REALIZATION SPACES OF ALGEBRAIC STRUCTURES ON COCHAINS

Abstract : Given an algebraic structure on the cohomology of a cochain complex , we define its realization space as a Kan complex whose vertices are the structures up to homotopy realizing this structure at the cohomology level. Our algebraic structures are parameterized by props and thus include various kinds of bialgebras. We give a general formula to compute subsets of equivalence classes of realizations as quotients of automorphism groups, and determine the higher homotopy groups via the cohomology of deformation complexes. As a motivating example, we compute subsets of equivalences classes of realizations of Poincaré duality for several examples of manifolds.
Type de document :
Article dans une revue
International Mathematical Research Notices, Oxford University Press, 2018
Liste complète des métadonnées

Littérature citée [37 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01714208
Contributeur : Sinan Yalin <>
Soumis le : mercredi 21 février 2018 - 13:06:02
Dernière modification le : lundi 26 février 2018 - 13:52:33
Document(s) archivé(s) le : mardi 22 mai 2018 - 13:53:22

Fichier

Realization spaces of algebrai...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01714208, version 1

Collections

Citation

Sinan Yalin. REALIZATION SPACES OF ALGEBRAIC STRUCTURES ON COCHAINS. International Mathematical Research Notices, Oxford University Press, 2018. 〈hal-01714208〉

Partager

Métriques

Consultations de la notice

65

Téléchargements de fichiers

20