. J. Cooper, N. Morris et al., Moving Through MOOCS: Pedagogy, Learning Design and Patterns of Engagement, Conole et alii (dir.), Design for Teaching and Learning in a Networked World, pp.70-84, 2015.
DOI : 10.1007/978-3-319-11200-8_8

C. M. Forsyth, A. C. Graesser, P. Pavlik, . Jr, Z. Cai et al., Operation ARIES!: Methods, Mystery, and Mixed Models: Discourse Features Predict Affect in a Serious Game, JEDM, vol.5, issue.1, pp.147-189, 2013.

S. Fortunato, Community detection in graphs, Physics Reports, vol.486, issue.3-5, pp.75-174, 2010.
DOI : 10.1016/j.physrep.2009.11.002

URL : http://arxiv.org/pdf/0906.0612v1.pdf

D. R. Garrison, T. Anderson, and W. Et-archer, Critical inquiry in a text-based environment: Computer conferencing in higher education. The internet and higher education, pp.87-105, 1999.

D. Gasevic, S. Dawson, N. Mirriahi, and P. D. Et-long, Learning Analytics ??? A Growing Field and Community Engagement, Journal of Learning Analytics, vol.2, issue.1, pp.1-6, 2015.
DOI : 10.18608/jla.2015.21.1

URL : http://epress.lib.uts.edu.au/journals/index.php/JLA/article/download/4555/4856

G. Gauthier, In t el l i g en t Tu t o ri n g S yst ems, Proceedings of the 5th International Conference on Intelligent Tutoring Systems, 2000.

J. P. Gee and J. Et-green, Discourse Analysis, Learning, and Social Practice: A Methodological Study, Review of Research in Education, vol.23, pp.119-169, 1998.
DOI : 10.2307/1167289

J. D. Gobert, S. Pedro, M. A. Baker, R. Toto, E. Et-montalvo et al., Leveraging Educational Data Mining for Real-time Performance Assessment of Scientific Inquiry Skills within Microworlds, JEDM, vol.4, issue.1, pp.111-143, 2012.

M. H. Goldhaber, The attention economy and the Net, First Monday, vol.2, issue.4, 1997.
DOI : 10.5210/fm.v2i4.519

D. /. Griffiths, . Lace_d3_2, and C. Pdf-hayashi, Visions of the Future What is Data Science? Fundamental Concepts and a Heuristic Example, Data Science, Classification, and Related Methods, Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96) (p, pp.40-51, 1998.

C. Haythornthwaite and M. Et-de-laat, Social networks and learning networks: Using social network perspectives to understand social learning, Proceedings of the 7th International Conference on Networked Learning, pp.183-190, 2010.

A. Hershkovitz and R. Nachmias, Developing a log-based motivation measuring tool, Proceedings of the First International Conference on Educational Data Mining, pp.226-233, 2008.

E. K. Jared, Of Needles and Haystacks: Building an Accurate Statewide Dropout Early Warning System in Wisconsin, JEDM, vol.7, issue.3, pp.18-67, 2015.

S. Joksimovi?, N. Dowell, O. Skrypnyk, V. Kovanovi?, D. Ga?evi? et al., How do you connect? Analysis of Social Capital Accumulation in connectivist MOOCs, Proceedings of the Fifth International Conference on Learning Analytics And Knowledge, pp.64-68, 2015.

J. Kay, N. Maisonneuve, K. Yacef, and P. Et-reimann, The Big Five and Visualisations of Team Work Activity, Proceedings of the International Conference on Intelligent Tutoring Systems, pp.197-206, 2006.
DOI : 10.1007/11774303_20

A. Kienle and M. Et-wessner, The CSCL Community in its First Decade: Develo pment, Continuity, Connectivity. International Journal of Computer-Supported Collaborative Learning, vol.1, issue.1, pp.9-33, 2006.

J. S. Kinnebrew, K. M. Loretz, and G. Et-biswas, A Contextualized, Differential Sequence Mining Method to Derive Students' Learning Behavior Patterns, JEDM, vol.5, issue.1, pp.190-219, 2013.

R. F. Kizilcec, C. Piech, and E. Schneider, Deconstructing disengagement, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.170-179, 2013.
DOI : 10.1145/2460296.2460330

S. Knight and K. Littleton, Dialogue as data in learning analytics for productive educational dialogue, Journal of Learning Analytics, vol.2, issue.3, pp.111-143, 2015.
DOI : 10.18608/jla.2015.23.7

J. E. Knowles, Of Needles and Haystacks: Building an Accurate Statewide Dropout Early Warning System in Wisconsin, JEDM, vol.7, issue.3, pp.18-67, 2015.

K. R. Koedinger and A. Corbett, Cognitive Tutors, pp.61-78, 2006.
DOI : 10.1017/CBO9780511816833.006

URL : https://hal.archives-ouvertes.fr/hal-00699789

K. Koedinger, E. Mclaughlin, and J. Stamper, Automated student model improvement, Proceedings of the 5th international conference on educational data mining, pp.17-24, 2012.

K. Koedinger, P. Pavlik, J. Stamper, T. Nixon, and S. Et-ritter, Avoiding problem selection thrashing with conjunctive knowledge tracing, Proceedings of the 3rd international conference on educational data mining, pp.91-100, 2010.

V. Kovanovic, D. Ga?evi?, S. Dawson, S. Joksimovic, and R. Et-baker, Does time-on-task estimation matter? Implications for the validity of learning analytics findings, Journal of Learning Analytics, vol.2, issue.3, pp.81-110, 2015.
DOI : 10.18608/jla.2015.23.6

S. Lallé, J. Mostow, V. Luengo, and N. Et-guin, Comparing Student Models in Different Formalisms by Predicting Their Impact on Help Success, AIED 2013 -16th International Conference on Artificial Intelligence in Education, pp.161-170, 2013.
DOI : 10.1007/978-3-642-39112-5_17

J. A. Larusson and B. Et-white, Learning Analytics: From Research to practice, 2014.
DOI : 10.1007/978-1-4614-3305-7

D. Z. Levin and R. Et-cross, The Strength of Weak Ties You Can Trust: The Mediating Role of Trust in Effective Knowledge Transfer, Management Science, vol.50, issue.11, pp.1477-1490, 2004.
DOI : 10.1287/mnsc.1030.0136

P. D. Long and G. Siemens, Penetrating the Fog: Analytics in Learning and Education Récupéré de https, Educause Review, vol.46, issue.5, pp.30-40, 2011.

L. P. Macfadyen and S. Et-dawson, Mining LMS data to develop an ???early warning system??? for educators: A proof of concept, Computers & Education, vol.54, issue.2, pp.588-599, 2010.
DOI : 10.1016/j.compedu.2009.09.008

T. Martin, A. Aghababyan, J. Pfaffman, J. Olsen, S. Baker et al., Nanogenetic learning analytics, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.165-169, 2013.
DOI : 10.1145/2460296.2460328

R. Martinez-maldonado, A. Pardo, N. Mirriahi, K. Yacef, J. Kay et al., LATUX: An iterative workflow for designing, validating, and deploying learning analytics visualizations, Journal of Learning Analytics, vol.2, issue.3, pp.9-39, 2015.
DOI : 10.18608/jla.2015.23.3

R. C. Mazza, S. Romero, M. Ventura, R. Pechenizkiy, and . Baker, Visualization in Educational Environments, Handbook of Educational Data Mining, pp.9-26, 2010.
DOI : 10.1201/b10274-4

N. Mercer, Sociocultural discourse analysis: analysing classroom talk as a social mode of thinking, Journal of Applied Linguistics, vol.1, issue.2, pp.137-168, 2004.
DOI : 10.1558/japl.v1i2.137

A. Merceron, P. Blickstein, and G. Et-siemens, Learning analytics: From big data to meaningful data, Journal of Learning Analytics, vol.2, issue.3, pp.4-8, 2015.
DOI : 10.18608/jla.2015.23.2

URL : http://epress.lib.uts.edu.au/journals/index.php/JLA/article/download/4814/5175

M. Ming, C. Et-nobuko, and F. , Statistical Discourse Analysis: A method for modeling online discussion processes, JLA, vol.1, issue.3, pp.61-83, 2014.

N. C. Ming and V. L. Et-ming, Predicting Student Outcomes from Unstructured Data, Proceedings of the 2nd International Workshop on Personalization Approaches in Learning Environments CEUR Workshop Proceedings, pp.11-16, 2012.

M. Chieu, V. Luengo, V. Vadcard, L. Et-tonetti, and J. , Student modeling in complex domains: Exploiting symbiosis between temporal Bayesian networks and finegrained didactical analysis, International Journal of Artificial Intelligence in Education, vol.20, pp.269-301, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00948740

R. J. Mislevy, J. T. Behrens, K. E. Dicerbo, and R. Levy, Design and Discovery in Educational Assessment: Evidence-Centered Design, Psychometrics, and Educational Data Mining, JEDM, vol.4, issue.1, pp.11-48, 2012.

J. Mitchell and S. Costello, International e-VET market research report: A report on international market research for Australian VET online products and services, 2000.

A. Mitrovic, B. Martin, and P. Et-suraweera, Intelligent Tutors for All: The Constraint-Based Approach, IEEE Intelligent Systems, vol.22, issue.4, pp.38-45, 2007.
DOI : 10.1109/MIS.2007.74

N. Miyake, Constructive Interaction and the Iterative Process of Understanding, Cognitive Science, vol.84, issue.2, pp.151-177, 1986.
DOI : 10.1037/0033-295X.84.3.231

P. Naur, Datalogy', the science of data and data processes (dir.) Information Processing 68, Proceedings of IFIP Congress, pp.5-10, 1968.

M. E. Newman, Modularity and community structure in networks, Proceedings of the National Academy of Sciences, vol.68, issue.6804, pp.8577-8696, 2006.
DOI : 10.1073/pnas.021544898

URL : http://www.pnas.org/content/103/23/8577.full.pdf

K. Niemann, M. Wolpers, G. Stoitsis, G. Chinis, and N. Et-manouselis, Aggregating social and usage datasets for learning analytics, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.245-249, 2013.
DOI : 10.1145/2460296.2460345

R. Nugent and B. Et-nelson, Evidence-centered Design for Diagnostic Assessment within Digital Learning Environments: Integrating Modern Psychometrics and Educational Data Mining, JEDM, vol.4, issue.1, pp.1-10, 2012.

S. Ohlsson, Constraint-Based Student Modeling, NATO ASI Series F Computer and Systems Sciences, pp.167-189, 1994.
DOI : 10.1007/978-3-662-03037-0_7

S. Ohlsson, Learning from performance errors., Psychological Review, vol.103, issue.2, p.241, 1996.
DOI : 10.1037/0033-295X.103.2.241

Z. A. Pardos, R. Baker, S. Pedro, M. Gowda, S. M. Gowda et al., Affective states and state tests, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.107-128, 2014.
DOI : 10.1145/2460296.2460320

P. I. Pavlik, H. Cen, and K. R. Et-koedinger, Performance Factors Analysis ?A New Alternative to Knowledge Tracing, Proceedings of the 2009 conference on Artificial Intelligence in Education: Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, pp.531-538, 2009.

R. Pelánek, Metrics for Evaluation of Student Models, JEDM, vol.7, issue.2, pp.1-19, 2015.

G. Rebolledo-mendez, D. Boulay, B. Luckin, R. Et-benitez-guerrero, and E. I. , Mining Data From Interactions With a Motivational-aware Tutoring System Using Data Visualization, JEDM, vol.5, issue.1, pp.72-103, 2013.

C. Reffay and T. Et-chanier, How Social Network Analysis can help to Measure Cohesion in Collaborative Distance-Learning, pp.343-352, 2003.
DOI : 10.1007/978-94-017-0195-2_42

URL : https://hal.archives-ouvertes.fr/edutice-00000422

A. Roberge, Le LMS, un marché en croissance Understanding, evaluating, and supporting self-regulated learning using learning analytics, VqxzPrLhDIX Roll, I. et Winne, pp.7-12, 2013.

C. Romero and S. Ventura, Educational data mining: A survey from 1995 to 2005, Expert Systems with Applications, vol.33, issue.1, pp.135-146, 1995.
DOI : 10.1016/j.eswa.2006.04.005

C. Romero, S. Ventura, M. Pechenizkiy, and R. Baker, Handbook of Educational Data Mining, 2011.
DOI : 10.1201/b10274

A. Santally, Personalisation in Web-Based Learning Environments, International Journal of Distance Education Technologies, vol.4, issue.4, pp.15-35, 2006.
DOI : 10.4018/jdet.2006100103

J. L. Santos, S. Govaerts, K. Verbert, and E. Et-duval, Goal-oriented visualizations of activity tracking, Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, LAK '12, pp.143-152, 2012.
DOI : 10.1145/2330601.2330639

J. L. Santos, S. Govaerts, K. Verbert, and E. Et-duval, Addressing learner issues with StepUp! An evaluation, Proceedings of the Third International Conference on Learning Analytics and Knowledge, pp.14-22, 2013.
DOI : 10.1145/2460296.2460301

R. K. Sawyer, (dir.) (2014a). The Cambridge handbook of the Learning Sciences

R. K. Sawyer, The future of learning: Grounding educational innovation in the learning sciences , Dans The Cambridge Handbook of Learning Sciences, pp.726-746, 2014.

B. Schneider and R. Et-pea, Does seeing one another???s gaze affect group dialogue A computational approach., Journal of Learning Analytics, vol.2, issue.2, pp.107-133, 2015.
DOI : 10.18608/jla.2015.22.9

B. Schneider, S. Abu-el-haija, J. Reesman, and R. Et-pea, Toward collaboration sensing, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.107-111, 2013.
DOI : 10.1145/2460296.2460317

B. Schneider and P. Et-blickstein, Unraveling Students' Interaction Around a Tangible Interface using Multimodal Learning Analytics, JEDM, vol.7, issue.3, pp.89-116, 2015.

N. J. Sclater, J. S. Kinnebrew, and G. Et-biswas, Learning analytics: The current state of play in UK higher and further education , Bristol : JISC. Récupéré de http://repository.jisc.ac.uk Using Coherence Analysis to Characterize Self-Regulated Learning Behaviours in Open-Ended Learning Environments, JLA, vol.5657, issue.21, pp.13-48, 2014.

G. Siemens, D. Gasevic, C. Haythornthwaite, S. Dawson, S. Buckingham-shum et al., Open Learning Analytics: an integrated & modularized platform Proposal to design, implement and evaluate an open platform to integrate heterogeneous learning analytics techniqu es Roles of course facilitators, learners, and technology in the flow of information of a cMOOC, The International Review of Research in Open and Distributed Learning, pp.188-217, 2011.

E. L. Snow, L. K. Allen, M. E. Jacovina, S. A. Crossley, C. A. Perret et al., Key to detecting flexibility over time: Entropy and natural language processing, Journal of Learning Analytics, vol.2, issue.3, pp.40-54, 2015.
DOI : 10.18608/jla.2015.23.4

R. Sprague, A Framework for the Development of Decision Support Systems, MIS Quarterly, vol.4, issue.4, pp.1-25, 1980.
DOI : 10.2307/248957

R. The and . Institute, Victory Update: San Antonio Officials Re-Admit Expelled High School Student Andrea Hernandez to Magnet School After Ending RFID Tracking Program Récupéré de https://www.rutherford.org/publications_resources/on_the_front_lines/victory_update_san_ antonio_offici als_re_admit_expelled_high_school_student Tukey Exploratory Data analysis, J. W, 1977.

A. Van-leeuwen, Learning analytics to support teachers during synchronous CSCL: Balancing between overview and overload., Journal of Learning Analytics, vol.2, issue.2, pp.138-162, 2015.
DOI : 10.18608/jla.2015.22.11

A. Van-leeuwen, J. Janssen, G. Erkens, and M. Et-brekelmans, Teacher regulation of cognitive activities during student collaboration: Effects of learning analytics, Computers & Education, vol.90, pp.80-94, 2015.
DOI : 10.1016/j.compedu.2015.09.006

K. Verbert, E. Duval, J. Klerkx, and S. Et-govaerts, Learning Analytics Dashboard Applications, American Behavioral Scientist, vol.2, issue.1, pp.1500-1509, 2013.
DOI : 10.1037/0021-9010.62.4.363

K. Verbert, S. Govaerts, E. Duval, J. Santos, F. Van-assche et al., Learning dashboards: an overview and future research opportunities, Personal and Ubiquitous Computing Journal, pp.1499-1514, 2014.
DOI : 10.1016/j.compedu.2012.12.020

URL : https://lirias.kuleuven.be/bitstream/123456789/440777/1/PUC_EIST_article.pdf

E. Walker, Primer on K-20 Education Interoperability Standards, Software & Information Industry Association Récupéré de https, 2012.

Y. Wang, L. Paquette, and R. Et-baker, A Longitudinal Study on Learner Career Advancement in MOOCs, Journal of Learning Analytics, vol.1, issue.3, pp.203-206, 2014.
DOI : 10.18608/jla.2014.13.23

A. Waters, C. Studer, and R. Et-baraniuk, Collaboration-Type Identification in Educational Datasets, JEDM, vol.6, pp.28-52, 2014.
DOI : 10.1109/globalsip.2013.6737059

G. Wells and G. Et-claxton, Learning for Life in the 21st Century, 2002.
DOI : 10.1002/9780470753545

J. Wertsch, Voices on the Mind: ? Socio-Cultural Approach to Mediated Action, 1991.

J. V. Wertsch, Culture, Communication and Cognition: Vygotskian perspectives, 1985.

W. H. Ph and R. Baker, The Potentials of Educational Data Mining for Researching Metacognition, Motivation and Self-Regulated Learning, JEDM, vol.5, issue.1, pp.1-8, 2013.

M. Worsley and P. Et-blickstein, Analyzing Engineering Design through the Lens of Computation, Journal of Learning Analytics, vol.1, issue.2, pp.151-186, 2014.
DOI : 10.18608/jla.2014.12.8

M. Worsley and P. Et-blikstein, Towards the development of multimodal action based assessment, Proceedings of the Third International Conference on Learning Analytics and Knowledge, LAK '13, pp.94-101, 2013.
DOI : 10.1145/2460296.2460315

M. C. Wright, T. Mckay, C. Hershock, K. Miller, and J. Et-tritz, Better Than Expected: Using Learning Analytics to Promote Student Success in Gateway Science. Change. The Magazine of Higher Learning, pp.28-34, 2014.

B. Xu and M. Et-recker, Understanding Teacher Users of a Digital Library Service: A Clustering Approach, JEDM, vol.3, pp.1-28, 2011.

B. Xu, M. Recker, X. Qi, N. Flann, and L. Et-ye, Clustering Educational Digital Library Usage Data: A Comparison of Latent Class Analysis and K-Means Algorithms, JEDM, vol.5, issue.2, pp.38-68, 2013.

C. Ye and G. Biswas, Early Prediction of Student Dropout and Performance in MOOCs using Higher Granularity Temporal Information, Journal of Learning Analytics, vol.1, issue.3, pp.169-172, 2014.
DOI : 10.18608/jla.2014.13.14

M. Yuan and M. Et-recker, Characterizing User Behaviors and Resulting Products in an Online Educational Community: A Comparison between Novices and Elders, Journal of Learning Analytics, vol.1, issue.3, pp.150-153, 2014.
DOI : 10.18608/jla.2014.13.9

Y. Zhu and Y. Et-xiong, Towards Data Science, Data Science Journal, vol.14, issue.0, 2015.
DOI : 10.5334/dsj-2015-008

URL : https://doi.org/10.5334/dsj-2015-008

J. Zimmermann, K. H. Brodersen, H. R. Heinimann, and J. M. Et-buhmann, A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance, JEDM, vol.7, issue.3, pp.151-176, 2015.